404 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			404 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass implements a demanded bits analysis. A demanded bit is one that
 | 
						|
// contributes to a result; bits that are not demanded can be either zero or
 | 
						|
// one without affecting control or data flow. For example in this sequence:
 | 
						|
//
 | 
						|
//   %1 = add i32 %x, %y
 | 
						|
//   %2 = trunc i32 %1 to i16
 | 
						|
//
 | 
						|
// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
 | 
						|
// trunc.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/DemandedBits.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "demanded-bits"
 | 
						|
 | 
						|
char DemandedBitsWrapperPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
 | 
						|
                      "Demanded bits analysis", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
 | 
						|
                    "Demanded bits analysis", false, false)
 | 
						|
 | 
						|
DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
 | 
						|
  initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequired<AssumptionCacheTracker>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
 | 
						|
  DB->print(OS);
 | 
						|
}
 | 
						|
 | 
						|
static bool isAlwaysLive(Instruction *I) {
 | 
						|
  return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
 | 
						|
      I->isEHPad() || I->mayHaveSideEffects();
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBits::determineLiveOperandBits(
 | 
						|
    const Instruction *UserI, const Instruction *I, unsigned OperandNo,
 | 
						|
    const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne,
 | 
						|
    APInt &KnownZero2, APInt &KnownOne2) {
 | 
						|
  unsigned BitWidth = AB.getBitWidth();
 | 
						|
 | 
						|
  // We're called once per operand, but for some instructions, we need to
 | 
						|
  // compute known bits of both operands in order to determine the live bits of
 | 
						|
  // either (when both operands are instructions themselves). We don't,
 | 
						|
  // however, want to do this twice, so we cache the result in APInts that live
 | 
						|
  // in the caller. For the two-relevant-operands case, both operand values are
 | 
						|
  // provided here.
 | 
						|
  auto ComputeKnownBits =
 | 
						|
      [&](unsigned BitWidth, const Value *V1, const Value *V2) {
 | 
						|
        const DataLayout &DL = I->getModule()->getDataLayout();
 | 
						|
        KnownZero = APInt(BitWidth, 0);
 | 
						|
        KnownOne = APInt(BitWidth, 0);
 | 
						|
        computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
 | 
						|
                         &AC, UserI, &DT);
 | 
						|
 | 
						|
        if (V2) {
 | 
						|
          KnownZero2 = APInt(BitWidth, 0);
 | 
						|
          KnownOne2 = APInt(BitWidth, 0);
 | 
						|
          computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
 | 
						|
                           0, &AC, UserI, &DT);
 | 
						|
        }
 | 
						|
      };
 | 
						|
 | 
						|
  switch (UserI->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::Call:
 | 
						|
  case Instruction::Invoke:
 | 
						|
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
 | 
						|
      switch (II->getIntrinsicID()) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::bswap:
 | 
						|
        // The alive bits of the input are the swapped alive bits of
 | 
						|
        // the output.
 | 
						|
        AB = AOut.byteSwap();
 | 
						|
        break;
 | 
						|
      case Intrinsic::ctlz:
 | 
						|
        if (OperandNo == 0) {
 | 
						|
          // We need some output bits, so we need all bits of the
 | 
						|
          // input to the left of, and including, the leftmost bit
 | 
						|
          // known to be one.
 | 
						|
          ComputeKnownBits(BitWidth, I, nullptr);
 | 
						|
          AB = APInt::getHighBitsSet(BitWidth,
 | 
						|
                 std::min(BitWidth, KnownOne.countLeadingZeros()+1));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Intrinsic::cttz:
 | 
						|
        if (OperandNo == 0) {
 | 
						|
          // We need some output bits, so we need all bits of the
 | 
						|
          // input to the right of, and including, the rightmost bit
 | 
						|
          // known to be one.
 | 
						|
          ComputeKnownBits(BitWidth, I, nullptr);
 | 
						|
          AB = APInt::getLowBitsSet(BitWidth,
 | 
						|
                 std::min(BitWidth, KnownOne.countTrailingZeros()+1));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    break;
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    // Find the highest live output bit. We don't need any more input
 | 
						|
    // bits than that (adds, and thus subtracts, ripple only to the
 | 
						|
    // left).
 | 
						|
    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
    if (OperandNo == 0)
 | 
						|
      if (ConstantInt *CI =
 | 
						|
            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
 | 
						|
        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
 | 
						|
        AB = AOut.lshr(ShiftAmt);
 | 
						|
 | 
						|
        // If the shift is nuw/nsw, then the high bits are not dead
 | 
						|
        // (because we've promised that they *must* be zero).
