360 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			360 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains routines that help determine which pointers are captured.
 | 
						|
// A pointer value is captured if the function makes a copy of any part of the
 | 
						|
// pointer that outlives the call.  Not being captured means, more or less, that
 | 
						|
// the pointer is only dereferenced and not stored in a global.  Returning part
 | 
						|
// of the pointer as the function return value may or may not count as capturing
 | 
						|
// the pointer, depending on the context.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/OrderedBasicBlock.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
CaptureTracker::~CaptureTracker() {}
 | 
						|
 | 
						|
bool CaptureTracker::shouldExplore(const Use *U) { return true; }
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct SimpleCaptureTracker : public CaptureTracker {
 | 
						|
    explicit SimpleCaptureTracker(bool ReturnCaptures)
 | 
						|
      : ReturnCaptures(ReturnCaptures), Captured(false) {}
 | 
						|
 | 
						|
    void tooManyUses() override { Captured = true; }
 | 
						|
 | 
						|
    bool captured(const Use *U) override {
 | 
						|
      if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
 | 
						|
        return false;
 | 
						|
 | 
						|
      Captured = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    bool ReturnCaptures;
 | 
						|
 | 
						|
    bool Captured;
 | 
						|
  };
 | 
						|
 | 
						|
  /// Only find pointer captures which happen before the given instruction. Uses
 | 
						|
  /// the dominator tree to determine whether one instruction is before another.
 | 
						|
  /// Only support the case where the Value is defined in the same basic block
 | 
						|
  /// as the given instruction and the use.
 | 
						|
  struct CapturesBefore : public CaptureTracker {
 | 
						|
 | 
						|
    CapturesBefore(bool ReturnCaptures, const Instruction *I, DominatorTree *DT,
 | 
						|
                   bool IncludeI, OrderedBasicBlock *IC)
 | 
						|
      : OrderedBB(IC), BeforeHere(I), DT(DT),
 | 
						|
        ReturnCaptures(ReturnCaptures), IncludeI(IncludeI), Captured(false) {}
 | 
						|
 | 
						|
    void tooManyUses() override { Captured = true; }
 | 
						|
 | 
						|
    bool isSafeToPrune(Instruction *I) {
 | 
						|
      BasicBlock *BB = I->getParent();
 | 
						|
      // We explore this usage only if the usage can reach "BeforeHere".
 | 
						|
      // If use is not reachable from entry, there is no need to explore.
 | 
						|
      if (BeforeHere != I && !DT->isReachableFromEntry(BB))
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Compute the case where both instructions are inside the same basic
 | 
						|
      // block. Since instructions in the same BB as BeforeHere are numbered in
 | 
						|
      // 'OrderedBB', avoid using 'dominates' and 'isPotentiallyReachable'
 | 
						|
      // which are very expensive for large basic blocks.
 | 
						|
      if (BB == BeforeHere->getParent()) {
 | 
						|
        // 'I' dominates 'BeforeHere' => not safe to prune.
 | 
						|
        //
 | 
						|
        // The value defined by an invoke dominates an instruction only
 | 
						|
        // if it dominates every instruction in UseBB. A PHI is dominated only
 | 
						|
        // if the instruction dominates every possible use in the UseBB. Since
 | 
						|
        // UseBB == BB, avoid pruning.
 | 
						|
        if (isa<InvokeInst>(BeforeHere) || isa<PHINode>(I) || I == BeforeHere)
 | 
						|
          return false;
 | 
						|
        if (!OrderedBB->dominates(BeforeHere, I))
 | 
						|
          return false;
 | 
						|
 | 
						|
        // 'BeforeHere' comes before 'I', it's safe to prune if we also
 | 
						|
        // guarantee that 'I' never reaches 'BeforeHere' through a back-edge or
 | 
						|
        // by its successors, i.e, prune if:
 | 
						|
        //
 | 
						|
        //  (1) BB is an entry block or have no sucessors.
 | 
						|
        //  (2) There's no path coming back through BB sucessors.
