android13/u-boot/drivers/video/drm/rockchip-inno-hdmi-phy.c

1523 lines
39 KiB
C

/*
* SPDX-License-Identifier: GPL-2.0+
* (C) Copyright 2008-2016 Fuzhou Rockchip Electronics Co., Ltd
*/
#include <clk-uclass.h>
#include <config.h>
#include <common.h>
#include <errno.h>
#include <malloc.h>
#include <misc.h>
#include <fdtdec.h>
#include <fdt_support.h>
#include <asm/unaligned.h>
#include <asm/arch/clock.h>
#include <dm/device.h>
#include <dm/lists.h>
#include <dm/read.h>
#include <asm/io.h>
#include <linux/list.h>
#include <div64.h>
#include <linux/media-bus-format.h>
#include "rockchip_display.h"
#include "rockchip_crtc.h"
#include "rockchip_connector.h"
#include "rockchip_phy.h"
#define INNO_HDMI_PHY_TIMEOUT_LOOP_COUNT 1000
#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
/* REG: 0x00 */
#define PRE_PLL_REFCLK_SEL_MASK BIT(0)
#define PRE_PLL_REFCLK_SEL_PCLK BIT(0)
#define PRE_PLL_REFCLK_SEL_OSCCLK 0
/* REG: 0x01 */
#define BYPASS_RXSENSE_EN_MASK BIT(2)
#define BYPASS_RXSENSE_EN BIT(2)
#define BYPASS_PWRON_EN_MASK BIT(1)
#define BYPASS_PWRON_EN BIT(1)
#define BYPASS_PLLPD_EN_MASK BIT(0)
#define BYPASS_PLLPD_EN BIT(0)
/* REG: 0x02 */
#define BYPASS_PDATA_EN_MASK BIT(4)
#define BYPASS_PDATA_EN BIT(4)
#define PDATAEN_MASK BIT(0)
#define PDATAEN_DISABLE BIT(0)
#define PDATAEN_ENABLE 0
/* REG: 0x03 */
#define BYPASS_AUTO_TERM_RES_CAL BIT(7)
#define AUDO_TERM_RES_CAL_SPEED_14_8(x) UPDATE(x, 6, 0)
/* REG: 0x04 */
#define AUDO_TERM_RES_CAL_SPEED_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xaa */
#define POST_PLL_CTRL_MASK BIT(0)
#define POST_PLL_CTRL_MANUAL BIT(0)
/* REG: 0xe0 */
#define POST_PLL_POWER_MASK BIT(5)
#define POST_PLL_POWER_DOWN BIT(5)
#define POST_PLL_POWER_UP 0
#define PRE_PLL_POWER_MASK BIT(4)
#define PRE_PLL_POWER_DOWN BIT(4)
#define PRE_PLL_POWER_UP 0
#define RXSENSE_CLK_CH_MASK BIT(3)
#define RXSENSE_CLK_CH_ENABLE BIT(3)
#define RXSENSE_DATA_CH2_MASK BIT(2)
#define RXSENSE_DATA_CH2_ENABLE BIT(2)
#define RXSENSE_DATA_CH1_MASK BIT(1)
#define RXSENSE_DATA_CH1_ENABLE BIT(1)
#define RXSENSE_DATA_CH0_MASK BIT(0)
#define RXSENSE_DATA_CH0_ENABLE BIT(0)
/* REG: 0xe1 */
#define BANDGAP_MASK BIT(4)
#define BANDGAP_ENABLE BIT(4)
#define BANDGAP_DISABLE 0
#define TMDS_DRIVER_MASK GENMASK(3, 0)
#define TMDS_DRIVER_ENABLE UPDATE(0xf, 3, 0)
#define TMDS_DRIVER_DISABLE 0
/* REG: 0xe2 */
#define PRE_PLL_FB_DIV_8_MASK BIT(7)
#define PRE_PLL_FB_DIV_8_SHIFT 7
#define PRE_PLL_FB_DIV_8(x) UPDATE(x, 7, 7)
#define PCLK_VCO_DIV_5_MASK BIT(5)
#define PCLK_VCO_DIV_5_SHIFT 5
#define PCLK_VCO_DIV_5(x) UPDATE(x, 5, 5)
#define PRE_PLL_PRE_DIV_MASK GENMASK(4, 0)
#define PRE_PLL_PRE_DIV(x) UPDATE(x, 4, 0)
/* REG: 0xe3 */
#define PRE_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xe4 */
#define PRE_PLL_PCLK_DIV_B_MASK GENMASK(6, 5)
#define PRE_PLL_PCLK_DIV_B_SHIFT 5
#define PRE_PLL_PCLK_DIV_B(x) UPDATE(x, 6, 5)
#define PRE_PLL_PCLK_DIV_A_MASK GENMASK(4, 0)
#define PRE_PLL_PCLK_DIV_A_SHIFT 0
#define PRE_PLL_PCLK_DIV_A(x) UPDATE(x, 4, 0)
/* REG: 0xe5 */
#define PRE_PLL_PCLK_DIV_C_MASK GENMASK(6, 5)
#define PRE_PLL_PCLK_DIV_C_SHIFT 5
#define PRE_PLL_PCLK_DIV_C(x) UPDATE(x, 6, 5)
#define PRE_PLL_PCLK_DIV_D_MASK GENMASK(4, 0)
#define PRE_PLL_PCLK_DIV_D_SHIFT 0
#define PRE_PLL_PCLK_DIV_D(x) UPDATE(x, 4, 0)
/* REG: 0xe6 */
#define PRE_PLL_TMDSCLK_DIV_C_MASK GENMASK(5, 4)
#define PRE_PLL_TMDSCLK_DIV_C(x) UPDATE(x, 5, 4)
#define PRE_PLL_TMDSCLK_DIV_A_MASK GENMASK(3, 2)
#define PRE_PLL_TMDSCLK_DIV_A(x) UPDATE(x, 3, 2)
#define PRE_PLL_TMDSCLK_DIV_B_MASK GENMASK(1, 0)
#define PRE_PLL_TMDSCLK_DIV_B(x) UPDATE(x, 1, 0)
/* REG: 0xe8 */
#define PRE_PLL_LOCK_STATUS BIT(0)
/* REG: 0xe9 */
#define POST_PLL_POST_DIV_EN_MASK GENMASK(7, 6)
#define POST_PLL_POST_DIV_ENABLE UPDATE(3, 7, 6)
#define POST_PLL_POST_DIV_DISABLE 0
#define POST_PLL_PRE_DIV_MASK GENMASK(4, 0)
#define POST_PLL_PRE_DIV(x) UPDATE(x, 4, 0)
/* REG: 0xea */
#define POST_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xeb */
#define POST_PLL_FB_DIV_8_MASK BIT(7)
#define POST_PLL_FB_DIV_8(x) UPDATE(x, 7, 7)
#define POST_PLL_POST_DIV_MASK GENMASK(5, 4)
#define POST_PLL_POST_DIV(x) UPDATE(x, 5, 4)
#define POST_PLL_LOCK_STATUS BIT(0)
/* REG: 0xee */
#define TMDS_CH_TA_MASK GENMASK(7, 4)
#define TMDS_CH_TA_ENABLE UPDATE(0xf, 7, 4)
#define TMDS_CH_TA_DISABLE 0
/* REG: 0xef */
#define TMDS_CLK_CH_TA(x) UPDATE(x, 7, 6)
#define TMDS_DATA_CH2_TA(x) UPDATE(x, 5, 4)
#define TMDS_DATA_CH1_TA(x) UPDATE(x, 3, 2)
#define TMDS_DATA_CH0_TA(x) UPDATE(x, 1, 0)
/* REG: 0xf0 */
#define TMDS_DATA_CH2_PRE_EMPHASIS_MASK GENMASK(5, 4)
#define TMDS_DATA_CH2_PRE_EMPHASIS(x) UPDATE(x, 5, 4)
#define TMDS_DATA_CH1_PRE_EMPHASIS_MASK GENMASK(3, 2)
#define TMDS_DATA_CH1_PRE_EMPHASIS(x) UPDATE(x, 3, 2)
#define TMDS_DATA_CH0_PRE_EMPHASIS_MASK GENMASK(1, 0)
