491 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			491 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines vectorizer utilities.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/EquivalenceClasses.h"
 | 
						|
#include "llvm/Analysis/DemandedBits.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
/// \brief Identify if the intrinsic is trivially vectorizable.
 | 
						|
/// This method returns true if the intrinsic's argument types are all
 | 
						|
/// scalars for the scalar form of the intrinsic and all vectors for
 | 
						|
/// the vector form of the intrinsic.
 | 
						|
bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
 | 
						|
  switch (ID) {
 | 
						|
  case Intrinsic::sqrt:
 | 
						|
  case Intrinsic::sin:
 | 
						|
  case Intrinsic::cos:
 | 
						|
  case Intrinsic::exp:
 | 
						|
  case Intrinsic::exp2:
 | 
						|
  case Intrinsic::log:
 | 
						|
  case Intrinsic::log10:
 | 
						|
  case Intrinsic::log2:
 | 
						|
  case Intrinsic::fabs:
 | 
						|
  case Intrinsic::minnum:
 | 
						|
  case Intrinsic::maxnum:
 | 
						|
  case Intrinsic::copysign:
 | 
						|
  case Intrinsic::floor:
 | 
						|
  case Intrinsic::ceil:
 | 
						|
  case Intrinsic::trunc:
 | 
						|
  case Intrinsic::rint:
 | 
						|
  case Intrinsic::nearbyint:
 | 
						|
  case Intrinsic::round:
 | 
						|
  case Intrinsic::bswap:
 | 
						|
  case Intrinsic::bitreverse:
 | 
						|
  case Intrinsic::ctpop:
 | 
						|
  case Intrinsic::pow:
 | 
						|
  case Intrinsic::fma:
 | 
						|
  case Intrinsic::fmuladd:
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz:
 | 
						|
  case Intrinsic::powi:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Identifies if the intrinsic has a scalar operand. It check for
 | 
						|
/// ctlz,cttz and powi special intrinsics whose argument is scalar.
 | 
						|
bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
 | 
						|
                                        unsigned ScalarOpdIdx) {
 | 
						|
  switch (ID) {
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz:
 | 
						|
  case Intrinsic::powi:
 | 
						|
    return (ScalarOpdIdx == 1);
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns intrinsic ID for call.
 | 
						|
/// For the input call instruction it finds mapping intrinsic and returns
 | 
						|
/// its ID, in case it does not found it return not_intrinsic.
 | 
						|
Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
 | 
						|
                                                const TargetLibraryInfo *TLI) {
 | 
						|
  Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
 | 
						|
  if (ID == Intrinsic::not_intrinsic)
 | 
						|
    return Intrinsic::not_intrinsic;
 | 
						|
 | 
						|
  if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
 | 
						|
      ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
 | 
						|
    return ID;
 | 
						|
  return Intrinsic::not_intrinsic;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Find the operand of the GEP that should be checked for consecutive
 | 
						|
/// stores. This ignores trailing indices that have no effect on the final
 | 
						|
/// pointer.
 | 
						|
unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
 | 
						|
  const DataLayout &DL = Gep->getModule()->getDataLayout();
 | 
						|
  unsigned LastOperand = Gep->getNumOperands() - 1;
 | 
						|
  unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
 | 
						|
 | 
						|
  // Walk backwards and try to peel off zeros.
 | 
						|
  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
 | 
						|
    // Find the type we're currently indexing into.
 | 
						|
    gep_type_iterator GEPTI = gep_type_begin(Gep);
 | 
						|
    std::advance(GEPTI, LastOperand - 1);
 | 
						|
 | 
						|
    // If it's a type with the same allocation size as the result of the GEP we
 | 
						|
    // can peel off the zero index.
 | 
						|
    if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
 | 
						|
      break;
 | 
						|
    --LastOperand;
 | 
						|
  }
 | 
						|
 | 
						|
  return LastOperand;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If the argument is a GEP, then returns the operand identified by
 | 
						|
/// getGEPInductionOperand. However, if there is some other non-loop-invariant
 | 
						|
/// operand, it returns that instead.
 | 
						|
Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
 | 
						|
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
 | 
						|
  if (!GEP)
 | 
						|
    return Ptr;
 | 
						|
 | 
						|
  unsigned InductionOperand = getGEPInductionOperand(GEP);
 | 
						|
 | 
						|
  // Check that all of the gep indices are uniform except for our induction
 | 
						|
  // operand.
 | 
						|
  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
 | 
						|
    if (i != InductionOperand &&
 | 
						|
        !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
 | 
						|
      return Ptr;
 | 
						|
  return GEP->getOperand(InductionOperand);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If a value has only one user that is a CastInst, return it.