 | 
						|
        if (BB == &BB->getParent()->getEntryBlock() ||
 | 
						|
            !BB->getTerminator()->getNumSuccessors())
 | 
						|
          return true;
 | 
						|
 | 
						|
        SmallVector<BasicBlock*, 32> Worklist;
 | 
						|
        Worklist.append(succ_begin(BB), succ_end(BB));
 | 
						|
        return !isPotentiallyReachableFromMany(Worklist, BB, DT);
 | 
						|
      }
 | 
						|
 | 
						|
      // If the value is defined in the same basic block as use and BeforeHere,
 | 
						|
      // there is no need to explore the use if BeforeHere dominates use.
 | 
						|
      // Check whether there is a path from I to BeforeHere.
 | 
						|
      if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
 | 
						|
          !isPotentiallyReachable(I, BeforeHere, DT))
 | 
						|
        return true;
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    bool shouldExplore(const Use *U) override {
 | 
						|
      Instruction *I = cast<Instruction>(U->getUser());
 | 
						|
 | 
						|
      if (BeforeHere == I && !IncludeI)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (isSafeToPrune(I))
 | 
						|
        return false;
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    bool captured(const Use *U) override {
 | 
						|
      if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!shouldExplore(U))
 | 
						|
        return false;
 | 
						|
 | 
						|
      Captured = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    OrderedBasicBlock *OrderedBB;
 | 
						|
    const Instruction *BeforeHere;
 | 
						|
    DominatorTree *DT;
 | 
						|
 | 
						|
    bool ReturnCaptures;
 | 
						|
    bool IncludeI;
 | 
						|
 | 
						|
    bool Captured;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// PointerMayBeCaptured - Return true if this pointer value may be captured
 | 
						|
/// by the enclosing function (which is required to exist).  This routine can
 | 
						|
/// be expensive, so consider caching the results.  The boolean ReturnCaptures
 | 
						|
/// specifies whether returning the value (or part of it) from the function
 | 
						|
/// counts as capturing it or not.  The boolean StoreCaptures specified whether
 | 
						|
/// storing the value (or part of it) into memory anywhere automatically
 | 
						|
/// counts as capturing it or not.
 | 
						|
bool llvm::PointerMayBeCaptured(const Value *V,
 | 
						|
                                bool ReturnCaptures, bool StoreCaptures) {
 | 
						|
  assert(!isa<GlobalValue>(V) &&
 | 
						|
         "It doesn't make sense to ask whether a global is captured.");
 | 
						|
 | 
						|
  // TODO: If StoreCaptures is not true, we could do Fancy analysis
 | 
						|
  // to determine whether this store is not actually an escape point.
 | 
						|
  // In that case, BasicAliasAnalysis should be updated as well to
 | 
						|
  // take advantage of this.
 | 
						|
  (void)StoreCaptures;
 | 
						|
 | 
						|
  SimpleCaptureTracker SCT(ReturnCaptures);
 | 
						|
  PointerMayBeCaptured(V, &SCT);
 | 
						|
  return SCT.Captured;
 | 
						|
}
 | 
						|
 | 
						|
/// PointerMayBeCapturedBefore - Return true if this pointer value may be
 | 
						|
/// captured by the enclosing function (which is required to exist). If a
 | 
						|
/// DominatorTree is provided, only captures which happen before the given
 | 
						|
/// instruction are considered. This routine can be expensive, so consider
 | 
						|
/// caching the results.  The boolean ReturnCaptures specifies whether
 | 
						|
/// returning the value (or part of it) from the function counts as capturing
 | 
						|
/// it or not.  The boolean StoreCaptures specified whether storing the value
 | 
						|
/// (or part of it) into memory anywhere automatically counts as capturing it
 | 
						|
/// or not. A ordered basic block \p OBB can be used in order to speed up
 | 
						|
/// queries about relative order among instructions in the same basic block.