#define TMDS_DATA_CH0_PRE_EMPHASIS(x) UPDATE(x, 1, 0)
/* REG: 0xf1 */
#define TMDS_CLK_CH_OUTPUT_SWING(x) UPDATE(x, 7, 4)
#define TMDS_DATA_CH2_OUTPUT_SWING(x) UPDATE(x, 3, 0)
/* REG: 0xf2 */
#define TMDS_DATA_CH1_OUTPUT_SWING(x) UPDATE(x, 7, 4)
#define TMDS_DATA_CH0_OUTPUT_SWING(x) UPDATE(x, 3, 0)
enum inno_hdmi_phy_type {
INNO_HDMI_PHY_RK3228,
INNO_HDMI_PHY_RK3328,
INNO_HDMI_PHY_RK3528
};
struct inno_hdmi_phy_drv_data;
struct phy_config {
unsigned long tmdsclock;
u8 regs[14];
};
struct inno_hdmi_phy {
struct udevice *dev;
ofnode node;
void *regs;
/* platform data */
const struct inno_hdmi_phy_drv_data *plat_data;
unsigned long pixclock;
u32 bus_width;
struct phy_config *phy_cfg;
};
struct pre_pll_config {
unsigned long pixclock;
unsigned long tmdsclock;
u8 prediv;
u16 fbdiv;
u8 tmds_div_a;
u8 tmds_div_b;
u8 tmds_div_c;
u8 pclk_div_a;
u8 pclk_div_b;
u8 pclk_div_c;
u8 pclk_div_d;
u8 vco_div_5_en;
u32 fracdiv;
};
struct post_pll_config {
unsigned long tmdsclock;
u8 prediv;
u16 fbdiv;
u8 postdiv;
u8 version;
};
struct inno_hdmi_phy_ops {
void (*init)(struct inno_hdmi_phy *inno);
int (*power_on)(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg);
void (*power_off)(struct inno_hdmi_phy *inno);
int (*pre_pll_update)(struct inno_hdmi_phy *inno,
const struct pre_pll_config *cfg);
unsigned long (*recalc_rate)(struct inno_hdmi_phy *inno,
unsigned long parent_rate);
};
struct inno_hdmi_phy_drv_data {
enum inno_hdmi_phy_type dev_type;
const struct inno_hdmi_phy_ops *ops;
const struct phy_config *phy_cfg_table;
};
struct rockchip_inno_data {
char compatible[30];
const void *data;
};
struct clk_inno_hdmi {
struct udevice *dev;
ulong rate;
};
/* global variables are used to pass reource from phy drivers to clk driver */
static struct inno_hdmi_phy *g_inno;
static const struct pre_pll_config pre_pll_cfg_table[] = {
{ 27000000, 27000000, 1, 90, 3, 2, 2, 10, 3, 3, 4, 0, 0},
{ 27000000, 33750000, 1, 90, 1, 3, 3, 10, 3, 3, 4, 0, 0},
{ 40000000, 40000000, 1, 80, 2, 2, 2, 12, 2, 2, 2, 0, 0},
{ 59341000, 59341000, 1, 98, 3, 1, 2, 1, 3, 3, 4, 0, 0xE6AE6B},
{ 59400000, 59400000, 1, 99, 3, 1, 1, 1, 3, 3, 4, 0, 0},
{ 59341000, 74176250, 1, 98, 0, 3, 3, 1, 3, 3, 4, 0, 0xE6AE6B},
{ 59400000, 74250000, 1, 99, 1, 2, 2, 1, 3, 3, 4, 0, 0},
{ 74176000, 74176000, 1, 98, 1, 2, 2, 1, 2, 3, 4, 0, 0xE6AE6B},
{ 74250000, 74250000, 1, 99, 1, 2, 2, 1, 2, 3, 4, 0, 0},
{ 74176000, 92720000, 4, 494, 1, 2, 2, 1, 3, 3, 4, 0, 0x816817},
{ 74250000, 92812500, 4, 495, 1, 2, 2, 1, 3, 3, 4, 0, 0},
{148352000, 148352000, 1, 98, 1, 1, 1, 1, 2, 2, 2, 0, 0xE6AE6B},
{148500000, 148500000, 1, 99, 1, 1, 1, 1, 2, 2, 2, 0, 0},
{148352000, 185440000, 4, 494, 0, 2, 2, 1, 3, 2, 2, 0, 0x816817},
{148500000, 185625000, 4, 495, 0, 2, 2, 1, 3, 2, 2, 0, 0},
{296703000, 296703000, 1, 98, 0, 1, 1, 1, 0, 2, 2, 0, 0xE6AE6B},
{297000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 2, 2, 0, 0},
{296703000, 370878750, 4, 494, 1, 2, 0, 1, 3, 1, 1, 0, 0x816817},
{297000000, 371250000, 4, 495, 1, 2, 0, 1, 3, 1, 1, 0, 0},
{593407000, 296703500, 1, 98, 0, 1, 1, 1, 0, 2, 1, 0, 0xE6AE6B},
{594000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 2, 1, 0, 0},
{593407000, 370879375, 4, 494, 1, 2, 0, 1, 3, 1, 1, 1, 0x816817},
{594000000, 371250000, 4, 495, 1, 2, 0, 1, 3, 1, 1, 1, 0},
{593407000, 593407000, 1, 98, 0, 2, 0, 1, 0, 1, 1, 0, 0xE6AE6B},
{594000000, 594000000, 1, 99, 0, 2, 0, 1, 0, 1, 1, 0, 0},
{ ~0UL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
};
static const struct post_pll_config post_pll_cfg_table[] = {
{33750000, 1, 40, 8, 1},
{33750000, 1, 80, 8, 2},
{33750000, 1, 10, 2, 4},
{74250000, 1, 40, 8, 1},
{74250000, 18, 80, 8, 2},
{74250000, 1, 20, 4, 8},
{148500000, 2, 40, 4, 3},
{148500000, 1, 10, 2, 8},
{297000000, 4, 40, 2, 3},
{297000000, 2, 20, 2, 8},
{594000000, 8, 40, 1, 3},
{594000000, 4, 20, 1, 8},
{ ~0UL, 0, 0, 0, 0}
};
static const struct phy_config rk3228_phy_cfg[] = {
{ 165000000, {
0xaa, 0x00, 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
340000000, {
0xaa, 0x15, 0x6a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
594000000, {
0xaa, 0x15, 0x7a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
~0UL, {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}
};
static const struct phy_config rk3328_phy_cfg[] = {
{ 165000000, {
0x07, 0x08, 0x08, 0x08, 0x00, 0x00, 0x08, 0x08, 0x08,
0x00, 0xac, 0xcc, 0xcc, 0xcc,
},
}, {
340000000, {
0x0b, 0x0d, 0x0d, 0x0d, 0x07, 0x15, 0x08, 0x08, 0x08,
0x3f, 0xac, 0xcc, 0xcd, 0xdd,
},
}, {
594000000, {
0x10, 0x1a, 0x1a, 0x1a, 0x07, 0x15, 0x08, 0x08, 0x08,
0x00, 0xac, 0xcc, 0xcc, 0xcc,
},
}, {
~0UL, {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}
};
static const struct phy_config rk3528_phy_cfg[] = {
/* tmdsclk bias-clk bias-data voltage-clk voltage-data pre-emphasis-data */
{ 165000000, {
