android13/u-boot/cmd/ddr_tool/stressapptest/stressapptest.c

1215 lines
31 KiB
C

// Copyright 2006 Google Inc. All Rights Reserved.
/* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This is stressapptest for Rockchip platform in U-Boot, the design idea and
* the patterns are from code.google.com/p/stressapptest.
*/
#include <common.h>
#include <amp.h>
#include <div64.h>
#include <malloc.h>
#include <asm/arch/rockchip_smccc.h>
#include "stressapptest.h"
#include "../ddr_tool_common.h"
#define __version__ "v1.3.0 20230713"
#if defined(CONFIG_ARM64)
/* Float operation in TOOLCHAIN_ARM32 will cause the compile error */
#define WARM_CPU
#endif
#define PAT_NUM 26
#define PATTERN_LIST_SIZE (PAT_NUM * 2 * 4)
#define CPU_NUM_MAX 16
static u32 walking_1_data[] = {
0x00000001, 0x00000002, 0x00000004, 0x00000008,
0x00000010, 0x00000020, 0x00000040, 0x00000080,
0x00000100, 0x00000200, 0x00000400, 0x00000800,
0x00001000, 0x00002000, 0x00004000, 0x00008000,
0x00010000, 0x00020000, 0x00040000, 0x00080000,
0x00100000, 0x00200000, 0x00400000, 0x00800000,
0x01000000, 0x02000000, 0x04000000, 0x08000000,
0x10000000, 0x20000000, 0x40000000, 0x80000000,
0x40000000, 0x20000000, 0x10000000, 0x08000000,
0x04000000, 0x02000000, 0x01000000, 0x00800000,
0x00400000, 0x00200000, 0x00100000, 0x00080000,
0x00040000, 0x00020000, 0x00010000, 0x00008000,
0x00004000, 0x00002000, 0x00001000, 0x00000800,
0x00000400, 0x00000200, 0x00000100, 0x00000080,
0x00000040, 0x00000020, 0x00000010, 0x00000008,
0x00000004, 0x00000002, 0x00000001, 0x00000000
};
static struct pat walking_1 = {
"walking_1",
walking_1_data,
ARRAY_SIZE(walking_1_data) - 1, /* mask */
{1, 1, 2, 1} /* weight */
};
static u32 walking_1_x16_data[] = {
0x00020001, 0x00080004, 0x00200010, 0x00800040,
0x02000100, 0x08000400, 0x20001000, 0x80004000,
0x20004000, 0x08001000, 0x02000400, 0x00800100,
0x00200040, 0x00080010, 0x00020004, 0x00000001
};
static struct pat walking_1_x16 = {
"walking_1_x16",
walking_1_x16_data,
ARRAY_SIZE(walking_1_x16_data) - 1, /* mask */
{2, 0, 0, 0} /* Weight for choosing 32/64/128/256 bit wide of this pattern */
/* Reuse for walking_0_x16, because of invert */
};
static u32 walking_1_x16_repeat_data[] = {
0x00010001, 0x00020002, 0x00040004, 0x00080008,
0x00100010, 0x00200020, 0x00400040, 0x00800080,
0x01000100, 0x02000200, 0x04000400, 0x08000800,
0x10001000, 0x20002000, 0x40004000, 0x80008000,
0x40004000, 0x20002000, 0x10001000, 0x08000800,
0x04000400, 0x02000200, 0x01000100, 0x00800080,
0x00400040, 0x00200020, 0x00100010, 0x00080008,
0x00040004, 0x00020002, 0x00010001, 0x00000000
};
static struct pat walking_1_x16_repeat = {
"walking_1_x16_repeat",
walking_1_x16_repeat_data,
ARRAY_SIZE(walking_1_x16_repeat_data) - 1, /* mask */
{2, 4, 2, 0} /* Weight for choosing 32/64/128/256 bit wide of this pattern */
/* Reuse for walking_0_x16_repeat, because of invert */
};
static u32 walking_inv_1_data[] = {
0x00000001, 0xfffffffe, 0x00000002, 0xfffffffd,
0x00000004, 0xfffffffb, 0x00000008, 0xfffffff7,
0x00000010, 0xffffffef, 0x00000020, 0xffffffdf,
0x00000040, 0xffffffbf, 0x00000080, 0xffffff7f,
0x00000100, 0xfffffeff, 0x00000200, 0xfffffdff,
0x00000400, 0xfffffbff, 0x00000800, 0xfffff7ff,
0x00001000, 0xffffefff, 0x00002000, 0xffffdfff,
0x00004000, 0xffffbfff, 0x00008000, 0xffff7fff,
0x00010000, 0xfffeffff, 0x00020000, 0xfffdffff,
0x00040000, 0xfffbffff, 0x00080000, 0xfff7ffff,
0x00100000, 0xffefffff, 0x00200000, 0xffdfffff,
0x00400000, 0xffbfffff, 0x00800000, 0xff7fffff,
0x01000000, 0xfeffffff, 0x02000000, 0xfdffffff,
0x04000000, 0xfbffffff, 0x08000000, 0xf7ffffff,
0x10000000, 0xefffffff, 0x20000000, 0xdfffffff,
0x40000000, 0xbfffffff, 0x80000000, 0x7fffffff,
0x40000000, 0xbfffffff, 0x20000000, 0xdfffffff,
