648 lines
25 KiB
C++
648 lines
25 KiB
C++
// Copyright 2014 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_
|
|
#define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <climits>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <limits>
|
|
#include <type_traits>
|
|
|
|
#include "third_party/base/numerics/safe_conversions.h"
|
|
|
|
namespace pdfium {
|
|
namespace base {
|
|
namespace internal {
|
|
|
|
// Everything from here up to the floating point operations is portable C++,
|
|
// but it may not be fast. This code could be split based on
|
|
// platform/architecture and replaced with potentially faster implementations.
|
|
|
|
// This is used for UnsignedAbs, where we need to support floating-point
|
|
// template instantiations even though we don't actually support the operations.
|
|
// However, there is no corresponding implementation of e.g. SafeUnsignedAbs,
|
|
// so the float versions will not compile.
|
|
template <typename Numeric,
|
|
bool IsInteger = std::is_integral<Numeric>::value,
|
|
bool IsFloat = std::is_floating_point<Numeric>::value>
|
|
struct UnsignedOrFloatForSize;
|
|
|
|
template <typename Numeric>
|
|
struct UnsignedOrFloatForSize<Numeric, true, false> {
|
|
using type = typename std::make_unsigned<Numeric>::type;
|
|
};
|
|
|
|
template <typename Numeric>
|
|
struct UnsignedOrFloatForSize<Numeric, false, true> {
|
|
using type = Numeric;
|
|
};
|
|
|
|
// Probe for builtin math overflow support on Clang and version check on GCC.
|
|
#if defined(EMSCRIPTEN)
|
|
// Emscripten Clang reports that it has the builtins, it may be lowered to an
|
|
// instruction that is unsupported in asm.js
|
|
#define USE_OVERFLOW_BUILTINS (0)
|
|
#elif defined(__has_builtin)
|
|
#define USE_OVERFLOW_BUILTINS (__has_builtin(__builtin_add_overflow))
|
|
#elif defined(__GNUC__)
|
|
#define USE_OVERFLOW_BUILTINS (__GNUC__ >= 5)
|
|
#else
|
|
#define USE_OVERFLOW_BUILTINS (0)
|
|
#endif
|
|
|
|
template <typename T>
|
|
bool CheckedAddImpl(T x, T y, T* result) {
|
|
static_assert(std::is_integral<T>::value, "Type must be integral");
|
|
// Since the value of x+y is undefined if we have a signed type, we compute
|
|
// it using the unsigned type of the same size.
|
|
using UnsignedDst = typename std::make_unsigned<T>::type;
|
|
using SignedDst = typename std::make_signed<T>::type;
|
|
auto ux = static_cast<UnsignedDst>(x);
|
|
auto uy = static_cast<UnsignedDst>(y);
|
|
auto uresult = static_cast<UnsignedDst>(ux + uy);
|
|
*result = static_cast<T>(uresult);
|
|
// Addition is valid if the sign of (x + y) is equal to either that of x or
|
|
// that of y.
|
|
return (std::is_signed<T>::value)
|
|
? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0
|
|
: uresult >= uy; // Unsigned is either valid or underflow.
|
|
}
|
|
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedAddOp {};
|
|
|
|
template <typename T, typename U>
|
|
struct CheckedAddOp<T,
|
|
U,
|
|
typename std::enable_if<std::is_integral<T>::value &&
|
|
std::is_integral<U>::value>::type> {
|
|
using result_type = typename MaxExponentPromotion<T, U>::type;
|
|
template <typename V>
|
|
static bool Do(T x, U y, V* result) {
|
|
#if USE_OVERFLOW_BUILTINS
|
|
return !__builtin_add_overflow(x, y, result);
|
|
#else
|
|
using Promotion = typename BigEnoughPromotion<T, U>::type;
|
|
Promotion presult;
|
|
// Fail if either operand is out of range for the promoted type.
|
|
// TODO(jschuh): This could be made to work for a broader range of values.
|
|
bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
|
|
IsValueInRangeForNumericType<Promotion>(y);
|
|
|
|
if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
|
|
presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
|
|
} else {
|
|
is_valid &= CheckedAddImpl(static_cast<Promotion>(x),
|
|
static_cast<Promotion>(y), &presult);
|
|
}
|
|
*result = static_cast<V>(presult);
|
|
return is_valid && IsValueInRangeForNumericType<V>(presult);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
bool CheckedSubImpl(T x, T y, T* result) {
|
|
static_assert(std::is_integral<T>::value, "Type must be integral");
|
|
// Since the value of x+y is undefined if we have a signed type, we compute
|
|
// it using the unsigned type of the same size.