0x03, 0x04, 0x0c, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
340000000, {
0x03, 0x04, 0x0c, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
594000000, {
0x02, 0x08, 0x0d, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
~0UL, {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}
};
static inline void inno_write(struct inno_hdmi_phy *inno, u32 reg, u8 val)
{
writel(val, inno->regs + (reg * 4));
}
static inline u8 inno_read(struct inno_hdmi_phy *inno, u32 reg)
{
u32 val;
val = readl(inno->regs + (reg * 4));
return val;
}
static inline void inno_update_bits(struct inno_hdmi_phy *inno, u8 reg,
u8 mask, u8 val)
{
u32 tmp, orig;
orig = inno_read(inno, reg);
tmp = orig & ~mask;
tmp |= val & mask;
inno_write(inno, reg, tmp);
}
static u32 inno_hdmi_phy_get_tmdsclk(struct inno_hdmi_phy *inno,
unsigned long rate)
{
u32 tmdsclk;
switch (inno->bus_width) {
case 4:
tmdsclk = (u32)rate / 2;
break;
case 5:
tmdsclk = (u32)rate * 5 / 8;
break;
case 6:
tmdsclk = (u32)rate * 3 / 4;
break;
case 10:
tmdsclk = (u32)rate * 5 / 4;
break;
case 12:
tmdsclk = (u32)rate * 3 / 2;
break;
case 16:
tmdsclk = (u32)rate * 2;
break;
default:
tmdsclk = rate;
}
return tmdsclk;
}
static u8 rk_get_cpu_version(void)
{
u8 val = 0;
#ifdef CONFIG_ROCKCHIP_EFUSE
struct udevice *dev;
u32 regs[2] = {0};
u8 fuses[1];
ofnode node;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MISC,
DM_GET_DRIVER(rockchip_efuse), &dev);
if (ret) {
printf("%s: no misc-device found\n", __func__);
return -EINVAL;
}
node = dev_read_subnode(dev, "cpu-version");
if (!ofnode_valid(node))
return -EINVAL;
ret = ofnode_read_u32_array(node, "reg", regs, 2);
if (ret) {
printf("Cannot get efuse reg\n");
return -EINVAL;
}
ret = misc_read(dev, regs[0], &fuses, regs[1]);
if (ret) {
printf("%s: misc_read failed\n", __func__);
return 0;
}
val = fuses[0];
val = (val >> 3) & 0x1;
#endif
return val;
}
static int inno_hdmi_phy_power_on(struct rockchip_phy *phy)
{
#ifdef CONFIG_SPL_BUILD
struct inno_hdmi_phy *inno = (struct inno_hdmi_phy *)phy->data;
#else
struct inno_hdmi_phy *inno = dev_get_priv(phy->dev);
#endif
const struct post_pll_config *cfg = post_pll_cfg_table;
const struct phy_config *phy_cfg = inno->plat_data->phy_cfg_table;
u32 tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, inno->pixclock);
u32 chipversion = 1;
printf("start Inno HDMI PHY Power On\n");
if (inno->phy_cfg)
phy_cfg = inno->phy_cfg;
if (!tmdsclock) {
printf("TMDS clock is zero!\n");
return -EINVAL;
}
if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3328 &&
rk_get_cpu_version())
chipversion = 2;
else if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3228 &&
tmdsclock <= 33750000)
chipversion = 4;
else if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3528)
chipversion = 8;
printf("tmdsclock = %d; chipversion = %d\n", tmdsclock, chipversion);
for (; cfg->tmdsclock != ~0UL; cfg++)
if (tmdsclock <= cfg->tmdsclock &&
cfg->version & chipversion)
break;
for (; phy_cfg->tmdsclock != ~0UL; phy_cfg++)
if (tmdsclock <= phy_cfg->tmdsclock)
break;
if (cfg->tmdsclock == ~0UL || phy_cfg->tmdsclock == ~0UL)
return -EINVAL;
printf("Inno HDMI PHY Power On\n");
if (inno->plat_data->ops->power_on)
return inno->plat_data->ops->power_on(inno, cfg, phy_cfg);
else
return -EINVAL;
}
static int inno_hdmi_phy_power_off(struct rockchip_phy *phy)
{
#ifdef CONFIG_SPL_BUILD
struct inno_hdmi_phy *inno = (struct inno_hdmi_phy *)phy->data;
#else
struct inno_hdmi_phy *inno = dev_get_priv(phy->dev);
#endif
if (inno->plat_data->ops->power_off)
inno->plat_data->ops->power_off(inno);
printf("Inno HDMI PHY Power Off\n");
return 0;
}
static int inno_hdmi_phy_clk_is_prepared(struct inno_hdmi_phy *inno)
{
u8 status;
if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3228)
status = inno_read(inno, 0xe0) & PRE_PLL_POWER_MASK;
else
status = inno_read(inno, 0xa0) & 1;
return status ? 0 : 1;
}
static int inno_hdmi_phy_clk_prepare(struct inno_hdmi_phy *inno)
{
if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3228)
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK,
PRE_PLL_POWER_UP);
else
inno_update_bits(inno, 0xa0, 1, 0);
return 0;
}
static int inno_hdmi_phy_clk_set_rate(struct inno_hdmi_phy *inno,
unsigned long rate)
{
const struct pre_pll_config *cfg = pre_pll_cfg_table;
u32 tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate);
for (; cfg->pixclock != ~0UL; cfg++)
if (cfg->pixclock == rate && cfg->tmdsclock == tmdsclock)
break;
if (cfg->pixclock == ~0UL) {
printf("unsupported rate %lu\n", rate);
return -EINVAL;
}
if (inno->plat_data->ops->pre_pll_update)
inno->plat_data->ops->pre_pll_update(inno, cfg);
inno->pixclock = rate;
return 0;
}
static void inno_hdmi_phy_rk3228_init(struct inno_hdmi_phy *inno)
{
u32 m, v;
/*
* Use phy internal register control
* rxsense/poweron/pllpd/pdataen signal.