 | 
						|
bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures,
 | 
						|
                                      bool StoreCaptures, const Instruction *I,
 | 
						|
                                      DominatorTree *DT, bool IncludeI,
 | 
						|
                                      OrderedBasicBlock *OBB) {
 | 
						|
  assert(!isa<GlobalValue>(V) &&
 | 
						|
         "It doesn't make sense to ask whether a global is captured.");
 | 
						|
  bool UseNewOBB = OBB == nullptr;
 | 
						|
 | 
						|
  if (!DT)
 | 
						|
    return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures);
 | 
						|
  if (UseNewOBB)
 | 
						|
    OBB = new OrderedBasicBlock(I->getParent());
 | 
						|
 | 
						|
  // TODO: See comment in PointerMayBeCaptured regarding what could be done
 | 
						|
  // with StoreCaptures.
 | 
						|
 | 
						|
  CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, OBB);
 | 
						|
  PointerMayBeCaptured(V, &CB);
 | 
						|
 | 
						|
  if (UseNewOBB)
 | 
						|
    delete OBB;
 | 
						|
  return CB.Captured;
 | 
						|
}
 | 
						|
 | 
						|
/// TODO: Write a new FunctionPass AliasAnalysis so that it can keep
 | 
						|
/// a cache. Then we can move the code from BasicAliasAnalysis into
 | 
						|
/// that path, and remove this threshold.
 | 
						|
static int const Threshold = 20;
 | 
						|
 | 
						|
void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker) {
 | 
						|
  assert(V->getType()->isPointerTy() && "Capture is for pointers only!");
 | 
						|
  SmallVector<const Use *, Threshold> Worklist;
 | 
						|
  SmallSet<const Use *, Threshold> Visited;
 | 
						|
  int Count = 0;
 | 
						|
 | 
						|
  for (const Use &U : V->uses()) {
 | 
						|
    // If there are lots of uses, conservatively say that the value
 | 
						|
    // is captured to avoid taking too much compile time.
 | 
						|
    if (Count++ >= Threshold)
 | 
						|
      return Tracker->tooManyUses();
 | 
						|
 | 
						|
    if (!Tracker->shouldExplore(&U)) continue;
 | 
						|
    Visited.insert(&U);
 | 
						|
    Worklist.push_back(&U);
 | 
						|
  }
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    const Use *U = Worklist.pop_back_val();
 | 
						|
    Instruction *I = cast<Instruction>(U->getUser());
 | 
						|
    V = U->get();
 | 
						|
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::Call:
 | 
						|
    case Instruction::Invoke: {
 | 
						|
      CallSite CS(I);
 | 
						|
      // Not captured if the callee is readonly, doesn't return a copy through
 | 
						|
      // its return value and doesn't unwind (a readonly function can leak bits
 | 
						|
      // by throwing an exception or not depending on the input value).
 | 
						|
      if (CS.onlyReadsMemory() && CS.doesNotThrow() && I->getType()->isVoidTy())
 | 
						|
        break;
 | 
						|
 | 
						|
      // Volatile operations effectively capture the memory location that they
 | 
						|
      // load and store to.
 | 
						|
      if (auto *MI = dyn_cast<MemIntrinsic>(I))
 | 
						|
        if (MI->isVolatile())
 | 
						|
          if (Tracker->captured(U))
 | 
						|
            return;
 | 
						|
 | 
						|
      // Not captured if only passed via 'nocapture' arguments.  Note that
 | 
						|
      // calling a function pointer does not in itself cause the pointer to
 | 
						|
      // be captured.  This is a subtle point considering that (for example)
 | 
						|
      // the callee might return its own address.  It is analogous to saying
 | 
						|
      // that loading a value from a pointer does not cause the pointer to be
 | 
						|
      // captured, even though the loaded value might be the pointer itself
 | 
						|
      // (think of self-referential objects).
 | 
						|
      CallSite::data_operand_iterator B =
 | 
						|
        CS.data_operands_begin(), E = CS.data_operands_end();
 | 
						|
      for (CallSite::data_operand_iterator A = B; A != E; ++A)
 | 
						|
        if (A->get() == V && !CS.doesNotCapture(A - B))
 | 
						|
          // The parameter is not marked 'nocapture' - captured.
 | 
						|
          if (Tracker->captured(U))
 | 
						|
            return;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::Load:
 | 
						|
      // Volatile loads make the address observable.