0x10000000, 0xefffffff, 0x08000000, 0xf7ffffff,
0x04000000, 0xfbffffff, 0x02000000, 0xfdffffff,
0x01000000, 0xfeffffff, 0x00800000, 0xff7fffff,
0x00400000, 0xffbfffff, 0x00200000, 0xffdfffff,
0x00100000, 0xffefffff, 0x00080000, 0xfff7ffff,
0x00040000, 0xfffbffff, 0x00020000, 0xfffdffff,
0x00010000, 0xfffeffff, 0x00008000, 0xffff7fff,
0x00004000, 0xffffbfff, 0x00002000, 0xffffdfff,
0x00001000, 0xffffefff, 0x00000800, 0xfffff7ff,
0x00000400, 0xfffffbff, 0x00000200, 0xfffffdff,
0x00000100, 0xfffffeff, 0x00000080, 0xffffff7f,
0x00000040, 0xffffffbf, 0x00000020, 0xffffffdf,
0x00000010, 0xffffffef, 0x00000008, 0xfffffff7,
0x00000004, 0xfffffffb, 0x00000002, 0xfffffffd,
0x00000001, 0xfffffffe, 0x00000000, 0xffffffff
};
static struct pat walking_inv_1 = {
"walking_inv_1",
walking_inv_1_data,
ARRAY_SIZE(walking_inv_1_data) - 1, /* mask */
{2, 2, 5, 5} /* weight */
};
static u32 walking_inv_1_x16_data[] = {
0xfffe0001, 0xfffd0002, 0xfffb0004, 0xfff70008,
0xffef0010, 0xffdf0020, 0xffbf0040, 0xff7f0080,
0xfeff0100, 0xfdff0200, 0xfbff0400, 0xf7ff0800,
0xefff1000, 0xdfff2000, 0xbfff4000, 0x7fff8000,
0xbfff4000, 0xdfff2000, 0xefff1000, 0xf7ff0800,
0xfbff0400, 0xfdff0200, 0xfeff0100, 0xff7f0080,
0xffbf0040, 0xffdf0020, 0xffef0010, 0xfff70008,
0xfffb0004, 0xfffd0002, 0xfffe0001, 0xffff0000
};
static struct pat walking_inv_1_x16 = {
"walking_inv_1_x16",
walking_inv_1_x16_data,
ARRAY_SIZE(walking_inv_1_x16_data) - 1, /* mask */
{2, 0, 0, 0} /* weight */
};
static u32 walking_inv_1_x16_repeat_data[] = {
0x00010001, 0xfffefffe, 0x00020002, 0xfffdfffd,
0x00040004, 0xfffbfffb, 0x00080008, 0xfff7fff7,
0x00100010, 0xffefffef, 0x00200020, 0xffdfffdf,
0x00400040, 0xffbfffbf, 0x00800080, 0xff7fff7f,
0x01000100, 0xfefffeff, 0x02000200, 0xfdfffdff,
0x04000400, 0xfbfffbff, 0x08000800, 0xf7fff7ff,
0x10001000, 0xefffefff, 0x20002000, 0xdfffdfff,
0x40004000, 0xbfffbfff, 0x80008000, 0x7fff7fff,
0x40004000, 0xbfffbfff, 0x20002000, 0xdfffdfff,
0x10001000, 0xefffefff, 0x08000800, 0xf7fff7ff,
0x04000400, 0xfbfffbff, 0x02000200, 0xfdfffdff,
0x01000100, 0xfefffeff, 0x00800080, 0xff7fff7f,
0x00400040, 0xffbfffbf, 0x00200020, 0xffdfffdf,
0x00100010, 0xffefffef, 0x00080008, 0xfff7fff7,
0x00040004, 0xfffbfffb, 0x00020002, 0xfffdfffd,
0x00010001, 0xfffefffe, 0x00000000, 0xffffffff
};
static struct pat walking_inv_1_x16_repeat = {
"walking_inv_1_x16_repeat",
walking_inv_1_x16_repeat_data,
ARRAY_SIZE(walking_inv_1_x16_repeat_data) - 1, /* mask */
{2, 5, 5, 0} /* weight */
};
static u32 walking_0_data[] = {
0xfffffffe, 0xfffffffd, 0xfffffffb, 0xfffffff7,
0xffffffef, 0xffffffdf, 0xffffffbf, 0xffffff7f,
0xfffffeff, 0xfffffdff, 0xfffffbff, 0xfffff7ff,
0xffffefff, 0xffffdfff, 0xffffbfff, 0xffff7fff,
0xfffeffff, 0xfffdffff, 0xfffbffff, 0xfff7ffff,
0xffefffff, 0xffdfffff, 0xffbfffff, 0xff7fffff,
0xfeffffff, 0xfdffffff, 0xfbffffff, 0xf7ffffff,
0xefffffff, 0xdfffffff, 0xbfffffff, 0x7fffffff,
0xbfffffff, 0xdfffffff, 0xefffffff, 0xf7ffffff,
0xfbffffff, 0xfdffffff, 0xfeffffff, 0xff7fffff,
0xffbfffff, 0xffdfffff, 0xffefffff, 0xfff7ffff,
0xfffbffff, 0xfffdffff, 0xfffeffff, 0xffff7fff,
0xffffbfff, 0xffffdfff, 0xffffefff, 0xfffff7ff,
0xfffffbff, 0xfffffdff, 0xfffffeff, 0xffffff7f,
0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7,
0xfffffffb, 0xfffffffd, 0xfffffffe, 0xffffffff
};
static struct pat walking_0 = {
"walking_0",
walking_0_data,
ARRAY_SIZE(walking_0_data) - 1, /* mask */
{1, 1, 2, 1} /* weight */
};
static u32 one_zero_data[] = {0x00000000, 0xffffffff};
static struct pat one_zero = {
"one_zero",
one_zero_data,
ARRAY_SIZE(one_zero_data) - 1, /* mask */
{5, 5, 15, 5} /* weight */
};
static unsigned int one_zero_x16_data[] = {0x0000ffff, 0x0000ffff};
static struct pat one_zero_x16 = {
"one_zero_x16",
one_zero_x16_data,
ARRAY_SIZE(one_zero_x16_data) - 1, /* mask */