*/
m = BYPASS_RXSENSE_EN_MASK | BYPASS_PWRON_EN_MASK |
BYPASS_PLLPD_EN_MASK;
v = BYPASS_RXSENSE_EN | BYPASS_PWRON_EN | BYPASS_PLLPD_EN;
inno_update_bits(inno, 0x01, m, v);
inno_update_bits(inno, 0x02, BYPASS_PDATA_EN_MASK, BYPASS_PDATA_EN);
/* manual power down post-PLL */
inno_update_bits(inno, 0xaa, POST_PLL_CTRL_MASK, POST_PLL_CTRL_MANUAL);
}
static int
inno_hdmi_phy_rk3228_power_on(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg)
{
int pll_tries;
u32 m, v;
/* pdata_en disable */
inno_update_bits(inno, 0x02, PDATAEN_MASK, PDATAEN_DISABLE);
/* Power down Post-PLL */
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK, PRE_PLL_POWER_DOWN);
inno_update_bits(inno, 0xe0, POST_PLL_POWER_MASK, POST_PLL_POWER_DOWN);
/* Post-PLL update */
m = POST_PLL_PRE_DIV_MASK;
v = POST_PLL_PRE_DIV(cfg->prediv);
inno_update_bits(inno, 0xe9, m, v);
m = POST_PLL_FB_DIV_8_MASK;
v = POST_PLL_FB_DIV_8(cfg->fbdiv >> 8);
inno_update_bits(inno, 0xeb, m, v);
inno_write(inno, 0xea, POST_PLL_FB_DIV_7_0(cfg->fbdiv));
if (cfg->postdiv == 1) {
/* Disable Post-PLL post divider */
m = POST_PLL_POST_DIV_EN_MASK;
v = POST_PLL_POST_DIV_DISABLE;
inno_update_bits(inno, 0xe9, m, v);
} else {
/* Enable Post-PLL post divider */
m = POST_PLL_POST_DIV_EN_MASK;
v = POST_PLL_POST_DIV_ENABLE;
inno_update_bits(inno, 0xe9, m, v);
m = POST_PLL_POST_DIV_MASK;
v = POST_PLL_POST_DIV(cfg->postdiv / 2 - 1);
inno_update_bits(inno, 0xeb, m, v);
}
for (v = 0; v < 4; v++)
inno_write(inno, 0xef + v, phy_cfg->regs[v]);
/* Power up Post-PLL */
inno_update_bits(inno, 0xe0, POST_PLL_POWER_MASK, POST_PLL_POWER_UP);
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK, PRE_PLL_POWER_UP);
/* BandGap enable */
inno_update_bits(inno, 0xe1, BANDGAP_MASK, BANDGAP_ENABLE);
/* TMDS driver enable */
inno_update_bits(inno, 0xe1, TMDS_DRIVER_MASK, TMDS_DRIVER_ENABLE);
/* Wait for post PLL lock */
pll_tries = 0;
while (!(inno_read(inno, 0xeb) & POST_PLL_LOCK_STATUS)) {
if (pll_tries == INNO_HDMI_PHY_TIMEOUT_LOOP_COUNT) {
printf("Post-PLL unlock\n");
return -ETIMEDOUT;
}
pll_tries++;
udelay(100);
}
if (cfg->tmdsclock > 340000000)
mdelay(100);
/* pdata_en enable */
inno_update_bits(inno, 0x02, PDATAEN_MASK, PDATAEN_ENABLE);
return 0;
}
static void inno_hdmi_phy_rk3228_power_off(struct inno_hdmi_phy *inno)
{
/* TMDS driver Disable */
inno_update_bits(inno, 0xe1, TMDS_DRIVER_MASK, TMDS_DRIVER_DISABLE);
/* BandGap Disable */
inno_update_bits(inno, 0xe1, BANDGAP_MASK, BANDGAP_DISABLE);
/* Post-PLL power down */
inno_update_bits(inno, 0xe0, POST_PLL_POWER_MASK, POST_PLL_POWER_DOWN);
}
static int
inno_hdmi_phy_rk3228_pre_pll_update(struct inno_hdmi_phy *inno,
const struct pre_pll_config *cfg)
{
int pll_tries;
u32 m, v;
/* Power down PRE-PLL */
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK, PRE_PLL_POWER_DOWN);
m = PRE_PLL_FB_DIV_8_MASK | PCLK_VCO_DIV_5_MASK | PRE_PLL_PRE_DIV_MASK;
v = PRE_PLL_FB_DIV_8(cfg->fbdiv >> 8) |
PCLK_VCO_DIV_5(cfg->vco_div_5_en) | PRE_PLL_PRE_DIV(cfg->prediv);
inno_update_bits(inno, 0xe2, m, v);
inno_write(inno, 0xe3, PRE_PLL_FB_DIV_7_0(cfg->fbdiv));
m = PRE_PLL_PCLK_DIV_B_MASK | PRE_PLL_PCLK_DIV_A_MASK;
v = PRE_PLL_PCLK_DIV_B(cfg->pclk_div_b) |
PRE_PLL_PCLK_DIV_A(cfg->pclk_div_a);
inno_update_bits(inno, 0xe4, m, v);
m = PRE_PLL_PCLK_DIV_C_MASK | PRE_PLL_PCLK_DIV_D_MASK;
v = PRE_PLL_PCLK_DIV_C(cfg->pclk_div_c) |
PRE_PLL_PCLK_DIV_D(cfg->pclk_div_d);
inno_update_bits(inno, 0xe5, m, v);
m = PRE_PLL_TMDSCLK_DIV_C_MASK | PRE_PLL_TMDSCLK_DIV_A_MASK |
PRE_PLL_TMDSCLK_DIV_B_MASK;
v = PRE_PLL_TMDSCLK_DIV_C(cfg->tmds_div_c) |
PRE_PLL_TMDSCLK_DIV_A(cfg->tmds_div_a) |
PRE_PLL_TMDSCLK_DIV_B(cfg->tmds_div_b);
inno_update_bits(inno, 0xe6, m, v);
/* Power up PRE-PLL */
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK, PRE_PLL_POWER_UP);
/* Wait for Pre-PLL lock */
pll_tries = 0;
while (!(inno_read(inno, 0xe8) & PRE_PLL_LOCK_STATUS)) {
if (pll_tries == INNO_HDMI_PHY_TIMEOUT_LOOP_COUNT) {
printf("Pre-PLL unlock\n");
return -ETIMEDOUT;
}
pll_tries++;
udelay(100);
}
return 0;
}
static void inno_hdmi_phy_rk3328_init(struct inno_hdmi_phy *inno)
{
/*
* Use phy internal register control
* rxsense/poweron/pllpd/pdataen signal.
