4651 lines
		
	
	
		
			164 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4651 lines
		
	
	
		
			164 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
 | 
						|
// stores that can be put together into vector-stores. Next, it attempts to
 | 
						|
// construct vectorizable tree using the use-def chains. If a profitable tree
 | 
						|
// was found, the SLP vectorizer performs vectorization on the tree.
 | 
						|
//
 | 
						|
// The pass is inspired by the work described in the paper:
 | 
						|
//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/CodeMetrics.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/LoopAccessAnalysis.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/NoFolder.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/Verifier.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Vectorize.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <memory>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace slpvectorizer;
 | 
						|
 | 
						|
#define SV_NAME "slp-vectorizer"
 | 
						|
#define DEBUG_TYPE "SLP"
 | 
						|
 | 
						|
STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
 | 
						|
 | 
						|
static cl::opt<int>
 | 
						|
    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
 | 
						|
                     cl::desc("Only vectorize if you gain more than this "
 | 
						|
                              "number "));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
 | 
						|
                   cl::desc("Attempt to vectorize horizontal reductions"));
 | 
						|
 | 
						|
static cl::opt<bool> ShouldStartVectorizeHorAtStore(
 | 
						|
    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc(
 | 
						|
        "Attempt to vectorize horizontal reductions feeding into a store"));
 | 
						|
 | 
						|
static cl::opt<int>
 | 
						|
MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
 | 
						|
    cl::desc("Attempt to vectorize for this register size in bits"));
 | 
						|
 | 
						|
/// Limits the size of scheduling regions in a block.
 | 
						|
/// It avoid long compile times for _very_ large blocks where vector
 | 
						|
/// instructions are spread over a wide range.
 | 
						|
/// This limit is way higher than needed by real-world functions.
 | 
						|
static cl::opt<int>
 | 
						|
ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
 | 
						|
    cl::desc("Limit the size of the SLP scheduling region per block"));
 | 
						|
 | 
						|
static cl::opt<int> MinVectorRegSizeOption(
 | 
						|
    "slp-min-reg-size", cl::init(128), cl::Hidden,
 | 
						|
    cl::desc("Attempt to vectorize for this register size in bits"));
 | 
						|
 | 
						|
// FIXME: Set this via cl::opt to allow overriding.
 | 
						|
static const unsigned RecursionMaxDepth = 12;
 | 
						|
 | 
						|
// Limit the number of alias checks. The limit is chosen so that
 | 
						|
// it has no negative effect on the llvm benchmarks.
 | 
						|
static const unsigned AliasedCheckLimit = 10;
 | 
						|
 | 
						|
// Another limit for the alias checks: The maximum distance between load/store
 | 
						|
// instructions where alias checks are done.
 | 
						|
// This limit is useful for very large basic blocks.
 | 
						|
static const unsigned MaxMemDepDistance = 160;
 | 
						|
 | 
						|
/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
 | 
						|
/// regions to be handled.
 | 
						|
static const int MinScheduleRegionSize = 16;
 | 
						|
 | 
						|
/// \brief Predicate for the element types that the SLP vectorizer supports.
 | 
						|
///
 | 
						|
/// The most important thing to filter here are types which are invalid in LLVM
 | 
						|
/// vectors. We also filter target specific types which have absolutely no
 | 
						|
/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
 | 
						|
/// avoids spending time checking the cost model and realizing that they will
 | 
						|
/// be inevitably scalarized.
 | 
						|
static bool isValidElementType(Type *Ty) {
 | 
						|
  return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
 | 
						|
         !Ty->isPPC_FP128Ty();
 | 
						|
}
 | 
						|
 | 
						|
/// \returns the parent basic block if all of the instructions in \p VL
 | 
						|
/// are in the same block or null otherwise.
 | 
						|
static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
 | 
						|
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						|
  if (!I0)
 | 
						|
    return nullptr;
 | 
						|
  BasicBlock *BB = I0->getParent();
 | 
						|
  for (int i = 1, e = VL.size(); i < e; i++) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(VL[i]);
 | 
						|
    if (!I)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (BB != I->getParent())
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns True if all of the values in \p VL are constants.
 | 
						|
static bool allConstant(ArrayRef<Value *> VL) {
 | 
						|
  for (Value *i : VL)
 | 
						|
    if (!isa<Constant>(i))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns True if all of the values in \p VL are identical.
