730 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			730 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the LoopInfo class that is used to identify natural loops
 | 
						|
// and determine the loop depth of various nodes of the CFG.  Note that the
 | 
						|
// loops identified may actually be several natural loops that share the same
 | 
						|
// header node... not just a single natural loop.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/Analysis/LoopInfoImpl.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
 | 
						|
template class llvm::LoopBase<BasicBlock, Loop>;
 | 
						|
template class llvm::LoopInfoBase<BasicBlock, Loop>;
 | 
						|
 | 
						|
// Always verify loopinfo if expensive checking is enabled.
 | 
						|
#ifdef EXPENSIVE_CHECKS
 | 
						|
static bool VerifyLoopInfo = true;
 | 
						|
#else
 | 
						|
static bool VerifyLoopInfo = false;
 | 
						|
#endif
 | 
						|
static cl::opt<bool,true>
 | 
						|
VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
 | 
						|
                cl::desc("Verify loop info (time consuming)"));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Loop implementation
 | 
						|
//
 | 
						|
 | 
						|
bool Loop::isLoopInvariant(const Value *V) const {
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return !contains(I);
 | 
						|
  return true;  // All non-instructions are loop invariant
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
 | 
						|
  return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::makeLoopInvariant(Value *V, bool &Changed,
 | 
						|
                             Instruction *InsertPt) const {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return makeLoopInvariant(I, Changed, InsertPt);
 | 
						|
  return true;  // All non-instructions are loop-invariant.
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
 | 
						|
                             Instruction *InsertPt) const {
 | 
						|
  // Test if the value is already loop-invariant.
 | 
						|
  if (isLoopInvariant(I))
 | 
						|
    return true;
 | 
						|
  if (!isSafeToSpeculativelyExecute(I))
 | 
						|
    return false;
 | 
						|
  if (I->mayReadFromMemory())
 | 
						|
    return false;
 | 
						|
  // EH block instructions are immobile.
 | 
						|
  if (I->isEHPad())
 | 
						|
    return false;
 | 
						|
  // Determine the insertion point, unless one was given.
 | 
						|
  if (!InsertPt) {
 | 
						|
    BasicBlock *Preheader = getLoopPreheader();
 | 
						|
    // Without a preheader, hoisting is not feasible.
 | 
						|
    if (!Preheader)
 | 
						|
      return false;
 | 
						|
    InsertPt = Preheader->getTerminator();
 | 
						|
  }
 | 
						|
  // Don't hoist instructions with loop-variant operands.
 | 
						|
  for (Value *Operand : I->operands())
 | 
						|
    if (!makeLoopInvariant(Operand, Changed, InsertPt))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Hoist.
 | 
						|
  I->moveBefore(InsertPt);
 | 
						|
 | 
						|
  // There is possibility of hoisting this instruction above some arbitrary
 | 
						|
  // condition. Any metadata defined on it can be control dependent on this
 | 
						|
  // condition. Conservatively strip it here so that we don't give any wrong
 | 
						|
  // information to the optimizer.
 | 
						|
  I->dropUnknownNonDebugMetadata();
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
PHINode *Loop::getCanonicalInductionVariable() const {
 | 
						|
  BasicBlock *H = getHeader();
 | 
						|
 | 
						|
  BasicBlock *Incoming = nullptr, *Backedge = nullptr;
 | 
						|
  pred_iterator PI = pred_begin(H);
 | 
						|
  assert(PI != pred_end(H) &&
 | 
						|
         "Loop must have at least one backedge!");
 | 
						|
  Backedge = *PI++;
 | 
						|
  if (PI == pred_end(H)) return nullptr;  // dead loop
 | 
						|
  Incoming = *PI++;
 | 
						|
  if (PI != pred_end(H)) return nullptr;  // multiple backedges?
 | 
						|
 | 
						|
  if (contains(Incoming)) {
 | 
						|
    if (contains(Backedge))
 | 
						|
      return nullptr;
 | 
						|
    std::swap(Incoming, Backedge);
 | 
						|
  } else if (!contains(Backedge))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Loop over all of the PHI nodes, looking for a canonical indvar.