*/
inno_write(inno, 0x01, 0x07);
inno_write(inno, 0x02, 0x91);
}
static int
inno_hdmi_phy_rk3328_power_on(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg)
{
u32 val;
/* set pdata_en to 0 */
inno_update_bits(inno, 0x02, 1, 0);
/* Power off post PLL */
inno_update_bits(inno, 0xaa, 1, 1);
val = cfg->fbdiv & 0xff;
inno_write(inno, 0xac, val);
if (cfg->postdiv == 1) {
inno_write(inno, 0xaa, 2);
val = (cfg->fbdiv >> 8) | cfg->prediv;
inno_write(inno, 0xab, val);
} else {
val = (cfg->postdiv / 2) - 1;
inno_write(inno, 0xad, val);
val = (cfg->fbdiv >> 8) | cfg->prediv;
inno_write(inno, 0xab, val);
inno_write(inno, 0xaa, 0x0e);
}
for (val = 0; val < 14; val++)
inno_write(inno, 0xb5 + val, phy_cfg->regs[val]);
/* bit[7:6] of reg c8/c9/ca/c8 is ESD detect threshold:
* 00 - 340mV
* 01 - 280mV
* 10 - 260mV
* 11 - 240mV
* default is 240mV, now we set it to 340mV
*/
inno_write(inno, 0xc8, 0);
inno_write(inno, 0xc9, 0);
inno_write(inno, 0xca, 0);
inno_write(inno, 0xcb, 0);
if (phy_cfg->tmdsclock > 340000000) {
/* Set termination resistor to 100ohm */
val = 75000000 / 100000;
inno_write(inno, 0xc5, ((val >> 8) & 0xff) | 0x80);
inno_write(inno, 0xc6, val & 0xff);
inno_write(inno, 0xc7, 3 << 1);
inno_write(inno, 0xc5, ((val >> 8) & 0xff));
} else if (phy_cfg->tmdsclock > 165000000) {
inno_write(inno, 0xc5, 0x81);
/* clk termination resistor is 50ohm
* data termination resistor is 150ohm
*/
inno_write(inno, 0xc8, 0x30);
inno_write(inno, 0xc9, 0x10);
inno_write(inno, 0xca, 0x10);
inno_write(inno, 0xcb, 0x10);
} else {
inno_write(inno, 0xc5, 0x81);
}
/* set TMDS sync detection counter length */
val = 47520000000UL / phy_cfg->tmdsclock;
inno_write(inno, 0xd8, (val >> 8) & 0xff);
inno_write(inno, 0xd9, val & 0xff);
/* Power up post PLL */
inno_update_bits(inno, 0xaa, 1, 0);
/* Power up tmds driver */
inno_update_bits(inno, 0xb0, 4, 4);
inno_write(inno, 0xb2, 0x0f);
/* Wait for post PLL lock */
for (val = 0; val < 5; val++) {
if (inno_read(inno, 0xaf) & 1)
break;
udelay(1000);
}
if (!(inno_read(inno, 0xaf) & 1)) {
printf("HDMI PHY Post PLL unlock\n");
return -ETIMEDOUT;
}
if (phy_cfg->tmdsclock > 340000000)
mdelay(100);
/* set pdata_en to 1 */
inno_update_bits(inno, 0x02, 1, 1);
return 0;
}
static void inno_hdmi_phy_rk3328_power_off(struct inno_hdmi_phy *inno)
{
/* Power off driver */
inno_write(inno, 0xb2, 0);
/* Power off band gap */
inno_update_bits(inno, 0xb0, 4, 0);
/* Power off post pll */
inno_update_bits(inno, 0xaa, 1, 1);
}
static int
inno_hdmi_phy_rk3328_pre_pll_update(struct inno_hdmi_phy *inno,
const struct pre_pll_config *cfg)
{
u32 val;
/* Power off PLL */
inno_update_bits(inno, 0xa0, 1, 1);
/* Configure pre-pll */
inno_update_bits(inno, 0xa0, 2, (cfg->vco_div_5_en & 1) << 1);
inno_write(inno, 0xa1, cfg->prediv);
if (cfg->fracdiv)
val = ((cfg->fbdiv >> 8) & 0x0f) | 0xc0;
else
val = ((cfg->fbdiv >> 8) & 0x0f) | 0xf0;
inno_write(inno, 0xa2, val);
inno_write(inno, 0xa3, cfg->fbdiv & 0xff);
val = (cfg->pclk_div_a & 0x1f) |
((cfg->pclk_div_b & 3) << 5);
inno_write(inno, 0xa5, val);
val = (cfg->pclk_div_d & 0x1f) |
((cfg->pclk_div_c & 3) << 5);
inno_write(inno, 0xa6, val);
val = ((cfg->tmds_div_a & 3) << 4) |
((cfg->tmds_div_b & 3) << 2) |
(cfg->tmds_div_c & 3);
inno_write(inno, 0xa4, val);
if (cfg->fracdiv) {
val = cfg->fracdiv & 0xff;
inno_write(inno, 0xd3, val);
val = (cfg->fracdiv >> 8) & 0xff;
inno_write(inno, 0xd2, val);
val = (cfg->fracdiv >> 16) & 0xff;
inno_write(inno, 0xd1, val);
} else {
inno_write(inno, 0xd3, 0);
inno_write(inno, 0xd2, 0);
inno_write(inno, 0xd1, 0);
}
/* Power up PLL */
inno_update_bits(inno, 0xa0, 1, 0);
/* Wait for PLL lock */
for (val = 0; val < 5; val++) {
if (inno_read(inno, 0xa9) & 1)
break;
udelay(1000);
}
if (val == 5) {
printf("Pre-PLL unlock\n");
return -ETIMEDOUT;
}
return 0;
}
static unsigned long
inno_hdmi_3328_phy_pll_recalc_rate(struct inno_hdmi_phy *inno,
unsigned long parent_rate)
{
unsigned long rate, vco, frac;
u8 nd, no_a, no_b, no_d;
__maybe_unused u8 no_c;
u16 nf;
nd = inno_read(inno, 0xa1) & 0x3f;
nf = ((inno_read(inno, 0xa2) & 0x0f) << 8) | inno_read(inno, 0xa3);
vco = parent_rate * nf;
if ((inno_read(inno, 0xa2) & 0x30) == 0) {
frac = inno_read(inno, 0xd3) |
(inno_read(inno, 0xd2) << 8) |
(inno_read(inno, 0xd1) << 16);
vco += DIV_ROUND_CLOSEST(parent_rate * frac, (1 << 24));
}
if (inno_read(inno, 0xa0) & 2) {
rate = vco / (nd * 5);
} else {
no_a = inno_read(inno, 0xa5) & 0x1f;
no_b = ((inno_read(inno, 0xa5) >> 5) & 7) + 2;
no_c = (1 << ((inno_read(inno, 0xa6) >> 5) & 7));
no_d = inno_read(inno, 0xa6) & 0x1f;
if (no_a == 1)
rate = vco / (nd * no_b * no_d * 2);
else
rate = vco / (nd * no_a * no_d * 2);
}
inno->pixclock = rate;
return rate;
}
static int
inno_hdmi_phy_rk3528_power_on(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg)
{
u32 val;
u64 temp;
u32 tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, inno->pixclock);
/* Power off post PLL */
inno_update_bits(inno, 0xaa, 1, 0);
val = cfg->prediv;
inno_write(inno, 0xab, val);
if (cfg->postdiv == 1) {
inno_write(inno, 0xad, 0x8);
inno_write(inno, 0xaa, 2);
} else {
val = (cfg->postdiv / 2) - 1;
inno_write(inno, 0xad, val);
inno_write(inno, 0xaa, 0x0e);
}