 | 
						|
Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
 | 
						|
  Value *UniqueCast = nullptr;
 | 
						|
  for (User *U : Ptr->users()) {
 | 
						|
    CastInst *CI = dyn_cast<CastInst>(U);
 | 
						|
    if (CI && CI->getType() == Ty) {
 | 
						|
      if (!UniqueCast)
 | 
						|
        UniqueCast = CI;
 | 
						|
      else
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return UniqueCast;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get the stride of a pointer access in a loop. Looks for symbolic
 | 
						|
/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
 | 
						|
Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
 | 
						|
  auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
 | 
						|
  if (!PtrTy || PtrTy->isAggregateType())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Try to remove a gep instruction to make the pointer (actually index at this
 | 
						|
  // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
 | 
						|
  // pointer, otherwise, we are analyzing the index.
 | 
						|
  Value *OrigPtr = Ptr;
 | 
						|
 | 
						|
  // The size of the pointer access.
 | 
						|
  int64_t PtrAccessSize = 1;
 | 
						|
 | 
						|
  Ptr = stripGetElementPtr(Ptr, SE, Lp);
 | 
						|
  const SCEV *V = SE->getSCEV(Ptr);
 | 
						|
 | 
						|
  if (Ptr != OrigPtr)
 | 
						|
    // Strip off casts.
 | 
						|
    while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
 | 
						|
      V = C->getOperand();
 | 
						|
 | 
						|
  const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
 | 
						|
  if (!S)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  V = S->getStepRecurrence(*SE);
 | 
						|
  if (!V)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Strip off the size of access multiplication if we are still analyzing the
 | 
						|
  // pointer.
 | 
						|
  if (OrigPtr == Ptr) {
 | 
						|
    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
 | 
						|
      if (M->getOperand(0)->getSCEVType() != scConstant)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
 | 
						|
 | 
						|
      // Huge step value - give up.
 | 
						|
      if (APStepVal.getBitWidth() > 64)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      int64_t StepVal = APStepVal.getSExtValue();
 | 
						|
      if (PtrAccessSize != StepVal)
 | 
						|
        return nullptr;
 | 
						|
      V = M->getOperand(1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Strip off casts.
 | 
						|
  Type *StripedOffRecurrenceCast = nullptr;
 | 
						|
  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
 | 
						|
    StripedOffRecurrenceCast = C->getType();
 | 
						|
    V = C->getOperand();
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for the loop invariant symbolic value.
 | 
						|
  const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
 | 
						|
  if (!U)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Stride = U->getValue();
 | 
						|
  if (!Lp->isLoopInvariant(Stride))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we have stripped off the recurrence cast we have to make sure that we
 | 
						|
  // return the value that is used in this loop so that we can replace it later.
 | 
						|
  if (StripedOffRecurrenceCast)
 | 
						|
    Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
 | 
						|
 | 
						|
  return Stride;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Given a vector and an element number, see if the scalar value is
 | 
						|
/// already around as a register, for example if it were inserted then extracted
 | 
						|
/// from the vector.
 | 
						|
Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
 | 
						|
  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
 | 
						|
  VectorType *VTy = cast<VectorType>(V->getType());
 | 
						|
  unsigned Width = VTy->getNumElements();
 | 
						|
  if (EltNo >= Width)  // Out of range access.
 | 
						|
    return UndefValue::get(VTy->getElementType());
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return C->getAggregateElement(EltNo);
 | 
						|
 | 
						|
  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert to a variable element, we don't know what it is.
 | 
						|
    if (!isa<ConstantInt>(III->getOperand(2)))
 | 
						|
      return nullptr;
 | 
						|
    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
 | 
						|
 | 
						|
    // If this is an insert to the element we are looking for, return the
 | 
						|
    // inserted value.
 | 
						|
    if (EltNo == IIElt)
 | 
						|
      return III->getOperand(1);
 | 
						|
 | 
						|
    // Otherwise, the insertelement doesn't modify the value, recurse on its
 | 
						|
    // vector input.
 | 
						|
    return findScalarElement(III->getOperand(0), EltNo);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | 
						|
    unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
 | 
						|
    int InEl = SVI->getMaskValue(EltNo);
 | 
						|
    if (InEl < 0)
 | 
						|
      return UndefValue::get(VTy->getElementType());
 | 
						|
    if (InEl < (int)LHSWidth)
 | 
						|
      return findScalarElement(SVI->getOperand(0), InEl);
 | 
						|
    return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  // Extract a value from a vector add operation with a constant zero.