{5, 0, 0, 0} /* weight */
};
static u32 just_0_data[] = {0x00000000, 0x00000000};
static struct pat just_0 = {
"just_0",
just_0_data,
ARRAY_SIZE(just_0_data) - 1, /* mask */
{2, 0, 0, 0} /* weight */
};
static u32 just_1_data[] = {0xffffffff, 0xffffffff};
static struct pat just_1 = {
"just_1",
just_1_data,
ARRAY_SIZE(just_1_data) - 1, /* mask */
{2, 0, 0, 0} /* weight */
};
static u32 just_5_data[] = {0x55555555, 0x55555555};
static struct pat just_5 = {
"just_5",
just_5_data,
ARRAY_SIZE(just_5_data) - 1, /* mask */
{2, 0, 0, 0} /* weight */
};
static u32 just_a_data[] = {0xaaaaaaaa, 0xaaaaaaaa};
static struct pat just_a = {
"just_a",
just_a_data,
ARRAY_SIZE(just_a_data) - 1, /* mask */
{2, 0, 0, 0} /* weight */
};
static u32 five_a_data[] = {0x55555555, 0xaaaaaaaa};
static struct pat five_a = {
"five_a",
five_a_data,
ARRAY_SIZE(five_a_data) - 1, /* mask */
{1, 1, 1, 1} /* weight */
};
static unsigned int five_a_x16_data[] = {0x5555aaaa, 0x5555aaaa};
static struct pat five_a_x16 = {
"five_a_x16",
five_a_x16_data,
ARRAY_SIZE(five_a_x16_data) - 1, /* mask */
{1, 0, 0, 0} /* weight */
};
static u32 five_a8_data[] = {
0x5aa5a55a, 0xa55a5aa5, 0xa55a5aa5, 0x5aa5a55a
};
static struct pat five_a8 = {
"five_a8",
five_a8_data,
ARRAY_SIZE(five_a8_data) - 1, /* mask */
{1, 1, 1, 1} /* weight */
};
static u32 five_a8_x16_data[] = {0x5aa5a55a, 0xa55a5aa5};
static struct pat five_a8_x16 = {
"five_a8_x16",
five_a8_x16_data,
ARRAY_SIZE(five_a8_x16_data) - 1, /* mask */
{1, 0, 0, 0} /* weight */
};
static unsigned int five_a8_x16_repeat_data[] = {
0x5aa55aa5, 0xa55aa55a, 0xa55aa55a, 0x5aa55aa5
};
static struct pat five_a8_x16_repeat = {
"five_a8_x16_repeat",
five_a8_x16_repeat_data,
ARRAY_SIZE(five_a8_x16_repeat_data) - 1, /* mask */
{1, 1, 1, 0} /* weight */
};
static u32 long_8b10b_data[] = {0x16161616, 0x16161616};
static struct pat long_8b10b = {
"long_8b10b",
long_8b10b_data,
ARRAY_SIZE(long_8b10b_data) - 1, /* mask */
{2, 0, 0, 0} /* weight */
};
static u32 short_8b10b_data[] = {0xb5b5b5b5, 0xb5b5b5b5};
static struct pat short_8b10b = {
"short_8b10b",
short_8b10b_data,
ARRAY_SIZE(short_8b10b_data) - 1, /* mask */
{2, 0, 0, 0} /* weight */
};
static u32 checker_8b10b_data[] = {0xb5b5b5b5, 0x4a4a4a4a};
static struct pat checker_8b10b = {
"checker_8b10b",
checker_8b10b_data,
ARRAY_SIZE(checker_8b10b_data) - 1, /* mask */
{1, 0, 1, 1} /* weight */
};
static u32 checker_8b10b_x16_data[] = {0xb5b54a4a, 0xb5b54a4a};
static struct pat checker_8b10b_x16 = {
"checker_8b10b_x16",
checker_8b10b_x16_data,
ARRAY_SIZE(checker_8b10b_x16_data) - 1, /* mask */
{1, 0, 0, 0} /* weight */
};
static u32 five_7_data[] = {0x55555557, 0x55575555};
static struct pat five_7 = {
"five_7",
five_7_data,
ARRAY_SIZE(five_7_data) - 1, /* mask */
{0, 2, 0, 0} /* weight */
};
static u32 five_7_x16_data[] = {0x55575557, 0x57555755};
static struct pat five_7_x16 = {
"five_7_x16",
five_7_x16_data,
ARRAY_SIZE(five_7_x16_data) - 1, /* mask */
{2, 0, 0, 0} /* weight */
};
static u32 zero2_fd_data[] = {0x00020002, 0xfffdfffd};
static struct pat zero2_fd = {
"zero2_fd",
zero2_fd_data,
ARRAY_SIZE(zero2_fd_data) - 1, /* mask */
{0, 2, 0, 0} /* weight */
};
static u32 zero2_fd_x16_data[] = {0x02020202, 0xfdfdfdfd};
static struct pat zero2_fd_x16 = {
"zero2_fd_x16",
zero2_fd_x16_data,
ARRAY_SIZE(zero2_fd_x16_data) - 1, /* mask */
{2, 0, 0, 0} /* weight */
};
static struct pat *pat_array[] = {
&walking_1,
&walking_1_x16,
&walking_1_x16_repeat,
&walking_inv_1,
&walking_inv_1_x16,
&walking_inv_1_x16_repeat,
&walking_0,
&one_zero,
&one_zero_x16,
&just_0,
&just_1,
&just_5,
&just_a,
&five_a,
&five_a_x16,
&five_a8,
&five_a8_x16,
&five_a8_x16_repeat,
&long_8b10b,
&short_8b10b,
&checker_8b10b,
&checker_8b10b_x16,
&five_7,