|
|
using UnsignedDst = typename std::make_unsigned<T>::type;
|
|
using SignedDst = typename std::make_signed<T>::type;
|
|
auto ux = static_cast<UnsignedDst>(x);
|
|
auto uy = static_cast<UnsignedDst>(y);
|
|
auto uresult = static_cast<UnsignedDst>(ux - uy);
|
|
*result = static_cast<T>(uresult);
|
|
// Subtraction is valid if either x and y have same sign, or (x-y) and x have
|
|
// the same sign.
|
|
return (std::is_signed<T>::value)
|
|
? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0
|
|
: x >= y;
|
|
}
|
|
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedSubOp {};
|
|
|
|
template <typename T, typename U>
|
|
struct CheckedSubOp<T,
|
|
U,
|
|
typename std::enable_if<std::is_integral<T>::value &&
|
|
std::is_integral<U>::value>::type> {
|
|
using result_type = typename MaxExponentPromotion<T, U>::type;
|
|
template <typename V>
|
|
static bool Do(T x, U y, V* result) {
|
|
#if USE_OVERFLOW_BUILTINS
|
|
return !__builtin_sub_overflow(x, y, result);
|
|
#else
|
|
using Promotion = typename BigEnoughPromotion<T, U>::type;
|
|
Promotion presult;
|
|
// Fail if either operand is out of range for the promoted type.
|
|
// TODO(jschuh): This could be made to work for a broader range of values.
|
|
bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
|
|
IsValueInRangeForNumericType<Promotion>(y);
|
|
|
|
if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
|
|
presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
|
|
} else {
|
|
is_valid &= CheckedSubImpl(static_cast<Promotion>(x),
|
|
static_cast<Promotion>(y), &presult);
|
|
}
|
|
*result = static_cast<V>(presult);
|
|
return is_valid && IsValueInRangeForNumericType<V>(presult);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
bool CheckedMulImpl(T x, T y, T* result) {
|
|
static_assert(std::is_integral<T>::value, "Type must be integral");
|
|
// Since the value of x*y is potentially undefined if we have a signed type,
|
|
// we compute it using the unsigned type of the same size.
|
|
using UnsignedDst = typename std::make_unsigned<T>::type;
|
|
using SignedDst = typename std::make_signed<T>::type;
|
|
const UnsignedDst ux = SafeUnsignedAbs(x);
|
|
const UnsignedDst uy = SafeUnsignedAbs(y);
|
|
auto uresult = static_cast<UnsignedDst>(ux * uy);
|
|
const bool is_negative =
|
|
std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0;
|
|
*result = is_negative ? 0 - uresult : uresult;
|
|
// We have a fast out for unsigned identity or zero on the second operand.
|
|
// After that it's an unsigned overflow check on the absolute value, with
|
|
// a +1 bound for a negative result.
|
|
return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) ||
|
|
ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy;
|
|
}
|
|
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedMulOp {};
|
|
|
|
template <typename T, typename U>
|
|
struct CheckedMulOp<T,
|
|
U,
|
|
typename std::enable_if<std::is_integral<T>::value &&
|
|
std::is_integral<U>::value>::type> {
|
|
using result_type = typename MaxExponentPromotion<T, U>::type;
|
|
template <typename V>
|
|
static bool Do(T x, U y, V* result) {
|
|
#if USE_OVERFLOW_BUILTINS
|
|
#if defined(__clang__)
|
|
// TODO(jschuh): Get the Clang runtime library issues sorted out so we can
|
|
// support full-width, mixed-sign multiply builtins.
|
|
// https://crbug.com/613003
|
|
static const bool kUseMaxInt =
|
|
// Narrower type than uintptr_t is always safe.
|
|
std::numeric_limits<__typeof__(x * y)>::digits <
|
|
std::numeric_limits<intptr_t>::digits ||
|
|
// Safe for intptr_t and uintptr_t if the sign matches.