 | 
						|
static bool isSplat(ArrayRef<Value *> VL) {
 | 
						|
  for (unsigned i = 1, e = VL.size(); i < e; ++i)
 | 
						|
    if (VL[i] != VL[0])
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
///\returns Opcode that can be clubbed with \p Op to create an alternate
 | 
						|
/// sequence which can later be merged as a ShuffleVector instruction.
 | 
						|
static unsigned getAltOpcode(unsigned Op) {
 | 
						|
  switch (Op) {
 | 
						|
  case Instruction::FAdd:
 | 
						|
    return Instruction::FSub;
 | 
						|
  case Instruction::FSub:
 | 
						|
    return Instruction::FAdd;
 | 
						|
  case Instruction::Add:
 | 
						|
    return Instruction::Sub;
 | 
						|
  case Instruction::Sub:
 | 
						|
    return Instruction::Add;
 | 
						|
  default:
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
///\returns bool representing if Opcode \p Op can be part
 | 
						|
/// of an alternate sequence which can later be merged as
 | 
						|
/// a ShuffleVector instruction.
 | 
						|
static bool canCombineAsAltInst(unsigned Op) {
 | 
						|
  return Op == Instruction::FAdd || Op == Instruction::FSub ||
 | 
						|
         Op == Instruction::Sub || Op == Instruction::Add;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns ShuffleVector instruction if instructions in \p VL have
 | 
						|
///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
 | 
						|
/// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
 | 
						|
static unsigned isAltInst(ArrayRef<Value *> VL) {
 | 
						|
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						|
  unsigned Opcode = I0->getOpcode();
 | 
						|
  unsigned AltOpcode = getAltOpcode(Opcode);
 | 
						|
  for (int i = 1, e = VL.size(); i < e; i++) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(VL[i]);
 | 
						|
    if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  return Instruction::ShuffleVector;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns The opcode if all of the Instructions in \p VL have the same
 | 
						|
/// opcode, or zero.
 | 
						|
static unsigned getSameOpcode(ArrayRef<Value *> VL) {
 | 
						|
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						|
  if (!I0)
 | 
						|
    return 0;
 | 
						|
  unsigned Opcode = I0->getOpcode();
 | 
						|
  for (int i = 1, e = VL.size(); i < e; i++) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(VL[i]);
 | 
						|
    if (!I || Opcode != I->getOpcode()) {
 | 
						|
      if (canCombineAsAltInst(Opcode) && i == 1)
 | 
						|
        return isAltInst(VL);
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Opcode;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the intersection (logical and) of all of the potential IR flags
 | 
						|
/// of each scalar operation (VL) that will be converted into a vector (I).
 | 
						|
/// Flag set: NSW, NUW, exact, and all of fast-math.
 | 
						|
static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
 | 
						|
  if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
 | 
						|
    if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
 | 
						|
      // Intersection is initialized to the 0th scalar,
 | 
						|
      // so start counting from index '1'.
 | 
						|
      for (int i = 1, e = VL.size(); i < e; ++i) {
 | 
						|
        if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
 | 
						|
          Intersection->andIRFlags(Scalar);
 | 
						|
      }
 | 
						|
      VecOp->copyIRFlags(Intersection);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \returns The type that all of the values in \p VL have or null if there
 | 
						|
/// are different types.
 | 
						|
static Type* getSameType(ArrayRef<Value *> VL) {
 | 
						|
  Type *Ty = VL[0]->getType();
 | 
						|
  for (int i = 1, e = VL.size(); i < e; i++)
 | 
						|
    if (VL[i]->getType() != Ty)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns True if Extract{Value,Element} instruction extracts element Idx.
 | 
						|
static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) {
 | 
						|
  assert(Opcode == Instruction::ExtractElement ||
 | 
						|
         Opcode == Instruction::ExtractValue);
 | 
						|
  if (Opcode == Instruction::ExtractElement) {
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
 | 
						|
    return CI && CI->getZExtValue() == Idx;
 | 
						|
  } else {
 | 
						|
    ExtractValueInst *EI = cast<ExtractValueInst>(E);
 | 
						|
    return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \returns True if in-tree use also needs extract. This refers to
 | 
						|
/// possible scalar operand in vectorized instruction.
