450 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			450 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The LiveRangeEdit class represents changes done to a virtual register when it
 | 
						|
// is spilled or split.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/LiveRangeEdit.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/CalcSpillWeights.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/VirtRegMap.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
 | 
						|
STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
 | 
						|
STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
 | 
						|
STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
 | 
						|
 | 
						|
void LiveRangeEdit::Delegate::anchor() { }
 | 
						|
 | 
						|
LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) {
 | 
						|
  unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
 | 
						|
  if (VRM) {
 | 
						|
    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
 | 
						|
  }
 | 
						|
  LiveInterval &LI = LIS.createEmptyInterval(VReg);
 | 
						|
  return LI;
 | 
						|
}
 | 
						|
 | 
						|
unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
 | 
						|
  unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
 | 
						|
  if (VRM) {
 | 
						|
    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
 | 
						|
  }
 | 
						|
  return VReg;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
 | 
						|
                                          const MachineInstr *DefMI,
 | 
						|
                                          AliasAnalysis *aa) {
 | 
						|
  assert(DefMI && "Missing instruction");
 | 
						|
  ScannedRemattable = true;
 | 
						|
  if (!TII.isTriviallyReMaterializable(*DefMI, aa))
 | 
						|
    return false;
 | 
						|
  Remattable.insert(VNI);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
 | 
						|
  for (VNInfo *VNI : getParent().valnos) {
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    unsigned Original = VRM->getOriginal(getReg());
 | 
						|
    LiveInterval &OrigLI = LIS.getInterval(Original);
 | 
						|
    VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
 | 
						|
    MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
 | 
						|
    if (!DefMI)
 | 
						|
      continue;
 | 
						|
    checkRematerializable(OrigVNI, DefMI, aa);
 | 
						|
  }
 | 
						|
  ScannedRemattable = true;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
 | 
						|
  if (!ScannedRemattable)
 | 
						|
    scanRemattable(aa);
 | 
						|
  return !Remattable.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
 | 
						|
/// OrigIdx are also available with the same value at UseIdx.
 | 
						|
bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
 | 
						|
                                       SlotIndex OrigIdx,
 | 
						|
                                       SlotIndex UseIdx) const {
 | 
						|
  OrigIdx = OrigIdx.getRegSlot(true);
 | 
						|
  UseIdx = UseIdx.getRegSlot(true);
 | 
						|
  for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = OrigMI->getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We can't remat physreg uses, unless it is a constant.
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
 | 
						|
      if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
 | 
						|
        continue;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    LiveInterval &li = LIS.getInterval(MO.getReg());
 | 
						|
    const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
 | 
						|
    if (!OVNI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't allow rematerialization immediately after the original def.
 | 
						|
    // It would be incorrect if OrigMI redefines the register.
 | 
						|
    // See PR14098.
 | 
						|
    if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (OVNI != li.getVNInfoAt(UseIdx))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
 | 
						|
                                       SlotIndex UseIdx, bool cheapAsAMove) {
 | 
						|
  assert(ScannedRemattable && "Call anyRematerializable first");
 | 
						|
 | 
						|
  // Use scanRemattable info.
 | 
						|
  if (!Remattable.count(OrigVNI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // No defining instruction provided.
 | 
						|
  SlotIndex DefIdx;
 | 
						|
  assert(RM.OrigMI && "No defining instruction for remattable value");
 | 
						|
  DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
 | 
						|
 | 
						|
  // If only cheap remats were requested, bail out early.
 | 
						|
  if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Verify that all used registers are available with the same values.
 | 
						|
  if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
 | 
						|
                                         MachineBasicBlock::iterator MI,
 | 
						|
                                         unsigned DestReg,
 | 
						|
                                         const Remat &RM,
 | 
						|
                                         const TargetRegisterInfo &tri,
 | 
						|
                                         bool Late) {
 | 
						|
  assert(RM.OrigMI && "Invalid remat");
 | 
						|
  TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
 | 
						|
  // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
 | 
						|
  // to false anyway in case the isDead flag of RM.OrigMI's dest register
 | 
						|
  // is true.