 | 
						|
        const ShlOperator *S = cast<ShlOperator>(UserI);
 | 
						|
        if (S->hasNoSignedWrap())
 | 
						|
          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
 | 
						|
        else if (S->hasNoUnsignedWrap())
 | 
						|
          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
 | 
						|
      }
 | 
						|
    break;
 | 
						|
  case Instruction::LShr:
 | 
						|
    if (OperandNo == 0)
 | 
						|
      if (ConstantInt *CI =
 | 
						|
            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
 | 
						|
        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
 | 
						|
        AB = AOut.shl(ShiftAmt);
 | 
						|
 | 
						|
        // If the shift is exact, then the low bits are not dead
 | 
						|
        // (they must be zero).
 | 
						|
        if (cast<LShrOperator>(UserI)->isExact())
 | 
						|
          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
 | 
						|
      }
 | 
						|
    break;
 | 
						|
  case Instruction::AShr:
 | 
						|
    if (OperandNo == 0)
 | 
						|
      if (ConstantInt *CI =
 | 
						|
            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
 | 
						|
        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
 | 
						|
        AB = AOut.shl(ShiftAmt);
 | 
						|
        // Because the high input bit is replicated into the
 | 
						|
        // high-order bits of the result, if we need any of those
 | 
						|
        // bits, then we must keep the highest input bit.
 | 
						|
        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
 | 
						|
            .getBoolValue())
 | 
						|
          AB.setBit(BitWidth-1);
 | 
						|
 | 
						|
        // If the shift is exact, then the low bits are not dead
 | 
						|
        // (they must be zero).
 | 
						|
        if (cast<AShrOperator>(UserI)->isExact())
 | 
						|
          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
 | 
						|
      }
 | 
						|
    break;
 | 
						|
  case Instruction::And:
 | 
						|
    AB = AOut;
 | 
						|
 | 
						|
    // For bits that are known zero, the corresponding bits in the
 | 
						|
    // other operand are dead (unless they're both zero, in which
 | 
						|
    // case they can't both be dead, so just mark the LHS bits as
 | 
						|
    // dead).
 | 
						|
    if (OperandNo == 0) {
 | 
						|
      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
 | 
						|
      AB &= ~KnownZero2;
 | 
						|
    } else {
 | 
						|
      if (!isa<Instruction>(UserI->getOperand(0)))
 | 
						|
        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
 | 
						|
      AB &= ~(KnownZero & ~KnownZero2);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
    AB = AOut;
 | 
						|
 | 
						|
    // For bits that are known one, the corresponding bits in the
 | 
						|
    // other operand are dead (unless they're both one, in which
 | 
						|
    // case they can't both be dead, so just mark the LHS bits as
 | 
						|
    // dead).
 | 
						|
    if (OperandNo == 0) {
 | 
						|
      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
 | 
						|
      AB &= ~KnownOne2;
 | 
						|
    } else {
 | 
						|
      if (!isa<Instruction>(UserI->getOperand(0)))
 | 
						|
        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
 | 
						|
      AB &= ~(KnownOne & ~KnownOne2);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::PHI:
 | 
						|
    AB = AOut;
 | 
						|
    break;
 | 
						|
  case Instruction::Trunc:
 | 
						|
    AB = AOut.zext(BitWidth);
 | 
						|
    break;
 | 
						|
  case Instruction::ZExt:
 | 
						|
    AB = AOut.trunc(BitWidth);
 | 
						|
    break;
 | 
						|
  case Instruction::SExt:
 | 
						|
    AB = AOut.trunc(BitWidth);
 | 
						|
    // Because the high input bit is replicated into the
 | 
						|
    // high-order bits of the result, if we need any of those
 | 
						|
    // bits, then we must keep the highest input bit.
 | 
						|
    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
 | 
						|
                                      AOut.getBitWidth() - BitWidth))
 | 
						|
        .getBoolValue())
 | 
						|
      AB.setBit(BitWidth-1);
 | 
						|
    break;
 | 
						|
  case Instruction::Select:
 | 
						|
    if (OperandNo != 0)
 | 
						|
      AB = AOut;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
 | 
						|
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  DB.emplace(F, AC, DT);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBitsWrapperPass::releaseMemory() {
 | 
						|
  DB.reset();
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBits::performAnalysis() {
 | 
						|
  if (Analyzed)
 | 
						|
    // Analysis already completed for this function.
 | 
						|
    return;
 | 
						|
  Analyzed = true;
 | 
						|
  
 | 
						|
  Visited.clear();
 | 
						|
  AliveBits.clear();
 | 
						|
 | 
						|
  SmallVector<Instruction*, 128> Worklist;
 | 
						|
 | 
						|
  // Collect the set of "root" instructions that are known live.
 | 
						|
  for (Instruction &I : instructions(F)) {
 | 
						|
    if (!isAlwaysLive(&I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
 | 
						|
    // For integer-valued instructions, set up an initial empty set of alive
 | 
						|
    // bits and add the instruction to the work list. For other instructions
 | 
						|
    // add their operands to the work list (for integer values operands, mark
 | 
						|
    // all bits as live).