 | 
						|
static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
 | 
						|
                                    TargetLibraryInfo *TLI) {
 | 
						|
 | 
						|
  unsigned Opcode = UserInst->getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Load: {
 | 
						|
    LoadInst *LI = cast<LoadInst>(UserInst);
 | 
						|
    return (LI->getPointerOperand() == Scalar);
 | 
						|
  }
 | 
						|
  case Instruction::Store: {
 | 
						|
    StoreInst *SI = cast<StoreInst>(UserInst);
 | 
						|
    return (SI->getPointerOperand() == Scalar);
 | 
						|
  }
 | 
						|
  case Instruction::Call: {
 | 
						|
    CallInst *CI = cast<CallInst>(UserInst);
 | 
						|
    Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | 
						|
    if (hasVectorInstrinsicScalarOpd(ID, 1)) {
 | 
						|
      return (CI->getArgOperand(1) == Scalar);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \returns the AA location that is being access by the instruction.
 | 
						|
static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return MemoryLocation::get(SI);
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return MemoryLocation::get(LI);
 | 
						|
  return MemoryLocation();
 | 
						|
}
 | 
						|
 | 
						|
/// \returns True if the instruction is not a volatile or atomic load/store.
 | 
						|
static bool isSimple(Instruction *I) {
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return LI->isSimple();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return SI->isSimple();
 | 
						|
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | 
						|
    return !MI->isVolatile();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
namespace slpvectorizer {
 | 
						|
/// Bottom Up SLP Vectorizer.
 | 
						|
class BoUpSLP {
 | 
						|
public:
 | 
						|
  typedef SmallVector<Value *, 8> ValueList;
 | 
						|
  typedef SmallVector<Instruction *, 16> InstrList;
 | 
						|
  typedef SmallPtrSet<Value *, 16> ValueSet;
 | 
						|
  typedef SmallVector<StoreInst *, 8> StoreList;
 | 
						|
 | 
						|
  BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
 | 
						|
          TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
 | 
						|
          DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
 | 
						|
          const DataLayout *DL)
 | 
						|
      : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
 | 
						|
        SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB),
 | 
						|
        DL(DL), Builder(Se->getContext()) {
 | 
						|
    CodeMetrics::collectEphemeralValues(F, AC, EphValues);
 | 
						|
    // Use the vector register size specified by the target unless overridden
 | 
						|
    // by a command-line option.
 | 
						|
    // TODO: It would be better to limit the vectorization factor based on
 | 
						|
    //       data type rather than just register size. For example, x86 AVX has
 | 
						|
    //       256-bit registers, but it does not support integer operations
 | 
						|
    //       at that width (that requires AVX2).
 | 
						|
    if (MaxVectorRegSizeOption.getNumOccurrences())
 | 
						|
      MaxVecRegSize = MaxVectorRegSizeOption;
 | 
						|
    else
 | 
						|
      MaxVecRegSize = TTI->getRegisterBitWidth(true);
 | 
						|
 | 
						|
    MinVecRegSize = MinVectorRegSizeOption;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Vectorize the tree that starts with the elements in \p VL.
 | 
						|
  /// Returns the vectorized root.
 | 
						|
  Value *vectorizeTree();
 | 
						|
 | 
						|
  /// \returns the cost incurred by unwanted spills and fills, caused by
 | 
						|
  /// holding live values over call sites.
 | 
						|
  int getSpillCost();
 | 
						|
 | 
						|
  /// \returns the vectorization cost of the subtree that starts at \p VL.
 | 
						|
  /// A negative number means that this is profitable.
 | 
						|
  int getTreeCost();
 | 
						|
 | 
						|
  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
 | 
						|
  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
 | 
						|
  void buildTree(ArrayRef<Value *> Roots,
 | 
						|
                 ArrayRef<Value *> UserIgnoreLst = None);
 | 
						|
 | 
						|
  /// Clear the internal data structures that are created by 'buildTree'.