 | 
						|
  (*--MI).getOperand(0).setIsDead(false);
 | 
						|
  Rematted.insert(RM.ParentVNI);
 | 
						|
  return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
 | 
						|
}
 | 
						|
 | 
						|
void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
 | 
						|
  if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
 | 
						|
    LIS.removeInterval(Reg);
 | 
						|
}
 | 
						|
 | 
						|
bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
 | 
						|
                               SmallVectorImpl<MachineInstr*> &Dead) {
 | 
						|
  MachineInstr *DefMI = nullptr, *UseMI = nullptr;
 | 
						|
 | 
						|
  // Check that there is a single def and a single use.
 | 
						|
  for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
 | 
						|
    MachineInstr *MI = MO.getParent();
 | 
						|
    if (MO.isDef()) {
 | 
						|
      if (DefMI && DefMI != MI)
 | 
						|
        return false;
 | 
						|
      if (!MI->canFoldAsLoad())
 | 
						|
        return false;
 | 
						|
      DefMI = MI;
 | 
						|
    } else if (!MO.isUndef()) {
 | 
						|
      if (UseMI && UseMI != MI)
 | 
						|
        return false;
 | 
						|
      // FIXME: Targets don't know how to fold subreg uses.
 | 
						|
      if (MO.getSubReg())
 | 
						|
        return false;
 | 
						|
      UseMI = MI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!DefMI || !UseMI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Since we're moving the DefMI load, make sure we're not extending any live
 | 
						|
  // ranges.
 | 
						|
  if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
 | 
						|
                          LIS.getInstructionIndex(*UseMI)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We also need to make sure it is safe to move the load.
 | 
						|
  // Assume there are stores between DefMI and UseMI.
 | 
						|
  bool SawStore = true;
 | 
						|
  if (!DefMI->isSafeToMove(nullptr, SawStore))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Try to fold single def: " << *DefMI
 | 
						|
               << "       into single use: " << *UseMI);
 | 
						|
 | 
						|
  SmallVector<unsigned, 8> Ops;
 | 
						|
  if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
 | 
						|
  if (!FoldMI)
 | 
						|
    return false;
 | 
						|
  DEBUG(dbgs() << "                folded: " << *FoldMI);
 | 
						|
  LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
 | 
						|
  UseMI->eraseFromParent();
 | 
						|
  DefMI->addRegisterDead(LI->reg, nullptr);
 | 
						|
  Dead.push_back(DefMI);
 | 
						|
  ++NumDCEFoldedLoads;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
 | 
						|
                              const MachineOperand &MO) const {
 | 
						|
  const MachineInstr &MI = *MO.getParent();
 | 
						|
  SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
 | 
						|
  if (LI.Query(Idx).isKill())
 | 
						|
    return true;
 | 
						|
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
 | 
						|
  unsigned SubReg = MO.getSubReg();
 | 
						|
  LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
 | 
						|
  for (const LiveInterval::SubRange &S : LI.subranges()) {
 | 
						|
    if ((S.LaneMask & LaneMask) != 0 && S.Query(Idx).isKill())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Find all live intervals that need to shrink, then remove the instruction.
 | 
						|
void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
 | 
						|
                                     AliasAnalysis *AA) {
 | 
						|
  assert(MI->allDefsAreDead() && "Def isn't really dead");
 | 
						|
  SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
 | 
						|
 | 
						|
  // Never delete a bundled instruction.
 | 
						|
  if (MI->isBundled()) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Never delete inline asm.
 | 
						|
  if (MI->isInlineAsm()) {
 | 
						|
    DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Use the same criteria as DeadMachineInstructionElim.
 | 
						|
  bool SawStore = false;
 | 
						|
  if (!MI->isSafeToMove(nullptr, SawStore)) {
 | 
						|
    DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
 | 
						|
 | 
						|
  // Collect virtual registers to be erased after MI is gone.
