79 lines
2.0 KiB
Python
Executable File
79 lines
2.0 KiB
Python
Executable File
import numpy as np
|
|
import cv2
|
|
from rknn.api import RKNN
|
|
|
|
|
|
def show_outputs(outputs):
|
|
output = outputs[0][0]
|
|
output_sorted = sorted(output, reverse=True)
|
|
top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
|
|
for i in range(5):
|
|
value = output_sorted[i]
|
|
index = np.where(output == value)
|
|
for j in range(len(index)):
|
|
if (i + j) >= 5:
|
|
break
|
|
if value > 0:
|
|
topi = '{}: {}\n'.format(index[j], value)
|
|
else:
|
|
topi = '-1: 0.0\n'
|
|
top5_str += topi
|
|
print(top5_str)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# Create RKNN object
|
|
rknn = RKNN(verbose=True)
|
|
|
|
# Pre-process config
|
|
print('--> Config model')
|
|
rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128], target_platform='rk3566')
|
|
print('done')
|
|
|
|
# Load model (from https://www.tensorflow.org/lite/examples/image_classification/overview?hl=zh-cn)
|
|
print('--> Loading model')
|
|
ret = rknn.load_tflite(model='mobilenet_v1_1.0_224_quant.tflite')
|
|
if ret != 0:
|
|
print('Load model failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Build model
|
|
print('--> Building model')
|
|
ret = rknn.build(do_quantization=False)
|
|
if ret != 0:
|
|
print('Build model failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Export rknn model
|
|
print('--> Export rknn model')
|
|
ret = rknn.export_rknn('./mobilenet_v1.rknn')
|
|
if ret != 0:
|
|
print('Export rknn model failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Set inputs
|
|
img = cv2.imread('./dog_224x224.jpg')
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
img = np.expand_dims(img, 0)
|
|
|
|
# Init runtime environment
|
|
print('--> Init runtime environment')
|
|
ret = rknn.init_runtime()
|
|
if ret != 0:
|
|
print('Init runtime environment failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Inference
|
|
print('--> Running model')
|
|
outputs = rknn.inference(inputs=[img])
|
|
np.save('./tflite_mobilenet_v1_qat_0.npy', outputs[0])
|
|
show_outputs(outputs)
|
|
print('done')
|
|
|
|
rknn.release()
|