 | 
						|
  Value *Val = nullptr; Constant *Con = nullptr;
 | 
						|
  if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
 | 
						|
    if (Constant *Elt = Con->getAggregateElement(EltNo))
 | 
						|
      if (Elt->isNullValue())
 | 
						|
        return findScalarElement(Val, EltNo);
 | 
						|
 | 
						|
  // Otherwise, we don't know.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get splat value if the input is a splat vector or return nullptr.
 | 
						|
/// This function is not fully general. It checks only 2 cases:
 | 
						|
/// the input value is (1) a splat constants vector or (2) a sequence
 | 
						|
/// of instructions that broadcast a single value into a vector.
 | 
						|
///
 | 
						|
const llvm::Value *llvm::getSplatValue(const Value *V) {
 | 
						|
 | 
						|
  if (auto *C = dyn_cast<Constant>(V))
 | 
						|
    if (isa<VectorType>(V->getType()))
 | 
						|
      return C->getSplatValue();
 | 
						|
 | 
						|
  auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
 | 
						|
  if (!ShuffleInst)
 | 
						|
    return nullptr;
 | 
						|
  // All-zero (or undef) shuffle mask elements.
 | 
						|
  for (int MaskElt : ShuffleInst->getShuffleMask())
 | 
						|
    if (MaskElt != 0 && MaskElt != -1)
 | 
						|
      return nullptr;
 | 
						|
  // The first shuffle source is 'insertelement' with index 0.
 | 
						|
  auto *InsertEltInst =
 | 
						|
    dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
 | 
						|
  if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
 | 
						|
      !cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return InsertEltInst->getOperand(1);
 | 
						|
}
 | 
						|
 | 
						|
MapVector<Instruction *, uint64_t>
 | 
						|
llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
 | 
						|
                               const TargetTransformInfo *TTI) {
 | 
						|
 | 
						|
  // DemandedBits will give us every value's live-out bits. But we want
 | 
						|
  // to ensure no extra casts would need to be inserted, so every DAG
 | 
						|
  // of connected values must have the same minimum bitwidth.
 | 
						|
  EquivalenceClasses<Value *> ECs;
 | 
						|
  SmallVector<Value *, 16> Worklist;
 | 
						|
  SmallPtrSet<Value *, 4> Roots;
 | 
						|
  SmallPtrSet<Value *, 16> Visited;
 | 
						|
  DenseMap<Value *, uint64_t> DBits;
 | 
						|
  SmallPtrSet<Instruction *, 4> InstructionSet;
 | 
						|
  MapVector<Instruction *, uint64_t> MinBWs;
 | 
						|
 | 
						|
  // Determine the roots. We work bottom-up, from truncs or icmps.
 | 
						|
  bool SeenExtFromIllegalType = false;
 | 
						|
  for (auto *BB : Blocks)
 | 
						|
    for (auto &I : *BB) {
 | 
						|
      InstructionSet.insert(&I);
 | 
						|
 | 
						|
      if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
 | 
						|
          !TTI->isTypeLegal(I.getOperand(0)->getType()))
 | 
						|
        SeenExtFromIllegalType = true;
 | 
						|
 | 
						|
      // Only deal with non-vector integers up to 64-bits wide.
 | 
						|
      if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
 | 
						|
          !I.getType()->isVectorTy() &&
 | 
						|
          I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
 | 
						|
        // Don't make work for ourselves. If we know the loaded type is legal,
 | 
						|
        // don't add it to the worklist.
 | 
						|
        if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
 | 
						|
          continue;
 | 
						|
 | 
						|
        Worklist.push_back(&I);
 | 
						|
        Roots.insert(&I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  // Early exit.
 | 
						|
  if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
 | 
						|
    return MinBWs;
 | 
						|
 | 
						|
  // Now proceed breadth-first, unioning values together.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Value *Val = Worklist.pop_back_val();
 | 
						|
    Value *Leader = ECs.getOrInsertLeaderValue(Val);
 | 
						|
 | 
						|
    if (Visited.count(Val))
 | 
						|
      continue;
 | 
						|
    Visited.insert(Val);
 | 
						|
 | 
						|
    // Non-instructions terminate a chain successfully.
 | 
						|
    if (!isa<Instruction>(Val))
 | 
						|
      continue;
 | 
						|
    Instruction *I = cast<Instruction>(Val);
 | 
						|
 | 
						|
    // If we encounter a type that is larger than 64 bits, we can't represent
 | 
						|
    // it so bail out.