|
|
(IntegerBitsPlusSign<__typeof__(x * y)>::value ==
|
|
IntegerBitsPlusSign<intptr_t>::value &&
|
|
std::is_signed<T>::value == std::is_signed<U>::value);
|
|
#else
|
|
static const bool kUseMaxInt = true;
|
|
#endif
|
|
if (kUseMaxInt)
|
|
return !__builtin_mul_overflow(x, y, result);
|
|
#endif
|
|
using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
|
|
Promotion presult;
|
|
// Fail if either operand is out of range for the promoted type.
|
|
// TODO(jschuh): This could be made to work for a broader range of values.
|
|
bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
|
|
IsValueInRangeForNumericType<Promotion>(y);
|
|
|
|
if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
|
|
presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
|
|
} else {
|
|
is_valid &= CheckedMulImpl(static_cast<Promotion>(x),
|
|
static_cast<Promotion>(y), &presult);
|
|
}
|
|
*result = static_cast<V>(presult);
|
|
return is_valid && IsValueInRangeForNumericType<V>(presult);
|
|
}
|
|
};
|
|
|
|
// Avoid poluting the namespace once we're done with the macro.
|
|
#undef USE_OVERFLOW_BUILTINS
|
|
|
|
// Division just requires a check for a zero denominator or an invalid negation
|
|
// on signed min/-1.
|
|
template <typename T>
|
|
bool CheckedDivImpl(T x, T y, T* result) {
|
|
static_assert(std::is_integral<T>::value, "Type must be integral");
|
|
if (y && (!std::is_signed<T>::value ||
|
|
x != std::numeric_limits<T>::lowest() || y != static_cast<T>(-1))) {
|
|
*result = x / y;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedDivOp {};
|
|
|
|
template <typename T, typename U>
|
|
struct CheckedDivOp<T,
|
|
U,
|
|
typename std::enable_if<std::is_integral<T>::value &&
|
|
std::is_integral<U>::value>::type> {
|
|
using result_type = typename MaxExponentPromotion<T, U>::type;
|
|
template <typename V>
|
|
static bool Do(T x, U y, V* result) {
|
|
using Promotion = typename BigEnoughPromotion<T, U>::type;
|
|
Promotion presult;
|
|
// Fail if either operand is out of range for the promoted type.
|
|
// TODO(jschuh): This could be made to work for a broader range of values.
|
|
bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
|
|
IsValueInRangeForNumericType<Promotion>(y);
|
|
is_valid &= CheckedDivImpl(static_cast<Promotion>(x),
|
|
static_cast<Promotion>(y), &presult);
|
|
*result = static_cast<V>(presult);
|
|
return is_valid && IsValueInRangeForNumericType<V>(presult);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
bool CheckedModImpl(T x, T y, T* result) {
|
|
static_assert(std::is_integral<T>::value, "Type must be integral");
|
|
if (y > 0) {
|
|
*result = static_cast<T>(x % y);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedModOp {};
|
|
|
|
template <typename T, typename U>
|
|
struct CheckedModOp<T,
|
|
U,
|
|
typename std::enable_if<std::is_integral<T>::value &&
|
|
std::is_integral<U>::value>::type> {
|
|
using result_type = typename MaxExponentPromotion<T, U>::type;
|
|
template <typename V>
|
|
static bool Do(T x, U y, V* result) {
|
|
using Promotion = typename BigEnoughPromotion<T, U>::type;
|
|
Promotion presult;
|
|
bool is_valid = CheckedModImpl(static_cast<Promotion>(x),
|
|
static_cast<Promotion>(y), &presult);
|
|
*result = static_cast<V>(presult);
|
|
return is_valid && IsValueInRangeForNumericType<V>(presult);
|
|
}
|
|
};
|
|
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedLshOp {};
|
|
|
|
// Left shift. Shifts less than 0 or greater than or equal to the number
|
|
// of bits in the promoted type are undefined. Shifts of negative values
|
|
// are undefined. Otherwise it is defined when the result fits.
|
|
template <typename T, typename U>
|
|
struct CheckedLshOp<T,
|
|
U,
|
|
typename std::enable_if<std::is_integral<T>::value &&
|
|
std::is_integral<U>::value>::type> {
|
|
using result_type = T;
|
|
template <typename V>
|
|
static bool Do(T x, U shift, V* result) {
|
|
using ShiftType = typename std::make_unsigned<T>::type;
|
|
static const ShiftType kBitWidth = IntegerBitsPlusSign<T>::value;
|
|
const auto real_shift = static_cast<ShiftType>(shift);
|
|
// Signed shift is not legal on negative values.
