222 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Python
		
	
	
	
| from __future__ import division
 | |
| # When true division is the default, get rid of this and add it to
 | |
| # test_long.py instead.  In the meantime, it's too obscure to try to
 | |
| # trick just part of test_long into using future division.
 | |
| 
 | |
| import sys
 | |
| import random
 | |
| import math
 | |
| import unittest
 | |
| from test.test_support import run_unittest
 | |
| 
 | |
| # decorator for skipping tests on non-IEEE 754 platforms
 | |
| requires_IEEE_754 = unittest.skipUnless(
 | |
|     float.__getformat__("double").startswith("IEEE"),
 | |
|     "test requires IEEE 754 doubles")
 | |
| 
 | |
| DBL_MAX = sys.float_info.max
 | |
| DBL_MAX_EXP = sys.float_info.max_exp
 | |
| DBL_MIN_EXP = sys.float_info.min_exp
 | |
| DBL_MANT_DIG = sys.float_info.mant_dig
 | |
| DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)
 | |
| 
 | |
| # pure Python version of correctly-rounded true division
 | |
| def truediv(a, b):
 | |
|     """Correctly-rounded true division for integers."""
 | |
|     negative = a^b < 0
 | |
|     a, b = abs(a), abs(b)
 | |
| 
 | |
|     # exceptions:  division by zero, overflow
 | |
|     if not b:
 | |
|         raise ZeroDivisionError("division by zero")
 | |
|     if a >= DBL_MIN_OVERFLOW * b:
 | |
|         raise OverflowError("int/int too large to represent as a float")
 | |
| 
 | |
|    # find integer d satisfying 2**(d - 1) <= a/b < 2**d
 | |
|     d = a.bit_length() - b.bit_length()
 | |
|     if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
 | |
|         d += 1
 | |
| 
 | |
|     # compute 2**-exp * a / b for suitable exp
 | |
|     exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
 | |
|     a, b = a << max(-exp, 0), b << max(exp, 0)
 | |
|     q, r = divmod(a, b)
 | |
| 
 | |
|     # round-half-to-even: fractional part is r/b, which is > 0.5 iff
 | |
|     # 2*r > b, and == 0.5 iff 2*r == b.
 | |
|     if 2*r > b or 2*r == b and q % 2 == 1:
 | |
|         q += 1
 | |
| 
 | |
|     result = math.ldexp(float(q), exp)
 | |
|     return -result if negative else result
 | |
| 
 | |
| class TrueDivisionTests(unittest.TestCase):
 | |
|     def test(self):
 | |
|         huge = 1L << 40000
 | |
|         mhuge = -huge
 | |
|         self.assertEqual(huge / huge, 1.0)
 | |
|         self.assertEqual(mhuge / mhuge, 1.0)
 | |
|         self.assertEqual(huge / mhuge, -1.0)
 | |
|         self.assertEqual(mhuge / huge, -1.0)
 | |
|         self.assertEqual(1 / huge, 0.0)
 | |
|         self.assertEqual(1L / huge, 0.0)
 | |
|         self.assertEqual(1 / mhuge, 0.0)
 | |
|         self.assertEqual(1L / mhuge, 0.0)
 | |
|         self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5)
 | |
|         self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5)
 | |
|         self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5)
 | |
|         self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5)
 | |
|         self.assertEqual(huge / (huge << 1), 0.5)
 | |
|         self.assertEqual((1000000 * huge) / huge, 1000000)
 | |
| 
 | |
|         namespace = {'huge': huge, 'mhuge': mhuge}
 | |
| 
 | |
|         for overflow in ["float(huge)", "float(mhuge)",
 | |
|                          "huge / 1", "huge / 2L", "huge / -1", "huge / -2L",
 | |
|                          "mhuge / 100", "mhuge / 100L"]:
 | |
|             # If the "eval" does not happen in this module,
 | |
|             # true division is not enabled
 | |
|             with self.assertRaises(OverflowError):
 | |
|                 eval(overflow, namespace)
 | |
| 
 | |
|         for underflow in ["1 / huge", "2L / huge", "-1 / huge", "-2L / huge",
 | |
|                          "100 / mhuge", "100L / mhuge"]:
 | |
|             result = eval(underflow, namespace)
 | |
|             self.assertEqual(result, 0.0, 'expected underflow to 0 '
 | |
|                              'from {!r}'.format(underflow))
 | |
| 
 | |
|         for zero in ["huge / 0", "huge / 0L", "mhuge / 0", "mhuge / 0L"]:
 | |
|             with self.assertRaises(ZeroDivisionError):
 | |
|                 eval(zero, namespace)
 | |
| 
 | |
|     def check_truediv(self, a, b, skip_small=True):
 | |
|         """Verify that the result of a/b is correctly rounded, by
 | |
|         comparing it with a pure Python implementation of correctly
 | |
|         rounded division.  b should be nonzero."""
 | |
| 
 | |
|         a, b = long(a), long(b)
 | |
| 
 | |
|         # skip check for small a and b: in this case, the current
 | |
|         # implementation converts the arguments to float directly and
 | |
|         # then applies a float division.  This can give doubly-rounded
 | |
|         # results on x87-using machines (particularly 32-bit Linux).