 | 
						|
  void deleteTree() {
 | 
						|
    VectorizableTree.clear();
 | 
						|
    ScalarToTreeEntry.clear();
 | 
						|
    MustGather.clear();
 | 
						|
    ExternalUses.clear();
 | 
						|
    NumLoadsWantToKeepOrder = 0;
 | 
						|
    NumLoadsWantToChangeOrder = 0;
 | 
						|
    for (auto &Iter : BlocksSchedules) {
 | 
						|
      BlockScheduling *BS = Iter.second.get();
 | 
						|
      BS->clear();
 | 
						|
    }
 | 
						|
    MinBWs.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Perform LICM and CSE on the newly generated gather sequences.
 | 
						|
  void optimizeGatherSequence();
 | 
						|
 | 
						|
  /// \returns true if it is beneficial to reverse the vector order.
 | 
						|
  bool shouldReorder() const {
 | 
						|
    return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \return The vector element size in bits to use when vectorizing the
 | 
						|
  /// expression tree ending at \p V. If V is a store, the size is the width of
 | 
						|
  /// the stored value. Otherwise, the size is the width of the largest loaded
 | 
						|
  /// value reaching V. This method is used by the vectorizer to calculate
 | 
						|
  /// vectorization factors.
 | 
						|
  unsigned getVectorElementSize(Value *V);
 | 
						|
 | 
						|
  /// Compute the minimum type sizes required to represent the entries in a
 | 
						|
  /// vectorizable tree.
 | 
						|
  void computeMinimumValueSizes();
 | 
						|
 | 
						|
  // \returns maximum vector register size as set by TTI or overridden by cl::opt.
 | 
						|
  unsigned getMaxVecRegSize() const {
 | 
						|
    return MaxVecRegSize;
 | 
						|
  }
 | 
						|
 | 
						|
  // \returns minimum vector register size as set by cl::opt.
 | 
						|
  unsigned getMinVecRegSize() const {
 | 
						|
    return MinVecRegSize;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Check if ArrayType or StructType is isomorphic to some VectorType.
 | 
						|
  ///
 | 
						|
  /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
 | 
						|
  unsigned canMapToVector(Type *T, const DataLayout &DL) const;
 | 
						|
 | 
						|
private:
 | 
						|
  struct TreeEntry;
 | 
						|
 | 
						|
  /// \returns the cost of the vectorizable entry.
 | 
						|
  int getEntryCost(TreeEntry *E);
 | 
						|
 | 
						|
  /// This is the recursive part of buildTree.
 | 
						|
  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
 | 
						|
 | 
						|
  /// \returns True if the ExtractElement/ExtractValue instructions in VL can
 | 
						|
  /// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
 | 
						|
  bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const;
 | 
						|
 | 
						|
  /// Vectorize a single entry in the tree.
 | 
						|
  Value *vectorizeTree(TreeEntry *E);
 | 
						|
 | 
						|
  /// Vectorize a single entry in the tree, starting in \p VL.
 | 
						|
  Value *vectorizeTree(ArrayRef<Value *> VL);
 | 
						|
 | 
						|
  /// \returns the pointer to the vectorized value if \p VL is already
 | 
						|
  /// vectorized, or NULL. They may happen in cycles.
 | 
						|
  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
 | 
						|
 | 
						|
  /// \returns the scalarization cost for this type. Scalarization in this
 | 
						|
  /// context means the creation of vectors from a group of scalars.
 | 
						|
  int getGatherCost(Type *Ty);
 | 
						|
 | 
						|
  /// \returns the scalarization cost for this list of values. Assuming that
 | 
						|
  /// this subtree gets vectorized, we may need to extract the values from the
 | 
						|
  /// roots. This method calculates the cost of extracting the values.
 | 
						|
  int getGatherCost(ArrayRef<Value *> VL);
 | 
						|
 | 
						|
  /// \brief Set the Builder insert point to one after the last instruction in
 | 
						|
  /// the bundle
 | 
						|
  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
 | 
						|
 | 
						|
  /// \returns a vector from a collection of scalars in \p VL.
 | 
						|
  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
 | 
						|
 | 
						|
  /// \returns whether the VectorizableTree is fully vectorizable and will
 | 
						|
  /// be beneficial even the tree height is tiny.
 | 
						|
  bool isFullyVectorizableTinyTree();
 | 
						|
 | 
						|
  /// \reorder commutative operands in alt shuffle if they result in
 | 
						|
  ///  vectorized code.