 | 
						|
  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    if (ConstantInt *CI =
 | 
						|
        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
 | 
						|
      if (CI->isNullValue())
 | 
						|
        if (Instruction *Inc =
 | 
						|
            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
 | 
						|
          if (Inc->getOpcode() == Instruction::Add &&
 | 
						|
                Inc->getOperand(0) == PN)
 | 
						|
            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | 
						|
              if (CI->equalsInt(1))
 | 
						|
                return PN;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isLCSSAForm(DominatorTree &DT) const {
 | 
						|
  for (BasicBlock *BB : this->blocks()) {
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      // Tokens can't be used in PHI nodes and live-out tokens prevent loop
 | 
						|
      // optimizations, so for the purposes of considered LCSSA form, we
 | 
						|
      // can ignore them.
 | 
						|
      if (I.getType()->isTokenTy())
 | 
						|
        continue;
 | 
						|
 | 
						|
      for (Use &U : I.uses()) {
 | 
						|
        Instruction *UI = cast<Instruction>(U.getUser());
 | 
						|
        BasicBlock *UserBB = UI->getParent();
 | 
						|
        if (PHINode *P = dyn_cast<PHINode>(UI))
 | 
						|
          UserBB = P->getIncomingBlock(U);
 | 
						|
 | 
						|
        // Check the current block, as a fast-path, before checking whether
 | 
						|
        // the use is anywhere in the loop.  Most values are used in the same
 | 
						|
        // block they are defined in.  Also, blocks not reachable from the
 | 
						|
        // entry are special; uses in them don't need to go through PHIs.
 | 
						|
        if (UserBB != BB &&
 | 
						|
            !contains(UserBB) &&
 | 
						|
            DT.isReachableFromEntry(UserBB))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const {
 | 
						|
  if (!isLCSSAForm(DT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return std::all_of(begin(), end(), [&](const Loop *L) {
 | 
						|
    return L->isRecursivelyLCSSAForm(DT);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isLoopSimplifyForm() const {
 | 
						|
  // Normal-form loops have a preheader, a single backedge, and all of their
 | 
						|
  // exits have all their predecessors inside the loop.
 | 
						|
  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
 | 
						|
}
 | 
						|
 | 
						|
// Routines that reform the loop CFG and split edges often fail on indirectbr.
 | 
						|
bool Loop::isSafeToClone() const {
 | 
						|
  // Return false if any loop blocks contain indirectbrs, or there are any calls
 | 
						|
  // to noduplicate functions.
 | 
						|
  for (BasicBlock *BB : this->blocks()) {
 | 
						|
    if (isa<IndirectBrInst>(BB->getTerminator()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    for (Instruction &I : *BB)
 | 
						|
      if (auto CS = CallSite(&I))
 | 
						|
        if (CS.cannotDuplicate())
 | 
						|
          return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MDNode *Loop::getLoopID() const {
 | 
						|
  MDNode *LoopID = nullptr;
 | 
						|
  if (isLoopSimplifyForm()) {
 | 
						|
    LoopID = getLoopLatch()->getTerminator()->getMetadata(LLVMContext::MD_loop);
 | 
						|
  } else {
 | 
						|
    // Go through each predecessor of the loop header and check the
 | 
						|
    // terminator for the metadata.
 | 
						|
    BasicBlock *H = getHeader();
 | 
						|
    for (BasicBlock *BB : this->blocks()) {
 | 
						|
      TerminatorInst *TI = BB->getTerminator();
 | 
						|
      MDNode *MD = nullptr;
 | 
						|
 | 
						|
      // Check if this terminator branches to the loop header.