|
|
if (!IsValueNegative(x) && real_shift < kBitWidth) {
|
|
// Just use a multiplication because it's easy.
|
|
// TODO(jschuh): This could probably be made more efficient.
|
|
if (!std::is_signed<T>::value || real_shift != kBitWidth - 1)
|
|
return CheckedMulOp<T, T>::Do(x, static_cast<T>(1) << shift, result);
|
|
return !x; // Special case zero for a full width signed shift.
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedRshOp {};
|
|
|
|
// Right shift. Shifts less than 0 or greater than or equal to the number
|
|
// of bits in the promoted type are undefined. Otherwise, it is always defined,
|
|
// but a right shift of a negative value is implementation-dependent.
|
|
template <typename T, typename U>
|
|
struct CheckedRshOp<T,
|
|
U,
|
|
typename std::enable_if<std::is_integral<T>::value &&
|
|
std::is_integral<U>::value>::type> {
|
|
using result_type = T;
|
|
template <typename V = result_type>
|
|
static bool Do(T x, U shift, V* result) {
|
|
// Use the type conversion push negative values out of range.
|
|
using ShiftType = typename std::make_unsigned<T>::type;
|
|
if (static_cast<ShiftType>(shift) < IntegerBitsPlusSign<T>::value) {
|
|
T tmp = x >> shift;
|
|
*result = static_cast<V>(tmp);
|
|
return IsValueInRangeForNumericType<V>(tmp);
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedAndOp {};
|
|
|
|
// For simplicity we support only unsigned integer results.
|
|
template <typename T, typename U>
|
|
struct CheckedAndOp<T,
|
|
U,
|
|
typename std::enable_if<std::is_integral<T>::value &&
|
|
std::is_integral<U>::value>::type> {
|
|
using result_type = typename std::make_unsigned<
|
|
typename MaxExponentPromotion<T, U>::type>::type;
|
|
template <typename V = result_type>
|
|
static bool Do(T x, U y, V* result) {
|
|
result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y);
|
|
*result = static_cast<V>(tmp);
|
|
return IsValueInRangeForNumericType<V>(tmp);
|
|
}
|
|
};
|
|
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedOrOp {};
|
|
|
|
// For simplicity we support only unsigned integers.
|
|
template <typename T, typename U>
|
|
struct CheckedOrOp<T,
|
|
U,
|
|
typename std::enable_if<std::is_integral<T>::value &&
|
|
std::is_integral<U>::value>::type> {
|
|
using result_type = typename std::make_unsigned<
|
|
typename MaxExponentPromotion<T, U>::type>::type;
|
|
template <typename V = result_type>
|
|
static bool Do(T x, U y, V* result) {
|
|
result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y);
|
|
*result = static_cast<V>(tmp);
|
|
return IsValueInRangeForNumericType<V>(tmp);
|
|
}
|
|
};
|
|
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedXorOp {};
|
|
|
|
// For simplicity we support only unsigned integers.
|
|
template <typename T, typename U>
|
|
struct CheckedXorOp<T,
|
|
U,
|
|
typename std::enable_if<std::is_integral<T>::value &&
|
|
std::is_integral<U>::value>::type> {
|
|
using result_type = typename std::make_unsigned<
|
|
typename MaxExponentPromotion<T, U>::type>::type;
|
|
template <typename V = result_type>
|
|
static bool Do(T x, U y, V* result) {
|
|
result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y);
|
|
*result = static_cast<V>(tmp);
|
|
return IsValueInRangeForNumericType<V>(tmp);
|
|
}
|
|
};
|
|
|
|
// Max doesn't really need to be implemented this way because it can't fail,
|
|
// but it makes the code much cleaner to use the MathOp wrappers.