 | 
						|
  void reorderAltShuffleOperands(ArrayRef<Value *> VL,
 | 
						|
                                 SmallVectorImpl<Value *> &Left,
 | 
						|
                                 SmallVectorImpl<Value *> &Right);
 | 
						|
  /// \reorder commutative operands to get better probability of
 | 
						|
  /// generating vectorized code.
 | 
						|
  void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
 | 
						|
                                      SmallVectorImpl<Value *> &Left,
 | 
						|
                                      SmallVectorImpl<Value *> &Right);
 | 
						|
  struct TreeEntry {
 | 
						|
    TreeEntry() : Scalars(), VectorizedValue(nullptr),
 | 
						|
    NeedToGather(0) {}
 | 
						|
 | 
						|
    /// \returns true if the scalars in VL are equal to this entry.
 | 
						|
    bool isSame(ArrayRef<Value *> VL) const {
 | 
						|
      assert(VL.size() == Scalars.size() && "Invalid size");
 | 
						|
      return std::equal(VL.begin(), VL.end(), Scalars.begin());
 | 
						|
    }
 | 
						|
 | 
						|
    /// A vector of scalars.
 | 
						|
    ValueList Scalars;
 | 
						|
 | 
						|
    /// The Scalars are vectorized into this value. It is initialized to Null.
 | 
						|
    Value *VectorizedValue;
 | 
						|
 | 
						|
    /// Do we need to gather this sequence ?
 | 
						|
    bool NeedToGather;
 | 
						|
  };
 | 
						|
 | 
						|
  /// Create a new VectorizableTree entry.
 | 
						|
  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
 | 
						|
    VectorizableTree.emplace_back();
 | 
						|
    int idx = VectorizableTree.size() - 1;
 | 
						|
    TreeEntry *Last = &VectorizableTree[idx];
 | 
						|
    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
 | 
						|
    Last->NeedToGather = !Vectorized;
 | 
						|
    if (Vectorized) {
 | 
						|
      for (int i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
 | 
						|
        ScalarToTreeEntry[VL[i]] = idx;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      MustGather.insert(VL.begin(), VL.end());
 | 
						|
    }
 | 
						|
    return Last;
 | 
						|
  }
 | 
						|
 | 
						|
  /// -- Vectorization State --
 | 
						|
  /// Holds all of the tree entries.
 | 
						|
  std::vector<TreeEntry> VectorizableTree;
 | 
						|
 | 
						|
  /// Maps a specific scalar to its tree entry.
 | 
						|
  SmallDenseMap<Value*, int> ScalarToTreeEntry;
 | 
						|
 | 
						|
  /// A list of scalars that we found that we need to keep as scalars.
 | 
						|
  ValueSet MustGather;
 | 
						|
 | 
						|
  /// This POD struct describes one external user in the vectorized tree.
 | 
						|
  struct ExternalUser {
 | 
						|
    ExternalUser (Value *S, llvm::User *U, int L) :
 | 
						|
      Scalar(S), User(U), Lane(L){}
 | 
						|
    // Which scalar in our function.
 | 
						|
    Value *Scalar;
 | 
						|
    // Which user that uses the scalar.
 | 
						|
    llvm::User *User;
 | 
						|
    // Which lane does the scalar belong to.
 | 
						|
    int Lane;
 | 
						|
  };
 | 
						|
  typedef SmallVector<ExternalUser, 16> UserList;
 | 
						|
 | 
						|
  /// Checks if two instructions may access the same memory.
 | 
						|
  ///
 | 
						|
  /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
 | 
						|
  /// is invariant in the calling loop.
 | 
						|
  bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
 | 
						|
                 Instruction *Inst2) {
 | 
						|
 | 
						|
    // First check if the result is already in the cache.
 | 
						|
    AliasCacheKey key = std::make_pair(Inst1, Inst2);
 | 
						|
    Optional<bool> &result = AliasCache[key];
 | 
						|
    if (result.hasValue()) {
 | 
						|
      return result.getValue();
 | 
						|
    }
 | 
						|
    MemoryLocation Loc2 = getLocation(Inst2, AA);
 | 
						|
    bool aliased = true;
 | 
						|
    if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
 | 
						|
      // Do the alias check.
 | 
						|
      aliased = AA->alias(Loc1, Loc2);
 | 
						|
    }
 | 
						|
    // Store the result in the cache.