val = cfg->fbdiv & 0xff;
inno_write(inno, 0xac, val);
val = (cfg->fbdiv >> 8) & BIT(0);
inno_update_bits(inno, 0xad, BIT(4), val);
/* current bias clk/data 2 */
val = phy_cfg->regs[0] << 4 | phy_cfg->regs[1];
inno_write(inno, 0xbf, val);
/* current bias data 1/0 */
val = phy_cfg->regs[1] << 4 | phy_cfg->regs[1];
inno_write(inno, 0xc0, val);
/* output voltage */
inno_write(inno, 0xb5, phy_cfg->regs[2]);
inno_write(inno, 0xb6, phy_cfg->regs[3]);
inno_write(inno, 0xb7, phy_cfg->regs[3]);
inno_write(inno, 0xb8, phy_cfg->regs[3]);
/* pre-emphasis */
inno_write(inno, 0xbb, phy_cfg->regs[4]);
inno_write(inno, 0xbc, phy_cfg->regs[4]);
inno_write(inno, 0xbd, phy_cfg->regs[4]);
/* enable LDO */
inno_write(inno, 0xb4, 0x7);
/* enable serializer */
inno_write(inno, 0xbe, 0x70);
inno_write(inno, 0xb2, 0x0f);
for (val = 0; val < 5; val++) {
if (inno_read(inno, 0xaf) & 1)
break;
udelay(1000);
}
if (!(inno_read(inno, 0xaf) & 1)) {
dev_err(inno->dev, "HDMI PHY Post PLL unlock\n");
return -ETIMEDOUT;
}
/* set termination resistance */
if (phy_cfg->tmdsclock > 340000000) {
inno_write(inno, 0xc7, 0x76);
inno_write(inno, 0xc5, 0x83);
inno_write(inno, 0xc8, 0x00);
inno_write(inno, 0xc9, 0x2f);
inno_write(inno, 0xca, 0x2f);
inno_write(inno, 0xcb, 0x2f);
} else {
inno_write(inno, 0xc7, 0x76);
inno_write(inno, 0xc5, 0x83);
inno_write(inno, 0xc8, 0x00);
inno_write(inno, 0xc9, 0x0f);
inno_write(inno, 0xca, 0x0f);
inno_write(inno, 0xcb, 0x0f);
}
/* set TMDS sync detection counter length */
temp = 47520000000UL / tmdsclock;
inno_write(inno, 0xd8, (temp >> 8) & 0xff);
inno_write(inno, 0xd9, temp & 0xff);
if (phy_cfg->tmdsclock > 340000000)
mdelay(100);
/* set pdata_en to 0/1 */
inno_update_bits(inno, 0x02, 1, 0);
inno_update_bits(inno, 0x02, 1, 1);
/* Enable PHY IRQ */
inno_write(inno, 0x05, 0x22);
inno_write(inno, 0x07, 0x22);
inno_write(inno, 0xcc, 0x0f);
return 0;
}
static void inno_hdmi_phy_rk3528_power_off(struct inno_hdmi_phy *inno)
{
/* Power off driver */
inno_write(inno, 0xb2, 0);
/* Power off band gap */
inno_update_bits(inno, 0xb0, 4, 0);
/* Power off post pll */
inno_update_bits(inno, 0xaa, 1, 1);
/* Disable PHY IRQ */
inno_write(inno, 0x05, 0);
inno_write(inno, 0x07, 0);
}
static void inno_hdmi_phy_rk3528_init(struct inno_hdmi_phy *inno)
{
/*
* Use phy internal register control
* rxsense/poweron/pllpd/pdataen signal.
*/
inno_write(inno, 0x02, 0x81);
}
static int
inno_hdmi_phy_rk3528_pre_pll_update(struct inno_hdmi_phy *inno,
const struct pre_pll_config *cfg)
{
u32 val;
inno_update_bits(inno, 0xb0, 4, 4);
inno_write(inno, 0xcc, 0x0f);
/* Power on PLL */
inno_update_bits(inno, 0xa0, 1, 0);
/* Configure pre-pll */
inno_update_bits(inno, 0xa0, 2, (cfg->vco_div_5_en & 1) << 1);
inno_write(inno, 0xa1, cfg->prediv);
if (cfg->fracdiv)
val = ((cfg->fbdiv >> 8) & 0x0f) | 0xc0;
else
val = ((cfg->fbdiv >> 8) & 0x0f) | 0xf0;
inno_write(inno, 0xa2, val);
inno_write(inno, 0xa3, cfg->fbdiv & 0xff);
val = (cfg->pclk_div_a & 0x1f) |
((cfg->pclk_div_b & 3) << 5);
inno_write(inno, 0xa5, val);
val = (cfg->pclk_div_d & 0x1f) |
((cfg->pclk_div_c & 3) << 5);
inno_write(inno, 0xa6, val);
val = ((cfg->tmds_div_a & 3) << 4) |
((cfg->tmds_div_b & 3) << 2) |
(cfg->tmds_div_c & 3);
inno_write(inno, 0xa4, val);
if (cfg->fracdiv) {
val = cfg->fracdiv & 0xff;
inno_write(inno, 0xd3, val);
val = (cfg->fracdiv >> 8) & 0xff;
inno_write(inno, 0xd2, val);
val = (cfg->fracdiv >> 16) & 0xff;
inno_write(inno, 0xd1, val);
} else {
inno_write(inno, 0xd3, 0);
inno_write(inno, 0xd2, 0);
inno_write(inno, 0xd1, 0);
}
/* Wait for PLL lock */
for (val = 0; val < 5; val++) {
if (inno_read(inno, 0xa9) & 1)
break;
udelay(1000);
}
if (val == 5) {
dev_err(inno->dev, "Pre-PLL unlock\n");
return -ETIMEDOUT;
}
return 0;
}
static unsigned long
inno_hdmi_rk3528_phy_pll_recalc_rate(struct inno_hdmi_phy *inno,
unsigned long parent_rate)
{
unsigned long frac;
u8 nd, no_a, no_b, no_d;
u16 nf;
u64 vco = parent_rate;
nd = inno_read(inno, 0xa1) & 0x3f;
nf = ((inno_read(inno, 0xa2) & 0x0f) << 8) | inno_read(inno, 0xa3);
vco *= nf;
if ((inno_read(inno, 0xa2) & 0x30) == 0) {
frac = inno_read(inno, 0xd3) |
(inno_read(inno, 0xd2) << 8) |
(inno_read(inno, 0xd1) << 16);
vco += DIV_ROUND_CLOSEST(parent_rate * frac, (1 << 24));
}
if (inno_read(inno, 0xa0) & 2) {
do_div(vco, nd * 5);
} else {
no_a = inno_read(inno, 0xa5) & 0x1f;
no_b = ((inno_read(inno, 0xa5) >> 5) & 7) + 2;
no_d = inno_read(inno, 0xa6) & 0x1f;
if (no_a == 1)
do_div(vco, nd * no_b * no_d * 2);
else
do_div(vco, nd * no_a * no_d * 2);
}
frac = vco;
inno->pixclock = DIV_ROUND_CLOSEST(frac, 1000) * 1000;
dev_dbg(inno->dev, "%s rate %lu\n", __func__, inno->pixclock);
return frac;
}
#ifndef CONFIG_SPL_BUILD
#define PHY_TAB_LEN 60
static
int inno_hdmi_update_phy_table(struct inno_hdmi_phy *inno, u32 *config,
struct phy_config *phy_cfg,
int phy_table_size)
{
int i, j;
for (i = 0; i < phy_table_size; i++) {
phy_cfg[i].tmdsclock =
(unsigned long)config[i * 15];
debug("%ld ", phy_cfg[i].tmdsclock);
for (j = 0; j < 14; j++) {
phy_cfg[i].regs[j] = (u8)config[i * 15 + 1 + j];
debug("0x%02x ", phy_cfg[i].regs[j]);
}
debug("\n");
}
/*
* The last set of phy cfg is used to indicate whether
* there is no more phy cfg data.