 | 
						|
      if (cast<LoadInst>(I)->isVolatile())
 | 
						|
        if (Tracker->captured(U))
 | 
						|
          return;
 | 
						|
      break;
 | 
						|
    case Instruction::VAArg:
 | 
						|
      // "va-arg" from a pointer does not cause it to be captured.
 | 
						|
      break;
 | 
						|
    case Instruction::Store:
 | 
						|
        // Stored the pointer - conservatively assume it may be captured.
 | 
						|
        // Volatile stores make the address observable.
 | 
						|
      if (V == I->getOperand(0) || cast<StoreInst>(I)->isVolatile())
 | 
						|
        if (Tracker->captured(U))
 | 
						|
          return;
 | 
						|
      break;
 | 
						|
    case Instruction::AtomicRMW: {
 | 
						|
      // atomicrmw conceptually includes both a load and store from
 | 
						|
      // the same location.
 | 
						|
      // As with a store, the location being accessed is not captured,
 | 
						|
      // but the value being stored is.
 | 
						|
      // Volatile stores make the address observable.
 | 
						|
      auto *ARMWI = cast<AtomicRMWInst>(I);
 | 
						|
      if (ARMWI->getValOperand() == V || ARMWI->isVolatile())
 | 
						|
        if (Tracker->captured(U))
 | 
						|
          return;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::AtomicCmpXchg: {
 | 
						|
      // cmpxchg conceptually includes both a load and store from
 | 
						|
      // the same location.
 | 
						|
      // As with a store, the location being accessed is not captured,
 | 
						|
      // but the value being stored is.
 | 
						|
      // Volatile stores make the address observable.
 | 
						|
      auto *ACXI = cast<AtomicCmpXchgInst>(I);
 | 
						|
      if (ACXI->getCompareOperand() == V || ACXI->getNewValOperand() == V ||
 | 
						|
          ACXI->isVolatile())
 | 
						|
        if (Tracker->captured(U))
 | 
						|
          return;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::BitCast:
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
    case Instruction::PHI:
 | 
						|
    case Instruction::Select:
 | 
						|
    case Instruction::AddrSpaceCast:
 | 
						|
      // The original value is not captured via this if the new value isn't.
 | 
						|
      Count = 0;
 | 
						|
      for (Use &UU : I->uses()) {
 | 
						|
        // If there are lots of uses, conservatively say that the value
 | 
						|
        // is captured to avoid taking too much compile time.
 | 
						|
        if (Count++ >= Threshold)
 | 
						|
          return Tracker->tooManyUses();
 | 
						|
 | 
						|
        if (Visited.insert(&UU).second)
 | 
						|
          if (Tracker->shouldExplore(&UU))
 | 
						|
            Worklist.push_back(&UU);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case Instruction::ICmp: {
 | 
						|
      // Don't count comparisons of a no-alias return value against null as
 | 
						|
      // captures. This allows us to ignore comparisons of malloc results
 | 
						|
      // with null, for example.
 | 
						|
      if (ConstantPointerNull *CPN =
 | 
						|
          dyn_cast<ConstantPointerNull>(I->getOperand(1)))
 | 
						|
        if (CPN->getType()->getAddressSpace() == 0)
 | 
						|
          if (isNoAliasCall(V->stripPointerCasts()))
 | 
						|
            break;
 | 
						|
      // Comparison against value stored in global variable. Given the pointer
 | 
						|
      // does not escape, its value cannot be guessed and stored separately in a
 | 
						|
      // global variable.
 | 
						|
      unsigned OtherIndex = (I->getOperand(0) == V) ? 1 : 0;
 | 
						|
      auto *LI = dyn_cast<LoadInst>(I->getOperand(OtherIndex));
 | 
						|
      if (LI && isa<GlobalVariable>(LI->getPointerOperand()))
 | 
						|
        break;
 | 
						|
      // Otherwise, be conservative. There are crazy ways to capture pointers
 | 
						|
      // using comparisons.
 | 
						|
      if (Tracker->captured(U))
 | 
						|
        return;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      // Something else - be conservative and say it is captured.
 | 
						|
      if (Tracker->captured(U))
 | 
						|
        return;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // All uses examined.
 | 
						|
}
 |