 | 
						|
    result = aliased;
 | 
						|
    return aliased;
 | 
						|
  }
 | 
						|
 | 
						|
  typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
 | 
						|
 | 
						|
  /// Cache for alias results.
 | 
						|
  /// TODO: consider moving this to the AliasAnalysis itself.
 | 
						|
  DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
 | 
						|
 | 
						|
  /// Removes an instruction from its block and eventually deletes it.
 | 
						|
  /// It's like Instruction::eraseFromParent() except that the actual deletion
 | 
						|
  /// is delayed until BoUpSLP is destructed.
 | 
						|
  /// This is required to ensure that there are no incorrect collisions in the
 | 
						|
  /// AliasCache, which can happen if a new instruction is allocated at the
 | 
						|
  /// same address as a previously deleted instruction.
 | 
						|
  void eraseInstruction(Instruction *I) {
 | 
						|
    I->removeFromParent();
 | 
						|
    I->dropAllReferences();
 | 
						|
    DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
 | 
						|
  }
 | 
						|
 | 
						|
  /// Temporary store for deleted instructions. Instructions will be deleted
 | 
						|
  /// eventually when the BoUpSLP is destructed.
 | 
						|
  SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
 | 
						|
 | 
						|
  /// A list of values that need to extracted out of the tree.
 | 
						|
  /// This list holds pairs of (Internal Scalar : External User).
 | 
						|
  UserList ExternalUses;
 | 
						|
 | 
						|
  /// Values used only by @llvm.assume calls.
 | 
						|
  SmallPtrSet<const Value *, 32> EphValues;
 | 
						|
 | 
						|
  /// Holds all of the instructions that we gathered.
 | 
						|
  SetVector<Instruction *> GatherSeq;
 | 
						|
  /// A list of blocks that we are going to CSE.
 | 
						|
  SetVector<BasicBlock *> CSEBlocks;
 | 
						|
 | 
						|
  /// Contains all scheduling relevant data for an instruction.
 | 
						|
  /// A ScheduleData either represents a single instruction or a member of an
 | 
						|
  /// instruction bundle (= a group of instructions which is combined into a
 | 
						|
  /// vector instruction).
 | 
						|
  struct ScheduleData {
 | 
						|
 | 
						|
    // The initial value for the dependency counters. It means that the
 | 
						|
    // dependencies are not calculated yet.
 | 
						|
    enum { InvalidDeps = -1 };
 | 
						|
 | 
						|
    ScheduleData()
 | 
						|
        : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
 | 
						|
          NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
 | 
						|
          Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
 | 
						|
          UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
 | 
						|
 | 
						|
    void init(int BlockSchedulingRegionID) {
 | 
						|
      FirstInBundle = this;
 | 
						|
      NextInBundle = nullptr;
 | 
						|
      NextLoadStore = nullptr;
 | 
						|
      IsScheduled = false;
 | 
						|
      SchedulingRegionID = BlockSchedulingRegionID;
 | 
						|
      UnscheduledDepsInBundle = UnscheduledDeps;
 | 
						|
      clearDependencies();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns true if the dependency information has been calculated.
 | 
						|
    bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
 | 
						|
 | 
						|
    /// Returns true for single instructions and for bundle representatives
 | 
						|
    /// (= the head of a bundle).
 | 
						|
    bool isSchedulingEntity() const { return FirstInBundle == this; }
 | 
						|
 | 
						|
    /// Returns true if it represents an instruction bundle and not only a
 | 
						|
    /// single instruction.
 | 
						|
    bool isPartOfBundle() const {
 | 
						|
      return NextInBundle != nullptr || FirstInBundle != this;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns true if it is ready for scheduling, i.e. it has no more
 | 
						|
    /// unscheduled depending instructions/bundles.
 | 
						|
    bool isReady() const {
 | 
						|
      assert(isSchedulingEntity() &&
 | 
						|
             "can't consider non-scheduling entity for ready list");
 | 
						|
      return UnscheduledDepsInBundle == 0 && !IsScheduled;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Modifies the number of unscheduled dependencies, also updating it for
 | 
						|
    /// the whole bundle.
 | 
						|
    int incrementUnscheduledDeps(int Incr) {
 | 
						|
      UnscheduledDeps += Incr;
 | 
						|
      return FirstInBundle->UnscheduledDepsInBundle += Incr;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Sets the number of unscheduled dependencies to the number of
 | 
						|
    /// dependencies.