&five_7_x16,
&zero2_fd,
&zero2_fd_x16
};
static u32 cpu_copy_err[CPU_NUM_MAX];
static u32 cpu_inv_err[CPU_NUM_MAX];
static u64 start_time_us;
static u64 test_time_us;
static bool cpu_init_finish[CPU_NUM_MAX];
static bool cpu_test_finish[CPU_NUM_MAX];
static bool pattern_page_init_finish;
#if (CPU_NUM_MAX > 1)
static ulong test_count = 0;
static ulong __gd; /* set r9/x18 of secondary cpu to gd addr */
#endif
ulong __sp; /* set sp of secondary cpu */
u32 print_mutex; /* 0: unlock, 1: lock */
static u64 get_time_us(void)
{
return lldiv(get_ticks(), CONFIG_SYS_HZ_CLOCK / (CONFIG_SYS_HZ * 1000));
}
static u64 run_time_us(void)
{
return get_time_us() - start_time_us;
}
static void print_time_stamp(void)
{
u64 time_us;
time_us = run_time_us();
printf("[%5d.%06d] ", (u32)(time_us / 1000000), (u32)(time_us % 1000000));
}
static u32 pattern_get(struct pattern *pattern, u32 offset)
{
u32 ret;
ret = pattern->pat->data_array[(offset >> pattern->repeat) &
pattern->pat->mask];
return pattern->inv ? ~ret : ret;
}
static void pattern_adler_sum_calc(struct pattern *pattern,
struct stressapptest_params *sat)
{
int i = 0;
u64 a1 = 1;
u64 b1 = 0;
u64 a2 = 1;
u64 b2 = 0;
while (i < sat->block_size_byte / sizeof(u32)) {
a1 += (u64)pattern_get(pattern, i++);
b1 += a1;
a1 += pattern_get(pattern, i++);
b1 += a1;
a2 += (u64)pattern_get(pattern, i++);
b2 += a2;
a2 += pattern_get(pattern, i++);
b2 += a2;
}
pattern->adler_sum.a1 = a1;
pattern->adler_sum.b1 = b1;
pattern->adler_sum.a2 = a2;
pattern->adler_sum.b2 = b2;
}
static void pattern_list_init(struct pattern *pattern_list,
struct stressapptest_params *sat)
{
u32 weight_count = 0;
int k = 0;
for (int i = 0; i < PAT_NUM; i++) {
for (int j = 0; j < 8; j++) {
pattern_list[k].pat = pat_array[i];
pattern_list[k].inv = j % 2;
pattern_list[k].repeat = j / 2;
pattern_list[k].weight = pattern_list[k].pat->weight[j / 2];
pattern_adler_sum_calc(&pattern_list[k], sat);
weight_count += pattern_list[k].weight;
k++;
}
}
sat->weight_count = weight_count;
}
static u32 get_max_page_num(ulong page_size_byte)
{
ulong start_adr[CONFIG_NR_DRAM_BANKS], length[CONFIG_NR_DRAM_BANKS];
u32 page_num = 0;
get_print_available_addr(start_adr, length, 0);
page_num = 0;
for (int i = 0; i < ARRAY_SIZE(start_adr) || i < ARRAY_SIZE(length); i++) {
if ((start_adr[i] == 0 && length[i] == 0))
break;
page_num += (u32)(length[i] / page_size_byte);
}
return page_num;
}
static int get_page_addr(struct page *page_list,
struct stressapptest_params *sat)
{
ulong start_adr[CONFIG_NR_DRAM_BANKS], length[CONFIG_NR_DRAM_BANKS];
ulong used_length;
u32 page = 0;
get_print_available_addr(start_adr, length, 0);
printf("Address for test:\n Start End Length\n");
for (int i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
if ((start_adr[i] == 0 && length[i] == 0) || page >= sat->page_num)
break;
if (start_adr[i] + length[i] < sat->total_start_addr)
continue;
if (start_adr[i] < sat->total_start_addr) {
length[i] -= sat->total_start_addr - start_adr[i];
start_adr[i] = sat->total_start_addr;
}
used_length = 0;
while (page < sat->page_num &&
length[i] >= used_length + sat->page_size_byte) {
page_list[page].base_addr = (void *)(start_adr[i] + used_length);
used_length += sat->page_size_byte;
page++;
}
printf(" 0x%09lx - 0x%09lx 0x%09lx\n",
start_adr[i], start_adr[i] + used_length, used_length);
}
printf("page_num = %d, page_size = 0x%lx, total_test_size = 0x%lx\n",
page, sat->page_size_byte, sat->page_size_byte * page);
if (sat->total_test_size_mb == 0) {
/* No arg for total_test_size_mb, test all available space by default. */
sat->page_num = page;
} else if (page < sat->page_num || page < sat->cpu_num * 4) {
printf("ERROR: Cannot get enough pages to test.\n");
printf("Please decrease page_size or test_size\n");