 | 
						|
  SmallVector<unsigned, 8> RegsToErase;
 | 
						|
  bool ReadsPhysRegs = false;
 | 
						|
  bool isOrigDef = false;
 | 
						|
  unsigned Dest;
 | 
						|
  if (VRM && MI->getOperand(0).isReg()) {
 | 
						|
    Dest = MI->getOperand(0).getReg();
 | 
						|
    unsigned Original = VRM->getOriginal(Dest);
 | 
						|
    LiveInterval &OrigLI = LIS.getInterval(Original);
 | 
						|
    VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
 | 
						|
    // The original live-range may have been shrunk to
 | 
						|
    // an empty live-range. It happens when it is dead, but
 | 
						|
    // we still keep it around to be able to rematerialize
 | 
						|
    // other values that depend on it.
 | 
						|
    if (OrigVNI)
 | 
						|
      isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for live intervals that may shrink
 | 
						|
  for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
 | 
						|
         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
 | 
						|
    if (!MOI->isReg())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MOI->getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
      // Check if MI reads any unreserved physregs.
 | 
						|
      if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
 | 
						|
        ReadsPhysRegs = true;
 | 
						|
      else if (MOI->isDef())
 | 
						|
        LIS.removePhysRegDefAt(Reg, Idx);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
 | 
						|
    // Shrink read registers, unless it is likely to be expensive and
 | 
						|
    // unlikely to change anything. We typically don't want to shrink the
 | 
						|
    // PIC base register that has lots of uses everywhere.
 | 
						|
    // Always shrink COPY uses that probably come from live range splitting.
 | 
						|
    if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
 | 
						|
        (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
 | 
						|
      ToShrink.insert(&LI);
 | 
						|
 | 
						|
    // Remove defined value.
 | 
						|
    if (MOI->isDef()) {
 | 
						|
      if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
 | 
						|
        TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
 | 
						|
      LIS.removeVRegDefAt(LI, Idx);
 | 
						|
      if (LI.empty())
 | 
						|
        RegsToErase.push_back(Reg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Currently, we don't support DCE of physreg live ranges. If MI reads
 | 
						|
  // any unreserved physregs, don't erase the instruction, but turn it into
 | 
						|
  // a KILL instead. This way, the physreg live ranges don't end up
 | 
						|
  // dangling.
 | 
						|
  // FIXME: It would be better to have something like shrinkToUses() for
 | 
						|
  // physregs. That could potentially enable more DCE and it would free up
 | 
						|
  // the physreg. It would not happen often, though.
 | 
						|
  if (ReadsPhysRegs) {
 | 
						|
    MI->setDesc(TII.get(TargetOpcode::KILL));
 | 
						|
    // Remove all operands that aren't physregs.
 | 
						|
    for (unsigned i = MI->getNumOperands(); i; --i) {
 | 
						|
      const MachineOperand &MO = MI->getOperand(i-1);
 | 
						|
      if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
 | 
						|
        continue;
 | 
						|
      MI->RemoveOperand(i-1);
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
 | 
						|
  } else {
 | 
						|
    // If the dest of MI is an original reg and MI is reMaterializable,
 | 
						|
    // don't delete the inst. Replace the dest with a new reg, and keep
 | 
						|
    // the inst for remat of other siblings. The inst is saved in
 | 
						|
    // LiveRangeEdit::DeadRemats and will be deleted after all the
 | 
						|
    // allocations of the func are done.
 | 
						|
    if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
 | 
						|
      LiveInterval &NewLI = createEmptyIntervalFrom(Dest);
 | 
						|
      VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
 | 
						|
      NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
 | 
						|
      pop_back();
 | 
						|
      markDeadRemat(MI);
 | 
						|
      const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
 | 
						|
      MI->substituteRegister(Dest, NewLI.reg, 0, TRI);
 | 
						|
      MI->getOperand(0).setIsDead(true);
 | 
						|
    } else {
 | 
						|
      if (TheDelegate)
 | 
						|
        TheDelegate->LRE_WillEraseInstruction(MI);
 | 
						|
      LIS.RemoveMachineInstrFromMaps(*MI);
 | 
						|
      MI->eraseFromParent();
 | 
						|
      ++NumDCEDeleted;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Erase any virtregs that are now empty and unused. There may be <undef>
 | 
						|
  // uses around. Keep the empty live range in that case.
