324 lines
20 KiB
C++
324 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_CLGEMMCONVOLUTIONLAYER_H
|
|
#define ARM_COMPUTE_CLGEMMCONVOLUTIONLAYER_H
|
|
|
|
#include "arm_compute/runtime/IFunction.h"
|
|
|
|
#include "arm_compute/core/CL/CLKernelLibrary.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/runtime/CL/CLTensor.h"
|
|
#include "arm_compute/runtime/CL/functions/CLActivationLayer.h"
|
|
#include "arm_compute/runtime/CL/functions/CLGEMM.h"
|
|
#include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
|
|
#include "arm_compute/runtime/IMemoryManager.h"
|
|
#include "arm_compute/runtime/ITransformWeights.h"
|
|
#include "arm_compute/runtime/IWeightsManager.h"
|
|
#include "arm_compute/runtime/MemoryGroup.h"
|
|
|
|
#include <memory>
|
|
|
|
namespace arm_compute
|
|
{
|
|
class CLCol2ImKernel;
|
|
class CLIm2ColKernel;
|
|
class CLWeightsReshapeKernel;
|
|
class ICLTensor;
|
|
|
|
/** Function to reshape and transpose the weights. This function calls the following kernels:
|
|
* -# @ref CLWeightsReshapeKernel
|
|
*/
|
|
class CLConvolutionLayerReshapeWeights : public IFunction
|
|
{
|
|
public:
|
|
/** Constructor */
|
|
CLConvolutionLayerReshapeWeights();
|
|
/** Prevent instances of this class from being copied */
|
|
CLConvolutionLayerReshapeWeights(const CLConvolutionLayerReshapeWeights &) = delete;
|
|
/** Prevent instances of this class from being copied */
|
|
CLConvolutionLayerReshapeWeights &operator=(const CLConvolutionLayerReshapeWeights &) = delete;
|
|
/** Default move constructor */
|
|
CLConvolutionLayerReshapeWeights(CLConvolutionLayerReshapeWeights &&) = default;
|
|
/** Default move assignment operator */
|
|
CLConvolutionLayerReshapeWeights &operator=(CLConvolutionLayerReshapeWeights &&) = default;
|
|
/** Default destructor */
|
|
~CLConvolutionLayerReshapeWeights();
|
|
/** Set the input and output tensors.
|
|
*
|
|
* @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
|
|
* Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/F16/F32.
|
|
* @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p weights.
|
|
* @param[out] output Destination tensor. Data types supported: Same as @p weights.
|
|
* @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
|
|
*/
|
|
void configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, unsigned int num_groups = 1);
|
|
/** Set the input and output tensors.
|
|
*
|
|
* @param[in] compile_context The compile context to be used.
|
|
* @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
|
|
* Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/F16/F32.
|
|
* @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p weights.
|
|
* @param[out] output Destination tensor. Data types supported: Same as @p weights.
|
|
* @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
|
|
*/
|
|
void configure(const CLCompileContext &compile_context, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, unsigned int num_groups = 1);
|
|
/** Static function to check if given info will lead to a valid configuration of @ref CLConvolutionLayerReshapeWeights
|
|
*
|
|
* @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
|
|
* Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/F16/F32.
|
|
* @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p weights.
|
|
* @param[in] output Destination tensor. Data types supported: Same as @p weights.
|
|
* @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
|
|
*
|
|
* @return a status
|
|
*/
|
|
static Status validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, unsigned int num_groups = 1);
|
|
// Inherited methods overridden:
|
|
void run() override;
|
|
|
|
private:
|
|
std::unique_ptr<CLWeightsReshapeKernel> _weights_reshape_kernel;
|
|
};
|
|
|
|
namespace weights_transformations
|
|
{
|
|
/** Basic function to manage the reshape weights generated from @ref CLConvolutionLayerReshapeWeights */
|
|
class CLConvolutionLayerReshapeWeightsTransform : public ITransformWeights
|
|
{
|
|
public:
|
|
/** Configures the @ref CLConvolutionLayerReshapeWeights function
|
|
*
|
|
* @param[in] input Input tensor. Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/F16/F32.
|
|
* @param[in] biases Biases tensor. Data type supported: same as @p input, S32 if @p input is quantized.
|
|
* @param[in] num_groups Number of groups when performing a grouped convolution.
|
|
*/
|
|
void configure(const ICLTensor *input, const ICLTensor *biases, unsigned int num_groups)
|
|
{
|
|
configure(CLKernelLibrary::get().get_compile_context(), input, biases, num_groups);
|
|
}
|
|
/** Configures the @ref CLConvolutionLayerReshapeWeights function
|
|
*
|
|
* @param[in] compile_context The compile context to be used.