 | 
						|
      for (BasicBlock *Successor : TI->successors()) {
 | 
						|
        if (Successor == H) {
 | 
						|
          MD = TI->getMetadata(LLVMContext::MD_loop);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!MD)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      if (!LoopID)
 | 
						|
        LoopID = MD;
 | 
						|
      else if (MD != LoopID)
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!LoopID || LoopID->getNumOperands() == 0 ||
 | 
						|
      LoopID->getOperand(0) != LoopID)
 | 
						|
    return nullptr;
 | 
						|
  return LoopID;
 | 
						|
}
 | 
						|
 | 
						|
void Loop::setLoopID(MDNode *LoopID) const {
 | 
						|
  assert(LoopID && "Loop ID should not be null");
 | 
						|
  assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
 | 
						|
  assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
 | 
						|
 | 
						|
  if (isLoopSimplifyForm()) {
 | 
						|
    getLoopLatch()->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *H = getHeader();
 | 
						|
  for (BasicBlock *BB : this->blocks()) {
 | 
						|
    TerminatorInst *TI = BB->getTerminator();
 | 
						|
    for (BasicBlock *Successor : TI->successors()) {
 | 
						|
      if (Successor == H)
 | 
						|
        TI->setMetadata(LLVMContext::MD_loop, LoopID);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isAnnotatedParallel() const {
 | 
						|
  MDNode *DesiredLoopIdMetadata = getLoopID();
 | 
						|
 | 
						|
  if (!DesiredLoopIdMetadata)
 | 
						|
      return false;
 | 
						|
 | 
						|
  // The loop branch contains the parallel loop metadata. In order to ensure
 | 
						|
  // that any parallel-loop-unaware optimization pass hasn't added loop-carried
 | 
						|
  // dependencies (thus converted the loop back to a sequential loop), check
 | 
						|
  // that all the memory instructions in the loop contain parallelism metadata
 | 
						|
  // that point to the same unique "loop id metadata" the loop branch does.
 | 
						|
  for (BasicBlock *BB : this->blocks()) {
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      if (!I.mayReadOrWriteMemory())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // The memory instruction can refer to the loop identifier metadata
 | 
						|
      // directly or indirectly through another list metadata (in case of
 | 
						|
      // nested parallel loops). The loop identifier metadata refers to
 | 
						|
      // itself so we can check both cases with the same routine.
 | 
						|
      MDNode *LoopIdMD =
 | 
						|
          I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
 | 
						|
 | 
						|
      if (!LoopIdMD)
 | 
						|
        return false;
 | 
						|
 | 
						|
      bool LoopIdMDFound = false;
 | 
						|
      for (const MDOperand &MDOp : LoopIdMD->operands()) {
 | 
						|
        if (MDOp == DesiredLoopIdMetadata) {
 | 
						|
          LoopIdMDFound = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!LoopIdMDFound)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
DebugLoc Loop::getStartLoc() const {
 | 
						|
  // If we have a debug location in the loop ID, then use it.
 | 
						|
  if (MDNode *LoopID = getLoopID())
 | 
						|
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
 | 
						|
      if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i)))
 | 
						|
        return DebugLoc(L);
 | 
						|
 | 
						|
  // Try the pre-header first.
 | 
						|
  if (BasicBlock *PHeadBB = getLoopPreheader())
 | 
						|
    if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
 | 
						|
      return DL;
 | 
						|
 | 
						|
  // If we have no pre-header or there are no instructions with debug
 | 
						|
  // info in it, try the header.
 | 
						|
  if (BasicBlock *HeadBB = getHeader())
 | 
						|
    return HeadBB->getTerminator()->getDebugLoc();
 | 
						|
 | 
						|
  return DebugLoc();
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::hasDedicatedExits() const {
 | 
						|
  // Each predecessor of each exit block of a normal loop is contained
 | 
						|
  // within the loop.