 | 
						|
  for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = RegsToErase[i];
 | 
						|
    if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
 | 
						|
      ToShrink.remove(&LIS.getInterval(Reg));
 | 
						|
      eraseVirtReg(Reg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
 | 
						|
                                      ArrayRef<unsigned> RegsBeingSpilled,
 | 
						|
                                      AliasAnalysis *AA) {
 | 
						|
  ToShrinkSet ToShrink;
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    // Erase all dead defs.
 | 
						|
    while (!Dead.empty())
 | 
						|
      eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
 | 
						|
 | 
						|
    if (ToShrink.empty())
 | 
						|
      break;
 | 
						|
 | 
						|
    // Shrink just one live interval. Then delete new dead defs.
 | 
						|
    LiveInterval *LI = ToShrink.back();
 | 
						|
    ToShrink.pop_back();
 | 
						|
    if (foldAsLoad(LI, Dead))
 | 
						|
      continue;
 | 
						|
    unsigned VReg = LI->reg;
 | 
						|
    if (TheDelegate)
 | 
						|
      TheDelegate->LRE_WillShrinkVirtReg(VReg);
 | 
						|
    if (!LIS.shrinkToUses(LI, &Dead))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't create new intervals for a register being spilled.
 | 
						|
    // The new intervals would have to be spilled anyway so its not worth it.
 | 
						|
    // Also they currently aren't spilled so creating them and not spilling
 | 
						|
    // them results in incorrect code.
 | 
						|
    bool BeingSpilled = false;
 | 
						|
    for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
 | 
						|
      if (VReg == RegsBeingSpilled[i]) {
 | 
						|
        BeingSpilled = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (BeingSpilled) continue;
 | 
						|
 | 
						|
    // LI may have been separated, create new intervals.
 | 
						|
    LI->RenumberValues();
 | 
						|
    SmallVector<LiveInterval*, 8> SplitLIs;
 | 
						|
    LIS.splitSeparateComponents(*LI, SplitLIs);
 | 
						|
    if (!SplitLIs.empty())
 | 
						|
      ++NumFracRanges;
 | 
						|
 | 
						|
    unsigned Original = VRM ? VRM->getOriginal(VReg) : 0;
 | 
						|
    for (const LiveInterval *SplitLI : SplitLIs) {
 | 
						|
      // If LI is an original interval that hasn't been split yet, make the new
 | 
						|
      // intervals their own originals instead of referring to LI. The original
 | 
						|
      // interval must contain all the split products, and LI doesn't.
 | 
						|
      if (Original != VReg && Original != 0)
 | 
						|
        VRM->setIsSplitFromReg(SplitLI->reg, Original);
 | 
						|
      if (TheDelegate)
 | 
						|
        TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Keep track of new virtual registers created via
 | 
						|
// MachineRegisterInfo::createVirtualRegister.
 | 
						|
void
 | 
						|
LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
 | 
						|
{
 | 
						|
  if (VRM)
 | 
						|
    VRM->grow();
 | 
						|
 | 
						|
  NewRegs.push_back(VReg);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
 | 
						|
                                        const MachineLoopInfo &Loops,
 | 
						|
                                        const MachineBlockFrequencyInfo &MBFI) {
 | 
						|
  VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI);
 | 
						|
  for (unsigned I = 0, Size = size(); I < Size; ++I) {
 | 
						|
    LiveInterval &LI = LIS.getInterval(get(I));
 | 
						|
    if (MRI.recomputeRegClass(LI.reg))
 | 
						|
      DEBUG({
 | 
						|
        const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
        dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
 | 
						|
               << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
 | 
						|
      });
 | 
						|
    VRAI.calculateSpillWeightAndHint(LI);
 | 
						|
  }
 | 
						|
}
 |