|
|
* @param[in] input Input tensor. Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/F16/F32.
|
|
* @param[in] biases Biases tensor. Data type supported: same as @p input, S32 if @p input is quantized.
|
|
* @param[in] num_groups Number of groups when performing a grouped convolution.
|
|
*/
|
|
void configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *biases, unsigned int num_groups)
|
|
{
|
|
_bias_bit = (biases != nullptr) ? 1 : 0;
|
|
_num_groups = num_groups;
|
|
_func.configure(compile_context, input, biases, &_output, num_groups);
|
|
}
|
|
|
|
//Inherited method override
|
|
void run() override
|
|
{
|
|
_output.allocator()->allocate();
|
|
_func.run();
|
|
_reshape_run = true;
|
|
}
|
|
|
|
//Inherited method override
|
|
ICLTensor *get_weights() override
|
|
{
|
|
return &_output;
|
|
}
|
|
|
|
//Inherited method override
|
|
void release() override
|
|
{
|
|
_output.allocator()->free();
|
|
}
|
|
|
|
//Inherited method override
|
|
uint32_t uid() override
|
|
{
|
|
return ((0x9) | (_bias_bit << 7) | (_num_groups << 8));
|
|
}
|
|
|
|
private:
|
|
CLTensor _output{};
|
|
CLConvolutionLayerReshapeWeights _func{};
|
|
int32_t _bias_bit{ 0 };
|
|
unsigned int _num_groups{ 0 };
|
|
};
|
|
} // namespace weights_transformations
|
|
|
|
/** Basic function to compute the convolution layer. This function calls the following OpenCL kernels/functions:
|
|
*
|
|
* -# @ref CLIm2ColKernel
|
|
* -# @ref CLGEMM (if the data type is FP32 or FP16)
|
|
* -# @ref CLGEMMLowpMatrixMultiplyCore (if the data type is QASYMM8/QASYMM8_SIGNED)
|
|
* -# @ref CLGEMMLowpOutputStage with QUANTIZE_DOWN_FIXEDPOINT type of quantization (if the data type is QASYMM8/QASYMM8_SIGNED)
|
|
* -# @ref CLCol2ImKernel (if NCHW data layout)
|
|
*/
|
|
class CLGEMMConvolutionLayer : public IFunction
|
|
{
|
|
public:
|
|
/** Constructor
|
|
*
|
|
* @param[in] memory_manager (Optional) Memory manager.
|
|
* @param[in] weights_manager (Optional) Weights manager.
|
|
*/
|
|
CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr, IWeightsManager *weights_manager = nullptr);
|
|
/** Prevent instances of this class from being copied (As this class contains pointers) */
|
|
CLGEMMConvolutionLayer(const CLGEMMConvolutionLayer &) = delete;
|
|
/** Default move constructor */
|
|
CLGEMMConvolutionLayer(CLGEMMConvolutionLayer &&) = default;
|
|
/** Prevent instances of this class from being copied (As this class contains pointers) */
|
|
CLGEMMConvolutionLayer &operator=(const CLGEMMConvolutionLayer &) = delete;
|
|
/** Default move assignment operator */
|
|
CLGEMMConvolutionLayer &operator=(CLGEMMConvolutionLayer &&) = default;
|
|
/**Default destructor */
|
|
~CLGEMMConvolutionLayer();
|
|
/** Set the input and output tensors.
|
|
*
|
|
* @param[in] input Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
|
|
* while every optional dimension from 4 and above represent a batch of inputs.
|
|
* Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
|
|
* @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
|
|
* Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
|
|
* @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
|
|
* Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
|
|
* @param[out] output Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
|
|
* Data types supported: Same as @p input.
|
|
* @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo.
|
|
* @param[in] weights_info Specifies if the weights tensor has been reshaped with CLWeightsReshapeKernel. If this is not part of the fully connected layer the weights
|
|
* tensor has also been transposed with CLGEMMReshapeRHSMatrixKernel. Data type supported: Same as @p input.
|
|
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
|
|
* @param[in] act_info (Optional) Activation layer information in case of a fused activation.
|
|
* @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
|
|
*/
|
|
void configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info = WeightsInfo(),
|
|
const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), unsigned int num_groups = 1);
|
|
/** Set the input and output tensors.
|
|
*
|
|
* @param[in] compile_context The compile context to be used.
|
|
* @param[in] input Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
|
|
* while every optional dimension from 4 and above represent a batch of inputs.
|
|
* Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
|
|
* @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
|
|
* Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
|
|
* @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
|
|
* Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
|
|
* @param[out] output Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
|
|
* Data types supported: Same as @p input.