 | 
						|
  SmallVector<BasicBlock *, 4> ExitBlocks;
 | 
						|
  getExitBlocks(ExitBlocks);
 | 
						|
  for (BasicBlock *BB : ExitBlocks)
 | 
						|
    for (BasicBlock *Predecessor : predecessors(BB))
 | 
						|
      if (!contains(Predecessor))
 | 
						|
        return false;
 | 
						|
  // All the requirements are met.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
 | 
						|
  assert(hasDedicatedExits() &&
 | 
						|
         "getUniqueExitBlocks assumes the loop has canonical form exits!");
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 32> SwitchExitBlocks;
 | 
						|
  for (BasicBlock *BB : this->blocks()) {
 | 
						|
    SwitchExitBlocks.clear();
 | 
						|
    for (BasicBlock *Successor : successors(BB)) {
 | 
						|
      // If block is inside the loop then it is not an exit block.
 | 
						|
      if (contains(Successor))
 | 
						|
        continue;
 | 
						|
 | 
						|
      pred_iterator PI = pred_begin(Successor);
 | 
						|
      BasicBlock *FirstPred = *PI;
 | 
						|
 | 
						|
      // If current basic block is this exit block's first predecessor
 | 
						|
      // then only insert exit block in to the output ExitBlocks vector.
 | 
						|
      // This ensures that same exit block is not inserted twice into
 | 
						|
      // ExitBlocks vector.
 | 
						|
      if (BB != FirstPred)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If a terminator has more then two successors, for example SwitchInst,
 | 
						|
      // then it is possible that there are multiple edges from current block
 | 
						|
      // to one exit block.
 | 
						|
      if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) {
 | 
						|
        ExitBlocks.push_back(Successor);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // In case of multiple edges from current block to exit block, collect
 | 
						|
      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
 | 
						|
      // duplicate edges.
 | 
						|
      if (std::find(SwitchExitBlocks.begin(), SwitchExitBlocks.end(), Successor)
 | 
						|
          == SwitchExitBlocks.end()) {
 | 
						|
        SwitchExitBlocks.push_back(Successor);
 | 
						|
        ExitBlocks.push_back(Successor);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *Loop::getUniqueExitBlock() const {
 | 
						|
  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
 | 
						|
  getUniqueExitBlocks(UniqueExitBlocks);
 | 
						|
  if (UniqueExitBlocks.size() == 1)
 | 
						|
    return UniqueExitBlocks[0];
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD void Loop::dump() const {
 | 
						|
  print(dbgs());
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// UnloopUpdater implementation
 | 
						|
//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Find the new parent loop for all blocks within the "unloop" whose last
 | 
						|
/// backedges has just been removed.
 | 
						|
class UnloopUpdater {
 | 
						|
  Loop &Unloop;
 | 
						|
  LoopInfo *LI;
 | 
						|
 | 
						|
  LoopBlocksDFS DFS;
 | 
						|
 | 
						|
  // Map unloop's immediate subloops to their nearest reachable parents. Nested
 | 
						|
  // loops within these subloops will not change parents. However, an immediate
 | 
						|
  // subloop's new parent will be the nearest loop reachable from either its own
 | 
						|
  // exits *or* any of its nested loop's exits.
 | 
						|
  DenseMap<Loop*, Loop*> SubloopParents;
 | 
						|
 | 
						|
  // Flag the presence of an irreducible backedge whose destination is a block
 | 
						|
  // directly contained by the original unloop.
 | 
						|
  bool FoundIB;
 | 
						|
 | 
						|
public:
 | 
						|
  UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
 | 
						|
    Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
 | 
						|
 | 
						|
  void updateBlockParents();
 | 
						|
 | 
						|
  void removeBlocksFromAncestors();
 | 
						|
 | 
						|
  void updateSubloopParents();
 | 
						|
 | 
						|
protected:
 | 
						|
  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Update the parent loop for all blocks that are directly contained within the
 | 
						|
/// original "unloop".
 | 
						|
void UnloopUpdater::updateBlockParents() {
 | 
						|
  if (Unloop.getNumBlocks()) {
 | 
						|
    // Perform a post order CFG traversal of all blocks within this loop,
 | 
						|
    // propagating the nearest loop from sucessors to predecessors.