 | 
						|
    if (DB.getDemandedBits(I).getBitWidth() > 64)
 | 
						|
      return MapVector<Instruction *, uint64_t>();
 | 
						|
 | 
						|
    uint64_t V = DB.getDemandedBits(I).getZExtValue();
 | 
						|
    DBits[Leader] |= V;
 | 
						|
    DBits[I] = V;
 | 
						|
 | 
						|
    // Casts, loads and instructions outside of our range terminate a chain
 | 
						|
    // successfully.
 | 
						|
    if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
 | 
						|
        !InstructionSet.count(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Unsafe casts terminate a chain unsuccessfully. We can't do anything
 | 
						|
    // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
 | 
						|
    // transform anything that relies on them.
 | 
						|
    if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
 | 
						|
        !I->getType()->isIntegerTy()) {
 | 
						|
      DBits[Leader] |= ~0ULL;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We don't modify the types of PHIs. Reductions will already have been
 | 
						|
    // truncated if possible, and inductions' sizes will have been chosen by
 | 
						|
    // indvars.
 | 
						|
    if (isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (DBits[Leader] == ~0ULL)
 | 
						|
      // All bits demanded, no point continuing.
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (Value *O : cast<User>(I)->operands()) {
 | 
						|
      ECs.unionSets(Leader, O);
 | 
						|
      Worklist.push_back(O);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we've discovered all values, walk them to see if there are
 | 
						|
  // any users we didn't see. If there are, we can't optimize that
 | 
						|
  // chain.
 | 
						|
  for (auto &I : DBits)
 | 
						|
    for (auto *U : I.first->users())
 | 
						|
      if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
 | 
						|
        DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
 | 
						|
 | 
						|
  for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
 | 
						|
    uint64_t LeaderDemandedBits = 0;
 | 
						|
    for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
 | 
						|
      LeaderDemandedBits |= DBits[*MI];
 | 
						|
 | 
						|
    uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
 | 
						|
                     llvm::countLeadingZeros(LeaderDemandedBits);
 | 
						|
    // Round up to a power of 2
 | 
						|
    if (!isPowerOf2_64((uint64_t)MinBW))
 | 
						|
      MinBW = NextPowerOf2(MinBW);
 | 
						|
 | 
						|
    // We don't modify the types of PHIs. Reductions will already have been
 | 
						|
    // truncated if possible, and inductions' sizes will have been chosen by
 | 
						|
    // indvars.
 | 
						|
    // If we are required to shrink a PHI, abandon this entire equivalence class.
 | 
						|
    bool Abort = false;
 | 
						|
    for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
 | 
						|
      if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
 | 
						|
        Abort = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (Abort)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
 | 
						|
      if (!isa<Instruction>(*MI))
 | 
						|
        continue;
 | 
						|
      Type *Ty = (*MI)->getType();
 | 
						|
      if (Roots.count(*MI))
 | 
						|
        Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
 | 
						|
      if (MinBW < Ty->getScalarSizeInBits())
 | 
						|
        MinBWs[cast<Instruction>(*MI)] = MinBW;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MinBWs;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns \p I after propagating metadata from \p VL.
 | 
						|
Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
 | 
						|
  Instruction *I0 = cast<Instruction>(VL[0]);
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
 | 
						|
  I0->getAllMetadataOtherThanDebugLoc(Metadata);
 | 
						|
 | 
						|
  for (auto Kind : { LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
 | 
						|
                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
 | 
						|
                     LLVMContext::MD_nontemporal }) {
 | 
						|
    MDNode *MD = I0->getMetadata(Kind);
 | 
						|
 | 
						|
    for (int J = 1, E = VL.size(); MD && J != E; ++J) {
 | 
						|
      const Instruction *IJ = cast<Instruction>(VL[J]);
 | 
						|
      MDNode *IMD = IJ->getMetadata(Kind);
 | 
						|
      switch (Kind) {
 | 
						|
      case LLVMContext::MD_tbaa:
 | 
						|
        MD = MDNode::getMostGenericTBAA(MD, IMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_alias_scope:
 | 
						|
        MD = MDNode::getMostGenericAliasScope(MD, IMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_noalias:
 | 
						|
        MD = MDNode::intersect(MD, IMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_fpmath:
 | 
						|
        MD = MDNode::getMostGenericFPMath(MD, IMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_nontemporal:
 | 
						|
        MD = MDNode::intersect(MD, IMD);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        llvm_unreachable("unhandled metadata");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Inst->setMetadata(Kind, MD);
 | 
						|
  }
 | 
						|
 | 
						|
  return Inst;
 | 
						|
}
 |