 | |
|         if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
 | |
|             return
 | |
| 
 | |
|         try:
 | |
|             # use repr so that we can distinguish between -0.0 and 0.0
 | |
|             expected = repr(truediv(a, b))
 | |
|         except OverflowError:
 | |
|             expected = 'overflow'
 | |
|         except ZeroDivisionError:
 | |
|             expected = 'zerodivision'
 | |
| 
 | |
|         try:
 | |
|             got = repr(a / b)
 | |
|         except OverflowError:
 | |
|             got = 'overflow'
 | |
|         except ZeroDivisionError:
 | |
|             got = 'zerodivision'
 | |
| 
 | |
|         self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: "
 | |
|                          "expected {}, got {}".format(a, b, expected, got))
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def test_correctly_rounded_true_division(self):
 | |
|         # more stringent tests than those above, checking that the
 | |
|         # result of true division of ints is always correctly rounded.
 | |
|         # This test should probably be considered CPython-specific.
 | |
| 
 | |
|         # Exercise all the code paths not involving Gb-sized ints.
 | |
|         # ... divisions involving zero
 | |
|         self.check_truediv(123, 0)
 | |
|         self.check_truediv(-456, 0)
 | |
|         self.check_truediv(0, 3)
 | |
|         self.check_truediv(0, -3)
 | |
|         self.check_truediv(0, 0)
 | |
|         # ... overflow or underflow by large margin
 | |
|         self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
 | |
|         self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
 | |
|         # ... a much larger or smaller than b
 | |
|         self.check_truediv(12345*2**100, 98765)
 | |
|         self.check_truediv(12345*2**30, 98765*7**81)
 | |
|         # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
 | |
|         #                 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
 | |
|         bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
 | |
|                  DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
 | |
|         for base in bases:
 | |
|             for exp in range(base - 15, base + 15):
 | |
|                 self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
 | |
|                 self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))
 | |
| 
 | |
|         # overflow corner case
 | |
|         for m in [1, 2, 7, 17, 12345, 7**100,
 | |
|                   -1, -2, -5, -23, -67891, -41**50]:
 | |
|             for n in range(-10, 10):
 | |
|                 self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
 | |
|                 self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)
 | |
| 
 | |
|         # check detection of inexactness in shifting stage
 | |
|         for n in range(250):
 | |
|             # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
 | |
|             # between two representable floats, and would usually be
 | |
|             # rounded down under round-half-to-even.  The tiniest of
 | |
|             # additions to the numerator should cause it to be rounded
 | |
|             # up instead.
 | |
|             self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
 | |
|                            2**DBL_MANT_DIG*12345)
 | |
| 
 | |
|         # 1/2731 is one of the smallest division cases that's subject
 | |
|         # to double rounding on IEEE 754 machines working internally with
 | |
|         # 64-bit precision.  On such machines, the next check would fail,
 | |
|         # were it not explicitly skipped in check_truediv.
 | |
|         self.check_truediv(1, 2731)
 | |
| 
 | |
|         # a particularly bad case for the old algorithm:  gives an
 | |
|         # error of close to 3.5 ulps.
 | |
|         self.check_truediv(295147931372582273023, 295147932265116303360)
 | |
|         for i in range(1000):
 | |
|             self.check_truediv(10**(i+1), 10**i)
 | |
|             self.check_truediv(10**i, 10**(i+1))
 | |
| 
 | |
|         # test round-half-to-even behaviour, normal result
 | |
|         for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
 | |
|                   -1, -2, -5, -23, -67891, -41**50]:
 | |
|             for n in range(-10, 10):
 | |
|                 self.check_truediv(2**DBL_MANT_DIG*m + n, m)
 | |
| 
 | |
|         # test round-half-to-even, subnormal result
 | |
|         for n in range(-20, 20):
 | |
|             self.check_truediv(n, 2**1076)
 | |
| 
 | |
|         # largeish random divisions: a/b where |a| <= |b| <=
 | |
|         # 2*|a|; |ans| is between 0.5 and 1.0, so error should
 | |
|         # always be bounded by 2**-54 with equality possible only
 | |
|         # if the least significant bit of q=ans*2**53 is zero.
 | |
|         for M in [10**10, 10**100, 10**1000]:
 | |
|             for i in range(1000):
 | |
|                 a = random.randrange(1, M)
 | |
|                 b = random.randrange(a, 2*a+1)
 | |
|                 self.check_truediv(a, b)
 | |
|                 self.check_truediv(-a, b)
 | |
|                 self.check_truediv(a, -b)
 | |
|                 self.check_truediv(-a, -b)
 | |
| 
 | |
|         # and some (genuinely) random tests
 | |
|         for _ in range(10000):
 | |
|             a_bits = random.randrange(1000)
 | |
|             b_bits = random.randrange(1, 1000)
 | |
|             x = random.randrange(2**a_bits)
 | |
|             y = random.randrange(1, 2**b_bits)
 | |
|             self.check_truediv(x, y)
 | |
|             self.check_truediv(x, -y)
 | |
|             self.check_truediv(-x, y)
 | |
|             self.check_truediv(-x, -y)
 | |
| 
 | |
| 
 | |
| def test_main():
 | |
|     run_unittest(TrueDivisionTests)
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_main()
 |