*/
phy_cfg[i].tmdsclock = ~0UL;
for (j = 0; j < 14; j++)
phy_cfg[i].regs[j] = 0;
return 0;
}
#endif
static const struct inno_hdmi_phy_ops rk3228_hdmi_phy_ops = {
.init = inno_hdmi_phy_rk3228_init,
.power_on = inno_hdmi_phy_rk3228_power_on,
.power_off = inno_hdmi_phy_rk3228_power_off,
.pre_pll_update = inno_hdmi_phy_rk3228_pre_pll_update,
};
static const struct inno_hdmi_phy_ops rk3328_hdmi_phy_ops = {
.init = inno_hdmi_phy_rk3328_init,
.power_on = inno_hdmi_phy_rk3328_power_on,
.power_off = inno_hdmi_phy_rk3328_power_off,
.pre_pll_update = inno_hdmi_phy_rk3328_pre_pll_update,
.recalc_rate = inno_hdmi_3328_phy_pll_recalc_rate,
};
static const struct inno_hdmi_phy_ops rk3528_hdmi_phy_ops = {
.init = inno_hdmi_phy_rk3528_init,
.power_on = inno_hdmi_phy_rk3528_power_on,
.power_off = inno_hdmi_phy_rk3528_power_off,
.pre_pll_update = inno_hdmi_phy_rk3528_pre_pll_update,
.recalc_rate = inno_hdmi_rk3528_phy_pll_recalc_rate,
};
static const struct inno_hdmi_phy_drv_data rk3228_hdmi_phy_drv_data = {
.dev_type = INNO_HDMI_PHY_RK3228,
.ops = &rk3228_hdmi_phy_ops,
.phy_cfg_table = rk3228_phy_cfg,
};
static const struct inno_hdmi_phy_drv_data rk3328_hdmi_phy_drv_data = {
.dev_type = INNO_HDMI_PHY_RK3328,
.ops = &rk3328_hdmi_phy_ops,
.phy_cfg_table = rk3328_phy_cfg,
};
static const struct inno_hdmi_phy_drv_data rk3528_hdmi_phy_drv_data = {
.dev_type = INNO_HDMI_PHY_RK3528,
.ops = &rk3528_hdmi_phy_ops,
.phy_cfg_table = rk3528_phy_cfg,
};
static const struct rockchip_inno_data inno_hdmi_phy_of_match[] = {
{ .compatible = "rockchip,rk3228-hdmi-phy",
.data = &rk3228_hdmi_phy_drv_data
},
{ .compatible = "rockchip,rk3328-hdmi-phy",
.data = &rk3328_hdmi_phy_drv_data
},
{ .compatible = "rockchip,rk3528-hdmi-phy",
.data = &rk3528_hdmi_phy_drv_data
},
{}
};
static int inno_hdmi_phy_init(struct rockchip_phy *phy)
{
#ifdef CONFIG_SPL_BUILD
struct inno_hdmi_phy *inno = (struct inno_hdmi_phy *)phy->data;
#else
struct udevice *dev = phy->dev;
struct inno_hdmi_phy *inno = dev_get_priv(phy->dev);
int val, phy_table_size, ret;
u32 *phy_config;
#endif
int i;
const char *name;
#ifdef CONFIG_SPL_BUILD
inno->regs = (void *)RK3528_HDMIPHY_BASE;
#else
inno->regs = dev_read_addr_ptr(dev);
inno->node = dev->node;
#endif
if (!inno->regs) {
printf("%s: failed to get phy address\n", __func__);
return -ENOMEM;
}
#ifdef CONFIG_SPL_BUILD
name = "rockchip,rk3528-hdmi-phy";
#else
name = dev_read_string(dev, "compatible");
#endif
for (i = 0; i < ARRAY_SIZE(inno_hdmi_phy_of_match); i++) {
if (!strcmp(name, inno_hdmi_phy_of_match[i].compatible)) {
inno->plat_data = inno_hdmi_phy_of_match[i].data;
break;
}
}
#ifndef CONFIG_SPL_BUILD
dev_read_prop(dev, "rockchip,phy-table", &val);
if (val >= 0) {
if (val % PHY_TAB_LEN || !val) {
printf("Invalid phy cfg table format!\n");
return -EINVAL;
}
phy_config = malloc(val);
if (!phy_config) {
printf("kmalloc phy table failed\n");
return -ENOMEM;
}
phy_table_size = val / PHY_TAB_LEN;
/* Effective phy cfg data and the end of phy cfg table */
inno->phy_cfg = malloc(val + PHY_TAB_LEN);
if (!inno->phy_cfg) {
free(phy_config);
return -ENOMEM;
}
dev_read_u32_array(dev, "rockchip,phy-table",
phy_config, val / sizeof(u32));
ret = inno_hdmi_update_phy_table(inno, phy_config,
inno->phy_cfg,
phy_table_size);
if (ret) {
free(phy_config);
return ret;
}
free(phy_config);
} else {
printf("use default hdmi phy table\n");
}
#endif
if (i >= ARRAY_SIZE(inno_hdmi_phy_of_match))
return 0;
if (!inno->plat_data || !inno->plat_data->ops)
return -EINVAL;
if (inno->plat_data->ops->init)
inno->plat_data->ops->init(inno);
return 0;
}
static unsigned long inno_hdmi_phy_set_pll(struct rockchip_phy *phy,
unsigned long rate)
{
#ifdef CONFIG_SPL_BUILD
struct inno_hdmi_phy *inno = (struct inno_hdmi_phy *)phy->data;
#else
struct inno_hdmi_phy *inno = dev_get_priv(phy->dev);
#endif
#ifdef CONFIG_SPL_BUILD
if (!inno)
inno = g_inno;
#endif
inno_hdmi_phy_clk_prepare(inno);
inno_hdmi_phy_clk_is_prepared(inno);
inno_hdmi_phy_clk_set_rate(inno, rate);
return 0;
}
static int
inno_hdmi_phy_set_bus_width(struct rockchip_phy *phy, u32 bus_width)
{
#ifdef CONFIG_SPL_BUILD
struct inno_hdmi_phy *inno = (struct inno_hdmi_phy *)phy->data;
#else
struct inno_hdmi_phy *inno = dev_get_priv(phy->dev);
#endif
inno->bus_width = bus_width;
return 0;
}
static long
inno_hdmi_phy_clk_round_rate(struct rockchip_phy *phy, unsigned long rate)
{
#ifdef CONFIG_SPL_BUILD
struct inno_hdmi_phy *inno = (struct inno_hdmi_phy *)phy->data;
#else
struct inno_hdmi_phy *inno = dev_get_priv(phy->dev);
#endif
int i;
const struct pre_pll_config *cfg = pre_pll_cfg_table;
u32 tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate);
for (; cfg->pixclock != ~0UL; cfg++)
if (cfg->pixclock == rate)
break;
/*
* XXX: Limit pixel clock under 600MHz
* rk3228 does not support non-zero fracdiv
*/
if ((inno->plat_data->dev_type == INNO_HDMI_PHY_RK3228 &&
cfg->fracdiv) || cfg->pixclock > 600000000)
return -EINVAL;
/*
* If there is no dts phy cfg table, use default phy cfg table.