 | 
						|
    LoopBlocksTraversal Traversal(DFS, LI);
 | 
						|
    for (BasicBlock *POI : Traversal) {
 | 
						|
 | 
						|
      Loop *L = LI->getLoopFor(POI);
 | 
						|
      Loop *NL = getNearestLoop(POI, L);
 | 
						|
 | 
						|
      if (NL != L) {
 | 
						|
        // For reducible loops, NL is now an ancestor of Unloop.
 | 
						|
        assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
 | 
						|
               "uninitialized successor");
 | 
						|
        LI->changeLoopFor(POI, NL);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        // Or the current block is part of a subloop, in which case its parent
 | 
						|
        // is unchanged.
 | 
						|
        assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Each irreducible loop within the unloop induces a round of iteration using
 | 
						|
  // the DFS result cached by Traversal.
 | 
						|
  bool Changed = FoundIB;
 | 
						|
  for (unsigned NIters = 0; Changed; ++NIters) {
 | 
						|
    assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
 | 
						|
 | 
						|
    // Iterate over the postorder list of blocks, propagating the nearest loop
 | 
						|
    // from successors to predecessors as before.
 | 
						|
    Changed = false;
 | 
						|
    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
 | 
						|
           POE = DFS.endPostorder(); POI != POE; ++POI) {
 | 
						|
 | 
						|
      Loop *L = LI->getLoopFor(*POI);
 | 
						|
      Loop *NL = getNearestLoop(*POI, L);
 | 
						|
      if (NL != L) {
 | 
						|
        assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
 | 
						|
               "uninitialized successor");
 | 
						|
        LI->changeLoopFor(*POI, NL);
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Remove unloop's blocks from all ancestors below their new parents.
 | 
						|
void UnloopUpdater::removeBlocksFromAncestors() {
 | 
						|
  // Remove all unloop's blocks (including those in nested subloops) from
 | 
						|
  // ancestors below the new parent loop.
 | 
						|
  for (Loop::block_iterator BI = Unloop.block_begin(),
 | 
						|
         BE = Unloop.block_end(); BI != BE; ++BI) {
 | 
						|
    Loop *OuterParent = LI->getLoopFor(*BI);
 | 
						|
    if (Unloop.contains(OuterParent)) {
 | 
						|
      while (OuterParent->getParentLoop() != &Unloop)
 | 
						|
        OuterParent = OuterParent->getParentLoop();
 | 
						|
      OuterParent = SubloopParents[OuterParent];
 | 
						|
    }
 | 
						|
    // Remove blocks from former Ancestors except Unloop itself which will be
 | 
						|
    // deleted.
 | 
						|
    for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
 | 
						|
         OldParent = OldParent->getParentLoop()) {
 | 
						|
      assert(OldParent && "new loop is not an ancestor of the original");
 | 
						|
      OldParent->removeBlockFromLoop(*BI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Update the parent loop for all subloops directly nested within unloop.
 | 
						|
void UnloopUpdater::updateSubloopParents() {
 | 
						|
  while (!Unloop.empty()) {
 | 
						|
    Loop *Subloop = *std::prev(Unloop.end());
 | 
						|
    Unloop.removeChildLoop(std::prev(Unloop.end()));
 | 
						|
 | 
						|
    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
 | 
						|
    if (Loop *Parent = SubloopParents[Subloop])
 | 
						|
      Parent->addChildLoop(Subloop);
 | 
						|
    else
 | 
						|
      LI->addTopLevelLoop(Subloop);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return the nearest parent loop among this block's successors. If a successor
 | 
						|
/// is a subloop header, consider its parent to be the nearest parent of the
 | 
						|
/// subloop's exits.
 | 
						|
///
 | 
						|
/// For subloop blocks, simply update SubloopParents and return NULL.
 | 
						|
Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
 | 
						|
 | 
						|
  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
 | 
						|
  // is considered uninitialized.