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedMaxOp {};
|
|
|
|
template <typename T, typename U>
|
|
struct CheckedMaxOp<
|
|
T,
|
|
U,
|
|
typename std::enable_if<std::is_arithmetic<T>::value &&
|
|
std::is_arithmetic<U>::value>::type> {
|
|
using result_type = typename MaxExponentPromotion<T, U>::type;
|
|
template <typename V = result_type>
|
|
static bool Do(T x, U y, V* result) {
|
|
*result = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x)
|
|
: static_cast<result_type>(y);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// Min doesn't really need to be implemented this way because it can't fail,
|
|
// but it makes the code much cleaner to use the MathOp wrappers.
|
|
template <typename T, typename U, class Enable = void>
|
|
struct CheckedMinOp {};
|
|
|
|
template <typename T, typename U>
|
|
struct CheckedMinOp<
|
|
T,
|
|
U,
|
|
typename std::enable_if<std::is_arithmetic<T>::value &&
|
|
std::is_arithmetic<U>::value>::type> {
|
|
using result_type = typename LowestValuePromotion<T, U>::type;
|
|
template <typename V = result_type>
|
|
static bool Do(T x, U y, V* result) {
|
|
*result = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x)
|
|
: static_cast<result_type>(y);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// This is just boilerplate that wraps the standard floating point arithmetic.
|
|
// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
|
|
#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
|
|
template <typename T, typename U> \
|
|
struct Checked##NAME##Op< \
|
|
T, U, typename std::enable_if<std::is_floating_point<T>::value || \
|
|
std::is_floating_point<U>::value>::type> { \
|
|
using result_type = typename MaxExponentPromotion<T, U>::type; \
|
|
template <typename V> \
|
|
static bool Do(T x, U y, V* result) { \
|
|
using Promotion = typename MaxExponentPromotion<T, U>::type; \
|
|
Promotion presult = x OP y; \
|
|
*result = static_cast<V>(presult); \
|
|
return IsValueInRangeForNumericType<V>(presult); \
|
|
} \
|
|
};
|
|
|
|
BASE_FLOAT_ARITHMETIC_OPS(Add, +)
|
|
BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
|
|
BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
|
|
BASE_FLOAT_ARITHMETIC_OPS(Div, /)
|
|
|
|
#undef BASE_FLOAT_ARITHMETIC_OPS
|
|
|
|
// Wrap the unary operations to allow SFINAE when instantiating integrals versus
|
|
// floating points. These don't perform any overflow checking. Rather, they
|
|
// exhibit well-defined overflow semantics and rely on the caller to detect
|
|
// if an overflow occured.
|
|
|
|
template <typename T,
|
|
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
|
|
constexpr T NegateWrapper(T value) {
|
|
using UnsignedT = typename std::make_unsigned<T>::type;
|
|
// This will compile to a NEG on Intel, and is normal negation on ARM.
|
|
return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value));
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
|
|
constexpr T NegateWrapper(T value) {
|
|
return -value;
|
|
}
|
|
|
|
template <typename T,
|
|
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
|
|
constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) {
|
|
return ~value;
|
|
}
|
|
|
|
template <typename T,
|
|
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
|
|
constexpr T AbsWrapper(T value) {
|
|
return static_cast<T>(SafeUnsignedAbs(value));
|
|
}
|
|
|
|
template <
|
|
typename T,
|
|
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
|
|
constexpr T AbsWrapper(T value) {
|
|
return value < 0 ? -value : value;
|
|
}
|
|
|
|
// Floats carry around their validity state with them, but integers do not. So,
|
|
// we wrap the underlying value in a specialization in order to hide that detail
|
|
// and expose an interface via accessors.
|
|
enum NumericRepresentation {
|
|
NUMERIC_INTEGER,
|
|
NUMERIC_FLOATING,
|
|
NUMERIC_UNKNOWN
|
|
};
|
|
|
|
template <typename NumericType>
|
|
struct GetNumericRepresentation {
|
|
static const NumericRepresentation value =
|
|
std::is_integral<NumericType>::value
|
|
? NUMERIC_INTEGER
|
|
: (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING
|
|
: NUMERIC_UNKNOWN);
|
|
};
|
|
|
|
template <typename T, NumericRepresentation type =
|
|
GetNumericRepresentation<T>::value>
|
|
class CheckedNumericState {};
|
|
|
|
// Integrals require quite a bit of additional housekeeping to manage state.