* The tmds clock maximum is 594MHz. So there is no need to check
* whether tmds clock is out of range.
*/
if (!inno->phy_cfg)
return cfg->pixclock;
/* Check if tmds clock is out of dts phy config's range. */
for (i = 0; inno->phy_cfg[i].tmdsclock != ~0UL; i++) {
if (inno->phy_cfg[i].tmdsclock >= tmdsclock)
break;
}
if (inno->phy_cfg[i].tmdsclock == ~0UL)
return -EINVAL;
return cfg->pixclock;
}
const struct rockchip_phy_funcs inno_hdmi_phy_funcs = {
.init = inno_hdmi_phy_init,
.power_on = inno_hdmi_phy_power_on,
.power_off = inno_hdmi_phy_power_off,
.set_pll = inno_hdmi_phy_set_pll,
.set_bus_width = inno_hdmi_phy_set_bus_width,
.round_rate = inno_hdmi_phy_clk_round_rate,
};
static struct rockchip_phy inno_hdmi_phy_driver_data = {
.funcs = &inno_hdmi_phy_funcs,
};
static const struct udevice_id inno_hdmi_phy_ids[] = {
{
.compatible = "rockchip,rk3328-hdmi-phy",
.data = (ulong)&inno_hdmi_phy_driver_data,
},
{
.compatible = "rockchip,rk3228-hdmi-phy",
.data = (ulong)&inno_hdmi_phy_driver_data,
},
{
.compatible = "rockchip,rk3528-hdmi-phy",
.data = (ulong)&inno_hdmi_phy_driver_data,
},
{}
};
#ifdef CONFIG_SPL_BUILD
int inno_spl_hdmi_phy_probe(struct display_state *state)
{
struct inno_hdmi_phy *inno = malloc(sizeof(struct inno_hdmi_phy));
memset(inno, 0, sizeof(*inno));
g_inno = inno;
state->conn_state.connector->phy = &inno_hdmi_phy_driver_data;
state->conn_state.connector->phy->data = (void *)inno;
return 0;
}
#else
static int inno_hdmi_phy_probe(struct udevice *dev)
{
struct inno_hdmi_phy *inno = dev_get_priv(dev);
struct rockchip_phy *phy =
(struct rockchip_phy *)dev_get_driver_data(dev);
inno->dev = dev;
phy->dev = dev;
g_inno = inno;
dev->driver_data = (ulong)&inno_hdmi_phy_driver_data;
phy = &inno_hdmi_phy_driver_data;
return 0;
}
#endif
static int rockchip_inno_phy_hdmi_bind(struct udevice *parent)
{
struct udevice *child;
ofnode subnode;
int ret;
subnode = ofnode_find_subnode(parent->node, "clk-port");
if (!ofnode_valid(subnode)) {
printf("%s: no subnode for %s\n", __func__, parent->name);
return -ENXIO;
}
ret = device_bind_driver_to_node(parent, "clk_inno_hdmi", "inno_hdmi_pll_clk", subnode, &child);
if (ret) {
printf("%s: clk-port cannot bind its driver\n", __func__);
return ret;
}
return 0;
}
U_BOOT_DRIVER(inno_hdmi_phy) = {
.name = "inno_hdmi_phy",
.id = UCLASS_PHY,
.of_match = inno_hdmi_phy_ids,
#ifndef CONFIG_SPL_BUILD
.probe = inno_hdmi_phy_probe,
#endif
.bind = rockchip_inno_phy_hdmi_bind,
.priv_auto_alloc_size = sizeof(struct inno_hdmi_phy),
};
static ulong inno_hdmi_clk_get_rate(struct clk *clk)
{
struct clk_inno_hdmi *priv = dev_get_priv(clk->dev);
return priv->rate;
}
static ulong inno_hdmi_clk_set_rate(struct clk *clk, ulong rate)
{
struct clk_inno_hdmi *priv = dev_get_priv(clk->dev);
int ret;
inno_hdmi_phy_clk_prepare(g_inno);
inno_hdmi_phy_clk_is_prepared(g_inno);
ret = inno_hdmi_phy_clk_set_rate(g_inno, rate);
if (ret < 0) {
printf("inno hdmi set rate failed ret:%d\n", ret);
return ret;
}
priv->rate = g_inno->pixclock;
return priv->rate;
}
static const struct clk_ops inno_hdmi_clk_ops = {
.get_rate = inno_hdmi_clk_get_rate,
.set_rate = inno_hdmi_clk_set_rate,
};
static int inno_hdmi_clk_probe(struct udevice *dev)
{
return 0;
}
/*
* In order for other display interfaces to use hdmiphy as source
* for dclk, hdmiphy must register a virtual clock driver
*/
U_BOOT_DRIVER(clk_inno_hdmi) = {
.name = "clk_inno_hdmi",
.id = UCLASS_CLK,
.priv_auto_alloc_size = sizeof(struct clk_inno_hdmi),
.ops = &inno_hdmi_clk_ops,
.probe = inno_hdmi_clk_probe,
};