 | 
						|
    if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
 | 
						|
      if (!AliveBits.count(&I)) {
 | 
						|
        AliveBits[&I] = APInt(IT->getBitWidth(), 0);
 | 
						|
        Worklist.push_back(&I);
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Non-integer-typed instructions...
 | 
						|
    for (Use &OI : I.operands()) {
 | 
						|
      if (Instruction *J = dyn_cast<Instruction>(OI)) {
 | 
						|
        if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
 | 
						|
          AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
 | 
						|
        Worklist.push_back(J);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // To save memory, we don't add I to the Visited set here. Instead, we
 | 
						|
    // check isAlwaysLive on every instruction when searching for dead
 | 
						|
    // instructions later (we need to check isAlwaysLive for the
 | 
						|
    // integer-typed instructions anyway).
 | 
						|
  }
 | 
						|
 | 
						|
  // Propagate liveness backwards to operands.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *UserI = Worklist.pop_back_val();
 | 
						|
 | 
						|
    DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
 | 
						|
    APInt AOut;
 | 
						|
    if (UserI->getType()->isIntegerTy()) {
 | 
						|
      AOut = AliveBits[UserI];
 | 
						|
      DEBUG(dbgs() << " Alive Out: " << AOut);
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
    if (!UserI->getType()->isIntegerTy())
 | 
						|
      Visited.insert(UserI);
 | 
						|
 | 
						|
    APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
 | 
						|
    // Compute the set of alive bits for each operand. These are anded into the
 | 
						|
    // existing set, if any, and if that changes the set of alive bits, the
 | 
						|
    // operand is added to the work-list.
 | 
						|
    for (Use &OI : UserI->operands()) {
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(OI)) {
 | 
						|
        if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
 | 
						|
          unsigned BitWidth = IT->getBitWidth();
 | 
						|
          APInt AB = APInt::getAllOnesValue(BitWidth);
 | 
						|
          if (UserI->getType()->isIntegerTy() && !AOut &&
 | 
						|
              !isAlwaysLive(UserI)) {
 | 
						|
            AB = APInt(BitWidth, 0);
 | 
						|
          } else {
 | 
						|
            // If all bits of the output are dead, then all bits of the input
 | 
						|
            // Bits of each operand that are used to compute alive bits of the
 | 
						|
            // output are alive, all others are dead.
 | 
						|
            determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
 | 
						|
                                     KnownZero, KnownOne,
 | 
						|
                                     KnownZero2, KnownOne2);
 | 
						|
          }
 | 
						|
 | 
						|
          // If we've added to the set of alive bits (or the operand has not
 | 
						|
          // been previously visited), then re-queue the operand to be visited
 | 
						|
          // again.
 | 
						|
          APInt ABPrev(BitWidth, 0);
 | 
						|
          auto ABI = AliveBits.find(I);
 | 
						|
          if (ABI != AliveBits.end())
 | 
						|
            ABPrev = ABI->second;
 | 
						|
 | 
						|
          APInt ABNew = AB | ABPrev;
 | 
						|
          if (ABNew != ABPrev || ABI == AliveBits.end()) {
 | 
						|
            AliveBits[I] = std::move(ABNew);
 | 
						|
            Worklist.push_back(I);
 | 
						|
          }
 | 
						|
        } else if (!Visited.count(I)) {
 | 
						|
          Worklist.push_back(I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APInt DemandedBits::getDemandedBits(Instruction *I) {
 | 
						|
  performAnalysis();
 | 
						|
  
 | 
						|
  const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
 | 
						|
  if (AliveBits.count(I))
 | 
						|
    return AliveBits[I];
 | 
						|
  return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
 | 
						|
}
 | 
						|
 | 
						|
bool DemandedBits::isInstructionDead(Instruction *I) {
 | 
						|
  performAnalysis();
 | 
						|
 | 
						|
  return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
 | 
						|
    !isAlwaysLive(I);
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBits::print(raw_ostream &OS) {
 | 
						|
  performAnalysis();
 | 
						|
  for (auto &KV : AliveBits) {
 | 
						|
    OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
 | 
						|
       << *KV.first << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createDemandedBitsWrapperPass() {
 | 
						|
  return new DemandedBitsWrapperPass();
 | 
						|
}
 | 
						|
 | 
						|
char DemandedBitsAnalysis::PassID;
 | 
						|
 | 
						|
DemandedBits DemandedBitsAnalysis::run(Function &F,
 | 
						|
                                             AnalysisManager<Function> &AM) {
 | 
						|
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
 | 
						|
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  return DemandedBits(F, AC, DT);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
 | 
						|
                                               FunctionAnalysisManager &AM) {
 | 
						|
  AM.getResult<DemandedBitsAnalysis>(F).print(OS);
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 |