|
|
* @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo.
|
|
* @param[in] weights_info Specifies if the weights tensor has been reshaped with CLWeightsReshapeKernel. If this is not part of the fully connected layer the weights
|
|
* tensor has also been transposed with CLGEMMReshapeRHSMatrixKernel. Data type supported: Same as @p input.
|
|
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
|
|
* @param[in] act_info (Optional) Activation layer information in case of a fused activation.
|
|
* @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
|
|
*/
|
|
void configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
|
|
const WeightsInfo &weights_info = WeightsInfo(),
|
|
const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), unsigned int num_groups = 1);
|
|
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMConvolutionLayer.
|
|
*
|
|
* @param[in] input Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
|
|
* while every optional dimension from 4 and above represent a batch of inputs.
|
|
* Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
|
|
* @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
|
|
* Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
|
|
* @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
|
|
* Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
|
|
* @param[out] output Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
|
|
* Data types supported: Same as @p input.
|
|
* @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo.
|
|
* @param[in] weights_info Specifies if the weights tensor has been reshaped with CLWeightsReshapeKernel. If this is not part of the fully connected layer the weights
|
|
* tensor has also been transposed with CLGEMMReshapeRHSMatrixKernel. Data type supported: Same as @p input.
|
|
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
|
|
* @param[in] act_info (Optional) Activation layer information in case of a fused activation.
|
|
* @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
|
|
*
|
|
* @return a status
|
|
*/
|
|
static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
|
|
const WeightsInfo &weights_info = WeightsInfo(), const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), unsigned int num_groups = 1);
|
|
|
|
// Inherited methods overridden:
|
|
void run() override;
|
|
void prepare() override;
|
|
|
|
private:
|
|
/** Configures the appropriate matrix multiply routine
|
|
*
|
|
* @param[in] compile_context The compile context to be used.
|
|
* @param[in] input Input tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
|
|
* @param[in] weights Weights tensor. Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or
|
|
* QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
|
|
* @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
|
|
* Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
|
|
* @param[in, out] output Output tensor. Data types supported: same as @p input.
|
|
* @param[in] gemmlowp_output_stage GEMMLowp output stage info
|
|
* @param[in] gemm_3d_depth Depth of GEMM 3D
|
|
* @param[in] act_info Activation to apply after the matrix multiplication
|
|
*/
|
|
void configure_mm(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
|
|
const GEMMLowpOutputStageInfo &gemmlowp_output_stage,
|
|
int gemm_3d_depth, const ActivationLayerInfo &act_info);
|
|
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMConvolutionLayer matrix multiply routines
|
|
*
|
|
* @param[in] input Input tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
|
|
* @param[in] weights Weights tensor info. Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or
|
|
* QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
|
|
* @param[in] biases Biases tensor info. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
|
|
* Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
|
|
* @param[in] output Output tensor info. Data types supported: same as @p input.
|
|
* @param[in] gemmlowp_output_stage GEMMLowp output stage info
|
|
* @param[in] gemm_3d_depth Depth of GEMM 3D
|
|
* @param[in] skip_im2col Flag which specifies if im2col has to be skipped. i.e. 1x1 convolution with NHWC data layout.
|
|
* @param[in] act_info Activation to apply after the matrix multiplication
|
|
*
|
|
* @return a status
|
|
*/
|
|
static Status validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const GEMMLowpOutputStageInfo &gemmlowp_output_stage,
|
|
int gemm_3d_depth, bool skip_im2col, const ActivationLayerInfo &act_info);
|
|
|
|
private:
|
|
MemoryGroup _memory_group;
|
|
IWeightsManager *_weights_manager;
|
|
CLConvolutionLayerReshapeWeights _reshape_weights;
|
|
weights_transformations::CLConvolutionLayerReshapeWeightsTransform _reshape_weights_managed;
|
|
std::unique_ptr<CLIm2ColKernel> _im2col_kernel;
|
|
CLGEMM _mm_gemm;
|
|
CLGEMMLowpMatrixMultiplyCore _mm_gemmlowp;
|
|
std::unique_ptr<CLCol2ImKernel> _col2im_kernel;
|
|
CLActivationLayer _activationlayer_function;
|
|
|
|
const ICLTensor *_original_weights;
|
|
|
|
CLTensor _im2col_output;
|
|
CLTensor _weights_reshaped;
|
|
CLTensor _gemm_output;
|
|
|
|
bool _skip_im2col;
|
|
bool _skip_col2im;
|
|
bool _is_quantized;
|
|
bool _fuse_activation;
|
|
bool _is_prepared;
|
|
};
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_CLGEMMCONVOLUTIONLAYER_H */
|