 | 
						|
  Loop *NearLoop = BBLoop;
 | 
						|
 | 
						|
  Loop *Subloop = nullptr;
 | 
						|
  if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
 | 
						|
    Subloop = NearLoop;
 | 
						|
    // Find the subloop ancestor that is directly contained within Unloop.
 | 
						|
    while (Subloop->getParentLoop() != &Unloop) {
 | 
						|
      Subloop = Subloop->getParentLoop();
 | 
						|
      assert(Subloop && "subloop is not an ancestor of the original loop");
 | 
						|
    }
 | 
						|
    // Get the current nearest parent of the Subloop exits, initially Unloop.
 | 
						|
    NearLoop =
 | 
						|
      SubloopParents.insert(std::make_pair(Subloop, &Unloop)).first->second;
 | 
						|
  }
 | 
						|
 | 
						|
  succ_iterator I = succ_begin(BB), E = succ_end(BB);
 | 
						|
  if (I == E) {
 | 
						|
    assert(!Subloop && "subloop blocks must have a successor");
 | 
						|
    NearLoop = nullptr; // unloop blocks may now exit the function.
 | 
						|
  }
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    if (*I == BB)
 | 
						|
      continue; // self loops are uninteresting
 | 
						|
 | 
						|
    Loop *L = LI->getLoopFor(*I);
 | 
						|
    if (L == &Unloop) {
 | 
						|
      // This successor has not been processed. This path must lead to an
 | 
						|
      // irreducible backedge.
 | 
						|
      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
 | 
						|
      FoundIB = true;
 | 
						|
    }
 | 
						|
    if (L != &Unloop && Unloop.contains(L)) {
 | 
						|
      // Successor is in a subloop.
 | 
						|
      if (Subloop)
 | 
						|
        continue; // Branching within subloops. Ignore it.
 | 
						|
 | 
						|
      // BB branches from the original into a subloop header.
 | 
						|
      assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
 | 
						|
 | 
						|
      // Get the current nearest parent of the Subloop's exits.
 | 
						|
      L = SubloopParents[L];
 | 
						|
      // L could be Unloop if the only exit was an irreducible backedge.
 | 
						|
    }
 | 
						|
    if (L == &Unloop) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Handle critical edges from Unloop into a sibling loop.
 | 
						|
    if (L && !L->contains(&Unloop)) {
 | 
						|
      L = L->getParentLoop();
 | 
						|
    }
 | 
						|
    // Remember the nearest parent loop among successors or subloop exits.
 | 
						|
    if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
 | 
						|
      NearLoop = L;
 | 
						|
  }
 | 
						|
  if (Subloop) {
 | 
						|
    SubloopParents[Subloop] = NearLoop;
 | 
						|
    return BBLoop;
 | 
						|
  }
 | 
						|
  return NearLoop;
 | 
						|
}
 | 
						|
 | 
						|
LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) {
 | 
						|
  analyze(DomTree);
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfo::markAsRemoved(Loop *Unloop) {
 | 
						|
  assert(!Unloop->isInvalid() && "Loop has already been removed");
 | 
						|
  Unloop->invalidate();
 | 
						|
  RemovedLoops.push_back(Unloop);
 | 
						|
 | 
						|
  // First handle the special case of no parent loop to simplify the algorithm.
 | 
						|
  if (!Unloop->getParentLoop()) {
 | 
						|
    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
 | 
						|
    for (Loop::block_iterator I = Unloop->block_begin(),
 | 
						|
                              E = Unloop->block_end();
 | 
						|
         I != E; ++I) {
 | 
						|
 | 
						|
      // Don't reparent blocks in subloops.
 | 
						|
      if (getLoopFor(*I) != Unloop)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Blocks no longer have a parent but are still referenced by Unloop until
 | 
						|
      // the Unloop object is deleted.
 | 
						|
      changeLoopFor(*I, nullptr);
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove the loop from the top-level LoopInfo object.
 | 
						|
    for (iterator I = begin();; ++I) {
 | 
						|
      assert(I != end() && "Couldn't find loop");
 | 
						|
      if (*I == Unloop) {
 | 
						|
        removeLoop(I);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Move all of the subloops to the top-level.