return -1;
}
return 0;
}
static void page_init_valid(struct page *page, struct pattern *pattern_list,
struct stressapptest_params *sat)
{
int target;
int i = 0;
u64 *mem;
target = (rand() % sat->weight_count) + 1;
do {
target -= pattern_list[i++].weight;
if (target <= 0)
break;
} while (i < PATTERN_LIST_SIZE);
page->pattern = &pattern_list[--i];
page->valid = 1;
mem = (u64 *)page->base_addr;
for (i = 0; i < sat->page_size_byte / sizeof(u64); i++)
mem[i] = (u64)pattern_get(page->pattern, i * 2) |
(u64)pattern_get(page->pattern, i * 2 + 1) << 32;
}
static void page_init_empty(struct page *page)
{
page->valid = 0;
}
static void page_init(struct pattern *pattern_list,
struct stressapptest_params *sat)
{
int i, cpu;
u32 empty_page_num;
for (cpu = 0; cpu < sat->cpu_num; cpu++) {
empty_page_num = 0;
for (i = cpu; i < sat->page_num; i += sat->cpu_num) {
if (rand() % 5 < 3) {
page_list[i].valid = 1;
} else {
page_list[i].valid = 0;
empty_page_num++;
}
}
while (empty_page_num >= sat->page_num / sat->cpu_num / 2 && i > 0) {
i -= sat->cpu_num;
if (page_list[i].valid == 0) {
page_list[i].valid = 1;
empty_page_num--;
}
}
i = cpu;
while (empty_page_num < 2 && i < sat->page_num) {
if (page_list[i].valid == 1) {
page_list[i].valid = 0;
empty_page_num++;
}
i += sat->cpu_num;
}
}
for (i = 0; i < sat->page_num; i++) {
if (page_list[i].valid == 1)
page_init_valid(&page_list[i], pattern_list, sat);
else
page_init_empty(&page_list[i]);
}
flush_dcache_all();
}
static u32 page_rand_pick(struct page *page_list, bool valid,
struct stressapptest_params *sat, u8 cpu_id)
{
u32 pick;
pick = rand() % sat->page_num;
pick = pick / sat->cpu_num * sat->cpu_num + cpu_id;
if (pick >= sat->page_num)
pick = cpu_id;
while (page_list[pick].valid != valid) {
pick += sat->cpu_num;
if (pick >= sat->page_num)
pick = cpu_id;
}
return pick;
}
static u32 block_mis_search(void *dst_addr, struct pattern *src_pattern, char *item,
struct stressapptest_params *sat, u8 cpu_id)
{
u32 *dst_mem;
u32 read, reread, expected;
u32 err = 0;
u32 *print_addr;
int i, j;
dst_mem = (u32 *)dst_addr;
for (i = 0; i < sat->block_size_byte / sizeof(u32); i++) {
read = dst_mem[i];
expected = pattern_get(src_pattern, i);
if (read != expected) {
flush_dcache_range((ulong)&dst_mem[i], (ulong)&dst_mem[i + 1]);
reread = dst_mem[i];
lock_byte_mutex(&print_mutex);
print_time_stamp();
printf("%s Hardware Error: miscompare on CPU %d at 0x%lx:\n",
item, cpu_id, (ulong)&dst_mem[i]);
printf(" read: 0x%08x\n", read);
printf(" reread: 0x%08x(reread^read:0x%08x)\n",
reread, reread ^ read);
printf(" expected:0x%08x(expected^read:0x%08x)\n",
expected, expected ^ read);
printf(" \'%s%s%d\'", src_pattern->pat->name,
src_pattern->inv ? "~" : "",
32 << src_pattern->repeat);
if (reread == expected)
printf(" read error");
printf("\n");
/* Dump data around the error address */
print_addr = &dst_mem[i] - 64;
for (j = 0; j < 128; j += 8)
printf(" [0x%010lx] 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
(ulong)(print_addr + j),
*(print_addr + j), *(print_addr + j + 1),
*(print_addr + j + 2), *(print_addr + j + 3),
*(print_addr + j + 4), *(print_addr + j + 5),
*(print_addr + j + 6), *(print_addr + j + 7));
unlock_byte_mutex(&print_mutex);
/* fix the error */
dst_mem[i] = expected;
err++;
flush_dcache_range((ulong)&dst_mem[i], (ulong)&dst_mem[i + 1]);
}
}
if (err == 0) {
lock_byte_mutex(&print_mutex);
printf("%s ERROR detected but cannot find mismatch data (maybe read error).\n", item);
unlock_byte_mutex(&print_mutex);
}
return err;
}
static u32 block_inv_check(void *dst_addr, struct pattern *src_pattern,
struct stressapptest_params *sat, u8 cpu_id)
{
u32 *dst_mem;
u32 err = 0;
int i = 0;
#if defined(WARM_CPU)
double a, b, c, d;
#endif
struct adler_sum adler_sum = {
