114 lines
3.0 KiB
Python
114 lines
3.0 KiB
Python
import numpy as np
|
|
import cv2
|
|
from rknn.api import RKNN
|
|
|
|
|
|
def show_outputs(outputs):
|
|
output = outputs[0].reshape(-1)
|
|
output_sorted = sorted(output, reverse=True)
|
|
top5_str = 'mobilenet_v2\n-----TOP 5-----\n'
|
|
for i in range(5):
|
|
value = output_sorted[i]
|
|
index = np.where(output == value)
|
|
for j in range(len(index)):
|
|
if (i + j) >= 5:
|
|
break
|
|
if value > 0:
|
|
topi = '{}: {}\n'.format(index[j], value)
|
|
else:
|
|
topi = '-1: 0.0\n'
|
|
top5_str += topi
|
|
print(top5_str)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# Create RKNN object
|
|
rknn = RKNN(verbose=True)
|
|
|
|
# Pre-process config
|
|
print('--> Config model')
|
|
rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82],
|
|
quant_img_RGB2BGR=True, target_platform='rk3588')
|
|
print('done')
|
|
|
|
# Load model (from https://github.com/shicai/MobileNet-Caffe)
|
|
print('--> Loading model')
|
|
ret = rknn.load_caffe(model='./../../caffe/mobilenet_v2/mobilenet_v2_deploy.prototxt',
|
|
blobs='./../../caffe/mobilenet_v2/mobilenet_v2.caffemodel')
|
|
if ret != 0:
|
|
print('Load model failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Build model
|
|
print('--> Building model')
|
|
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
|
|
if ret != 0:
|
|
print('Build model failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Export rknn model
|
|
print('--> Export rknn model')
|
|
ret = rknn.export_rknn('./mobilenet_v2.rknn')
|
|
if ret != 0:
|
|
print('Export rknn model failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Export encrypted RKNN model
|
|
print('--> Export encrypted rknn model')
|
|
ret = rknn.export_encrypted_rknn_model('./mobilenet_v2.rknn', None, 3)
|
|
|
|
# load rknn model
|
|
print('--> Load rknn model')
|
|
ret = rknn.load_rknn('./mobilenet_v2.rknn')
|
|
if ret != 0:
|
|
print('Load rknn model failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Set inputs
|
|
img = cv2.imread('./dog_224x224.jpg')
|
|
|
|
print('--> List devices')
|
|
rknn.list_devices()
|
|
|
|
# Init runtime environment
|
|
print('--> Init runtime environment')
|
|
ret = rknn.init_runtime(target='rk3588', perf_debug=True, eval_mem=True)
|
|
if ret != 0:
|
|
print('Init runtime environment failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
print('--> Get sdk version')
|
|
sdk_version = rknn.get_sdk_version()
|
|
print(sdk_version)
|
|
|
|
# eval perf
|
|
print('--> Eval perf')
|
|
rknn.eval_perf()
|
|
|
|
# eval perf
|
|
print('--> Eval memory')
|
|
rknn.eval_memory()
|
|
|
|
# Inference
|
|
print('--> Running model')
|
|
outputs = rknn.inference(inputs=[img])
|
|
np.save('./functions_board_test_0.npy', outputs[0])
|
|
show_outputs(outputs)
|
|
print('done')
|
|
|
|
# Accuracy analysis
|
|
print('--> Accuracy analysis')
|
|
ret = rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'], output_dir='./snapshot', target='rk3588')
|
|
if ret != 0:
|
|
print('Accuracy analysis failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
rknn.release()
|