 | 
						|
    while (!Unloop->empty())
 | 
						|
      addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the parent loop for all blocks within the loop. Blocks within
 | 
						|
  // subloops will not change parents.
 | 
						|
  UnloopUpdater Updater(Unloop, this);
 | 
						|
  Updater.updateBlockParents();
 | 
						|
 | 
						|
  // Remove blocks from former ancestor loops.
 | 
						|
  Updater.removeBlocksFromAncestors();
 | 
						|
 | 
						|
  // Add direct subloops as children in their new parent loop.
 | 
						|
  Updater.updateSubloopParents();
 | 
						|
 | 
						|
  // Remove unloop from its parent loop.
 | 
						|
  Loop *ParentLoop = Unloop->getParentLoop();
 | 
						|
  for (Loop::iterator I = ParentLoop->begin();; ++I) {
 | 
						|
    assert(I != ParentLoop->end() && "Couldn't find loop");
 | 
						|
    if (*I == Unloop) {
 | 
						|
      ParentLoop->removeChildLoop(I);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
char LoopAnalysis::PassID;
 | 
						|
 | 
						|
LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> &AM) {
 | 
						|
  // FIXME: Currently we create a LoopInfo from scratch for every function.
 | 
						|
  // This may prove to be too wasteful due to deallocating and re-allocating
 | 
						|
  // memory each time for the underlying map and vector datastructures. At some
 | 
						|
  // point it may prove worthwhile to use a freelist and recycle LoopInfo
 | 
						|
  // objects. I don't want to add that kind of complexity until the scope of
 | 
						|
  // the problem is better understood.
 | 
						|
  LoopInfo LI;
 | 
						|
  LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
 | 
						|
  return LI;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses LoopPrinterPass::run(Function &F,
 | 
						|
                                       AnalysisManager<Function> &AM) {
 | 
						|
  AM.getResult<LoopAnalysis>(F).print(OS);
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 | 
						|
 | 
						|
PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
 | 
						|
PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
 | 
						|
    : OS(OS), Banner(Banner) {}
 | 
						|
 | 
						|
PreservedAnalyses PrintLoopPass::run(Loop &L, AnalysisManager<Loop> &) {
 | 
						|
  OS << Banner;
 | 
						|
  for (auto *Block : L.blocks())
 | 
						|
    if (Block)
 | 
						|
      Block->print(OS);
 | 
						|
    else
 | 
						|
      OS << "Printing <null> block";
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LoopInfo implementation
 | 
						|
//
 | 
						|
 | 
						|
char LoopInfoWrapperPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
 | 
						|
                      true, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
 | 
						|
                    true, true)
 | 
						|
 | 
						|
bool LoopInfoWrapperPass::runOnFunction(Function &) {
 | 
						|
  releaseMemory();
 | 
						|
  LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfoWrapperPass::verifyAnalysis() const {
 | 
						|
  // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
 | 
						|
  // function each time verifyAnalysis is called is very expensive. The
 | 
						|
  // -verify-loop-info option can enable this. In order to perform some
 | 
						|
  // checking by default, LoopPass has been taught to call verifyLoop manually
 | 
						|
  // during loop pass sequences.
 | 
						|
  if (VerifyLoopInfo)
 | 
						|
    LI.verify();
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
 | 
						|
  LI.print(OS);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LoopBlocksDFS implementation
 | 
						|
//
 | 
						|
 | 
						|
/// Traverse the loop blocks and store the DFS result.
 | 
						|
/// Useful for clients that just want the final DFS result and don't need to
 | 
						|
/// visit blocks during the initial traversal.
 | 
						|
void LoopBlocksDFS::perform(LoopInfo *LI) {
 | 
						|
  LoopBlocksTraversal Traversal(*this, LI);
 | 
						|
  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
 | 
						|
         POE = Traversal.end(); POI != POE; ++POI) ;
 | 
						|
}
 |