1, 0, 1, 0
};
dst_mem = (u32 *)dst_addr;
#if defined(WARM_CPU)
a = 2.0 * dst_mem[0];
b = 5.0 * dst_mem[0];
c = 7.0 * dst_mem[0];
d = 9.0 * dst_mem[0];
#endif
while (i < sat->block_size_byte / sizeof(u32)) {
adler_sum.a1 += dst_mem[i++];
adler_sum.b1 += adler_sum.a1;
adler_sum.a1 += dst_mem[i++];
adler_sum.b1 += adler_sum.a1;
#if defined(WARM_CPU)
a = a * b;
b = b + c;
#endif
adler_sum.a2 += dst_mem[i++];
adler_sum.b2 += adler_sum.a2;
adler_sum.a2 += dst_mem[i++];
adler_sum.b2 += adler_sum.a2;
#if defined(WARM_CPU)
c = c * d;
d = d + d;
#endif
}
#if defined(WARM_CPU)
d = a + b + c + d;
if (d == 1.0)
/* Reference the result so that it can't be discarded by the compiler. */
printf("This will probably never happen.\n");
#endif
if (adler_sum.a1 != src_pattern->adler_sum.a1 ||
adler_sum.b1 != src_pattern->adler_sum.b1 ||
adler_sum.a2 != src_pattern->adler_sum.a2 ||
adler_sum.b2 != src_pattern->adler_sum.b2)
err = block_mis_search(dst_addr, src_pattern, "Inv", sat, cpu_id);
return err;
}
static void page_inv_up(void *src_addr, struct stressapptest_params *sat)
{
void *dst_addr = src_addr;
uint data;
uint *dst_mem;
for (int i = 0; i < sat->block_num; i++) {
dst_mem = (uint *)dst_addr;
for (int j = 0; j < sat->block_size_byte / sizeof(uint); j += 32) {
for (int k = j; k < j + 32; k++) {
data = dst_mem[k];
dst_mem[k] = ~data;
}
flush_dcache_range((ulong)&dst_mem[j], (ulong)&dst_mem[j + 1]);
}
dst_addr += sat->block_size_byte;
}
}
static void page_inv_down(void *src_addr, struct stressapptest_params *sat)
{
void *dst_addr = src_addr;
uint data;
uint *dst_mem;
dst_addr += sat->block_size_byte * (sat->block_num - 1);
for (int i = sat->block_num - 1; i >= 0; i--) {
dst_mem = (uint *)dst_addr;
for (int j = sat->block_size_byte / sizeof(uint) - 32; j >= 0; j -= 32) {
for (int k = j + 31; k >= j; k--) {
data = dst_mem[k];
dst_mem[k] = ~data;
}
flush_dcache_range((ulong)&dst_mem[j], (ulong)&dst_mem[j + 1]);
}
dst_addr -= sat->block_size_byte;
}
}
static u32 page_inv(struct stressapptest_params *sat, u8 cpu_id)
{
u32 src;
void *dst_block_addr;
u32 err = 0;
src = page_rand_pick(page_list, 1, sat, cpu_id); /* pick a valid page */
dst_block_addr = page_list[src].base_addr;
for (int i = 0; i < 4; i++) {
if (rand() % 2 == 0)
page_inv_up(page_list[src].base_addr, sat);
else
page_inv_down(page_list[src].base_addr, sat);
}
for (int i = 0; i < sat->block_num; i++) {
err += block_inv_check(dst_block_addr, page_list[src].pattern, sat, cpu_id);
dst_block_addr += sat->block_size_byte;
}
return err;
}
static u32 block_copy_check(void *dst_addr, struct adler_sum *adler_sum,
struct pattern *src_pattern, struct stressapptest_params *sat,
u8 cpu_id)
{
u32 err = 0;
if (adler_sum->a1 != src_pattern->adler_sum.a1 ||
adler_sum->b1 != src_pattern->adler_sum.b1 ||
adler_sum->a2 != src_pattern->adler_sum.a2 ||
adler_sum->b2 != src_pattern->adler_sum.b2)
err = block_mis_search(dst_addr, src_pattern, "Copy", sat, cpu_id);
return err;
}
static u32 block_copy(void *dst_addr, void *src_addr,
struct pattern *src_pattern,
struct stressapptest_params *sat, u8 cpu_id)
{
u64 *dst_mem;
u64 *src_mem;
u64 data;
int i = 0;
#if defined(WARM_CPU)
double a, b, c, d;
#endif
struct adler_sum adler_sum = {
1, 0, 1, 0
};
dst_mem = (u64 *)dst_addr;
src_mem = (u64 *)src_addr;
#if defined(WARM_CPU)
a = 2.0 * src_mem[0];
b = 5.0 * src_mem[0];
c = 7.0 * src_mem[0];
d = 9.0 * src_mem[0];
#endif
while (i < sat->block_size_byte / sizeof(u64)) {
data = src_mem[i];
adler_sum.a1 += data & 0xffffffff;
adler_sum.b1 += adler_sum.a1;
adler_sum.a1 += data >> 32;
adler_sum.b1 += adler_sum.a1;
dst_mem[i] = data;
i++;
#if defined(WARM_CPU)
a = a * b;
b = b + c;
#endif
data = src_mem[i];
adler_sum.a2 += data & 0xffffffff;
adler_sum.b2 += adler_sum.a2;