|
|
template <typename T>
|
|
class CheckedNumericState<T, NUMERIC_INTEGER> {
|
|
private:
|
|
// is_valid_ precedes value_ because member intializers in the constructors
|
|
// are evaluated in field order, and is_valid_ must be read when initializing
|
|
// value_.
|
|
bool is_valid_;
|
|
T value_;
|
|
|
|
// Ensures that a type conversion does not trigger undefined behavior.
|
|
template <typename Src>
|
|
static constexpr T WellDefinedConversionOrZero(const Src value,
|
|
const bool is_valid) {
|
|
using SrcType = typename internal::UnderlyingType<Src>::type;
|
|
return (std::is_integral<SrcType>::value || is_valid)
|
|
? static_cast<T>(value)
|
|
: static_cast<T>(0);
|
|
}
|
|
|
|
public:
|
|
template <typename Src, NumericRepresentation type>
|
|
friend class CheckedNumericState;
|
|
|
|
constexpr CheckedNumericState() : is_valid_(true), value_(0) {}
|
|
|
|
template <typename Src>
|
|
constexpr CheckedNumericState(Src value, bool is_valid)
|
|
: is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
|
|
value_(WellDefinedConversionOrZero(value, is_valid_)) {
|
|
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
|
|
}
|
|
|
|
// Copy constructor.
|
|
template <typename Src>
|
|
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
|
|
: is_valid_(rhs.IsValid()),
|
|
value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {}
|
|
|
|
template <typename Src>
|
|
constexpr explicit CheckedNumericState(Src value)
|
|
: is_valid_(IsValueInRangeForNumericType<T>(value)),
|
|
value_(WellDefinedConversionOrZero(value, is_valid_)) {}
|
|
|
|
constexpr bool is_valid() const { return is_valid_; }
|
|
constexpr T value() const { return value_; }
|
|
};
|
|
|
|
// Floating points maintain their own validity, but need translation wrappers.
|
|
template <typename T>
|
|
class CheckedNumericState<T, NUMERIC_FLOATING> {
|
|
private:
|
|
T value_;
|
|
|
|
// Ensures that a type conversion does not trigger undefined behavior.
|
|
template <typename Src>
|
|
static constexpr T WellDefinedConversionOrNaN(const Src value,
|
|
const bool is_valid) {
|
|
using SrcType = typename internal::UnderlyingType<Src>::type;
|
|
return (StaticDstRangeRelationToSrcRange<T, SrcType>::value ==
|
|
NUMERIC_RANGE_CONTAINED ||
|
|
is_valid)
|
|
? static_cast<T>(value)
|
|
: std::numeric_limits<T>::quiet_NaN();
|
|
}
|
|
|
|
public:
|
|
template <typename Src, NumericRepresentation type>
|
|
friend class CheckedNumericState;
|
|
|
|
constexpr CheckedNumericState() : value_(0.0) {}
|
|
|
|
template <typename Src>
|
|
constexpr CheckedNumericState(Src value, bool is_valid)
|
|
: value_(WellDefinedConversionOrNaN(value, is_valid)) {}
|
|
|
|
template <typename Src>
|
|
constexpr explicit CheckedNumericState(Src value)
|
|
: value_(WellDefinedConversionOrNaN(
|
|
value,
|
|
IsValueInRangeForNumericType<T>(value))) {}
|
|
|
|
// Copy constructor.
|
|
template <typename Src>
|
|
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
|
|
: value_(WellDefinedConversionOrNaN(
|
|
rhs.value(),
|
|
rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {}
|
|
|
|
constexpr bool is_valid() const {
|
|
// Written this way because std::isfinite is not reliably constexpr.
|
|
// TODO(jschuh): Fix this if the libraries ever get fixed.
|
|
return value_ <= std::numeric_limits<T>::max() &&
|
|
value_ >= std::numeric_limits<T>::lowest();
|
|
}
|
|
constexpr T value() const { return value_; }
|
|
};
|
|
|
|
template <template <typename, typename, typename> class M,
|
|
typename L,
|
|
typename R>
|
|
struct MathWrapper {
|
|
using math = M<typename UnderlyingType<L>::type,
|
|
typename UnderlyingType<R>::type,
|
|
void>;
|
|
using type = typename math::result_type;
|
|
};
|
|
|
|
} // namespace internal
|
|
} // namespace base
|
|
} // namespace pdfium
|
|
|
|
#endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_
|