adler_sum.a2 += data >> 32;
adler_sum.b2 += adler_sum.a2;
dst_mem[i] = data;
i++;
#if defined(WARM_CPU)
c = c * d;
d = d + d;
#endif
}
#if defined(WARM_CPU)
d = a + b + c + d;
if (d == 1.0)
/* Reference the result so that it can't be discarded by the compiler. */
printf("This will probably never happen.\n");
#endif
return block_copy_check(dst_addr, &adler_sum, src_pattern, sat, cpu_id);
}
static u32 page_copy(struct stressapptest_params *sat, u8 cpu_id)
{
u32 dst;
u32 src;
void *dst_block_addr;
void *src_block_addr;
u32 err = 0;
dst = page_rand_pick(page_list, 0, sat, cpu_id); /* pick a empty page */
dst_block_addr = page_list[dst].base_addr;
src = page_rand_pick(page_list, 1, sat, cpu_id); /* pick a valid page */
src_block_addr = page_list[src].base_addr;
for (int i = 0; i < sat->block_num; i++) {
err += block_copy(dst_block_addr, src_block_addr,
page_list[src].pattern, sat, cpu_id);
dst_block_addr += sat->block_size_byte;
src_block_addr += sat->block_size_byte;
}
page_list[dst].pattern = page_list[src].pattern;
page_list[dst].valid = 1;
page_list[src].valid = 0;
flush_dcache_range((ulong)&page_list[src], (ulong)&page_list[src + 1]);
flush_dcache_range((ulong)&page_list[dst], (ulong)&page_list[dst + 1]);
return err;
}
void secondary_main(void)
{
#if (CPU_NUM_MAX > 1)
u8 cpu_id;
ulong test = 0;
#ifndef CONFIG_ARM64
asm volatile("mov r9, %0" : : "r" (__gd)); /* set r9 to gd addr */
#else
asm volatile("mov x18, %0" : : "r" (__gd)); /* set x18 to gd addr */
#endif
dcache_enable();
icache_enable();
udelay(100);
flush_dcache_all();
cpu_id = sat.cpu_num;
cpu_init_finish[cpu_id] = 1;
printf("CPU%d start OK.\n", cpu_id);
while (pattern_page_init_finish == 0) {
udelay(100);
flush_dcache_all();
}
while (1) {
udelay(100);
flush_dcache_all();
while (test < test_count) {
cpu_test_finish[cpu_id] = 0;
flush_dcache_all();
while (run_time_us() < test_time_us) {
if (rand() % 2 == 0)
cpu_copy_err[cpu_id] += page_copy(&sat, cpu_id);
else
cpu_inv_err[cpu_id] += page_inv(&sat, cpu_id);
}
test++;
cpu_test_finish[cpu_id] = 1;
flush_dcache_range((ulong)&cpu_test_finish[cpu_id],
(ulong)&cpu_test_finish[cpu_id + 1]);
flush_dcache_range((ulong)&cpu_copy_err[cpu_id],
(ulong)&cpu_copy_err[cpu_id + 1]);
flush_dcache_range((ulong)&cpu_inv_err[cpu_id],
(ulong)&cpu_inv_err[cpu_id + 1]);
}
}
#else
return;
#endif
}
static int doing_stressapptest(void)
{
int i;
u32 pre_10s;
u32 now_10s;
struct pattern pattern_list[PATTERN_LIST_SIZE];
void *page_info;
u32 all_copy_err = 0;
u32 all_inv_err = 0;
u32 cpu_no_response_err = 0;
int ret = CMD_RET_SUCCESS;
for (i = 0; i < CPU_NUM_MAX; i++) {
cpu_copy_err[i] = 0;
cpu_inv_err[i] = 0;
cpu_init_finish[i] = 0;
cpu_test_finish[i] = 0;
}
pattern_page_init_finish = 0;
print_mutex = 0;
asm volatile("clrex");
#if (CPU_NUM_MAX > 1)
if (test_count == 0) {
__gd = (ulong)gd;
asm volatile("mov %0, sp" : "=r" (__sp));
printf("CPU0 sp is at 0x%lx now.\n", __sp);
__sp &= ~(ulong)0xffff;
for (sat.cpu_num = 1; sat.cpu_num < CPU_NUM_MAX; sat.cpu_num++) {
__sp -= 0x10000;
flush_dcache_all();
if (psci_cpu_on(sat.cpu_num, (ulong)secondary_init) == 0) {
mdelay(10);
printf("Calling CPU%d, sp = 0x%lx\n", sat.cpu_num, __sp);
} else {
break;
}
while (cpu_init_finish[sat.cpu_num] == 0) {
udelay(1000);
flush_dcache_all();
}
}
}
#else
sat.cpu_num = 1;
#endif
if (sat.total_test_size_mb == 0)
sat.page_num = get_max_page_num(sat.page_size_byte);
else
sat.page_num = (sat.total_test_size_mb << 20) / sat.page_size_byte;
sat.block_num = sat.page_size_byte / sat.block_size_byte;
udelay(100);
page_info = malloc(sizeof(struct page) * sat.page_num);
if (page_info == 0) {
printf("ERROR: StressAppTest fail to malloc.\n");
printf("Please try increasing CONFIG_SYS_MALLOC_LEN in include/configs/rxxxxx_common.h.\n");
ret = CMD_RET_FAILURE;
goto out;
}
page_list = (struct page *)page_info;
if (get_page_addr(page_list, &sat) < 0) {
ret = CMD_RET_FAILURE;
goto out;
}
pattern_list_init(pattern_list, &sat);
page_init(pattern_list, &sat);
#if (CPU_NUM_MAX > 1)
if (sat.cpu_num > 1) {
pattern_page_init_finish = 1;
test_count++;
flush_dcache_all();
}
#endif
pre_10s = (u32)(run_time_us() / 1000000 / 10);
lock_byte_mutex(&print_mutex);
print_time_stamp();
printf("Start StressAppTest in U-Boot:\n");
unlock_byte_mutex(&print_mutex);
while (run_time_us() < test_time_us) {
if (rand() % 2 == 0)
cpu_copy_err[0] += page_copy(&sat, 0);
else
cpu_inv_err[0] += page_inv(&sat, 0);
/* Print every 10 seconds */
now_10s = (u32)(run_time_us() / 1000000 / 10);
if (now_10s > pre_10s) {
pre_10s = now_10s;
lock_byte_mutex(&print_mutex);
print_time_stamp();
printf("Seconds remaining: %d\n", (u32)(test_time_us / 1000000 - now_10s * 10));
unlock_byte_mutex(&print_mutex);
}
}
#if (CPU_NUM_MAX > 1)
for (i = 1; i < sat.cpu_num; i++) {
while (cpu_test_finish[i] == 0) {
if ((u32)(run_time_us() / 1000000 / 10) > pre_10s + 6) {
/* wait for secondary CPU in 60s */
lock_byte_mutex(&print_mutex);
print_time_stamp();
printf("ERROR: Cannot wait for CPU%d to finish!\n", i);
unlock_byte_mutex(&print_mutex);
cpu_no_response_err++;
break;
}
mdelay(1);
flush_dcache_range((ulong)&cpu_test_finish[i],
(ulong)&cpu_test_finish[i + 1]);
}
}
flush_dcache_all();
#endif
for (i = 0; i < sat.cpu_num; i++) {
all_copy_err += cpu_copy_err[i];
all_inv_err += cpu_inv_err[i];
}
print_time_stamp();
printf("StressAppTest Result: ");
if (all_copy_err == 0 && all_inv_err == 0 && cpu_no_response_err == 0)
printf("Pass.\n");
else
printf("FAIL!\nStressAppTest detects %d copy errors, %d inv errors.\n",
all_copy_err, all_inv_err);
out:
free(page_info);
return ret;
}
static int do_stressapptest(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
{
ulong test_time_sec = 20;
ulong page_size_kb = 1024;
sat.total_test_size_mb = 0;
sat.block_size_byte = 4096;
sat.total_start_addr = 0x0;
printf("StressAppTest in U-Boot, " __version__ "\n");
if (argc > 1) {
if (strict_strtoul(argv[1], 0, &test_time_sec) < 0)
return CMD_RET_USAGE;
if (test_time_sec < 1)
test_time_sec = 20;
}
if (argc > 2) {
if (strict_strtoul(argv[2], 0, &sat.total_test_size_mb) < 0)
return CMD_RET_USAGE;
if (sat.total_test_size_mb < 1)
sat.total_test_size_mb = 0;
}
if (argc > 3) {
if (strict_strtoul(argv[3], 0, &sat.total_start_addr) < 0)
return CMD_RET_USAGE;
if (sat.total_start_addr < 0x1)
sat.total_start_addr = 0x0;
}
if (argc > 4) {
if (strict_strtoul(argv[4], 0, &page_size_kb) < 0)
return CMD_RET_USAGE;
if (page_size_kb < 1)
page_size_kb = 1024;
}
sat.page_size_byte = page_size_kb << 10;
start_time_us = get_time_us();
test_time_us = (u64)test_time_sec * 1000000;
/* Change rand seed. If not do this, rand() would be same after boot.*/
srand((unsigned int)(start_time_us & 0xffffffff));
return doing_stressapptest();
}
U_BOOT_CMD(stressapptest, 5, 1, do_stressapptest,
"StressAppTest for Rockchip\n",
"\narg1: test time in second, default value is 20s.\n"
"arg2: test size in MB, default value is all available space.\n"
"arg3: start addr for test.\n"
"arg4: test page size in kB, default value is 1024kB(1MB).\n"
"example:\n"
" stressapptest: test for 20s, test size is all available space, each page size is 1MB.\n"
" stressapptest 43200 64: test for 12h, test size is 64MB, each page size is 1MB (64 pages).\n"
" stressapptest 86400 1024 0x80000000: test for 24h, test size is 1024MB, start addr for test is 0x80000000, each page size is 1MB (1024 pages).\n"
" stressapptest 43200 16 0x40000000 512: test for 12h, test size is 16MB, start addr for test is 0x40000000, each page size is 512kB (32 pages).\n"
);