 | 
						|
    void resetUnscheduledDeps() {
 | 
						|
      incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Clears all dependency information.
 | 
						|
    void clearDependencies() {
 | 
						|
      Dependencies = InvalidDeps;
 | 
						|
      resetUnscheduledDeps();
 | 
						|
      MemoryDependencies.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    void dump(raw_ostream &os) const {
 | 
						|
      if (!isSchedulingEntity()) {
 | 
						|
        os << "/ " << *Inst;
 | 
						|
      } else if (NextInBundle) {
 | 
						|
        os << '[' << *Inst;
 | 
						|
        ScheduleData *SD = NextInBundle;
 | 
						|
        while (SD) {
 | 
						|
          os << ';' << *SD->Inst;
 | 
						|
          SD = SD->NextInBundle;
 | 
						|
        }
 | 
						|
        os << ']';
 | 
						|
      } else {
 | 
						|
        os << *Inst;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *Inst;
 | 
						|
 | 
						|
    /// Points to the head in an instruction bundle (and always to this for
 | 
						|
    /// single instructions).
 | 
						|
    ScheduleData *FirstInBundle;
 | 
						|
 | 
						|
    /// Single linked list of all instructions in a bundle. Null if it is a
 | 
						|
    /// single instruction.
 | 
						|
    ScheduleData *NextInBundle;
 | 
						|
 | 
						|
    /// Single linked list of all memory instructions (e.g. load, store, call)
 | 
						|
    /// in the block - until the end of the scheduling region.
 | 
						|
    ScheduleData *NextLoadStore;
 | 
						|
 | 
						|
    /// The dependent memory instructions.
 | 
						|
    /// This list is derived on demand in calculateDependencies().
 | 
						|
    SmallVector<ScheduleData *, 4> MemoryDependencies;
 | 
						|
 | 
						|
    /// This ScheduleData is in the current scheduling region if this matches
 | 
						|
    /// the current SchedulingRegionID of BlockScheduling.
 | 
						|
    int SchedulingRegionID;
 | 
						|
 | 
						|
    /// Used for getting a "good" final ordering of instructions.
 | 
						|
    int SchedulingPriority;
 | 
						|
 | 
						|
    /// The number of dependencies. Constitutes of the number of users of the
 | 
						|
    /// instruction plus the number of dependent memory instructions (if any).
 | 
						|
    /// This value is calculated on demand.
 | 
						|
    /// If InvalidDeps, the number of dependencies is not calculated yet.
 | 
						|
    ///
 | 
						|
    int Dependencies;
 | 
						|
 | 
						|
    /// The number of dependencies minus the number of dependencies of scheduled
 | 
						|
    /// instructions. As soon as this is zero, the instruction/bundle gets ready
 | 
						|
    /// for scheduling.
 | 
						|
    /// Note that this is negative as long as Dependencies is not calculated.
 | 
						|
    int UnscheduledDeps;
 | 
						|
 | 
						|
    /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
 | 
						|
    /// single instructions.
 | 
						|
    int UnscheduledDepsInBundle;
 | 
						|
 | 
						|
    /// True if this instruction is scheduled (or considered as scheduled in the
 | 
						|
    /// dry-run).
 | 
						|
    bool IsScheduled;
 | 
						|
  };
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  friend inline raw_ostream &operator<<(raw_ostream &os,
 | 
						|
                                        const BoUpSLP::ScheduleData &SD) {
 | 
						|
    SD.dump(os);
 | 
						|
    return os;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /// Contains all scheduling data for a basic block.
 | 
						|
  ///
 | 
						|
  struct BlockScheduling {
 | 
						|
 | 
						|
    BlockScheduling(BasicBlock *BB)
 | 
						|
        : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
 | 
						|
          ScheduleStart(nullptr), ScheduleEnd(nullptr),
 | 
						|
          FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
 | 
						|
          ScheduleRegionSize(0),
 | 
						|
          ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
 | 
						|
          // Make sure that the initial SchedulingRegionID is greater than the
 | 
						|
          // initial SchedulingRegionID in ScheduleData (which is 0).
 | 
						|
          SchedulingRegionID(1) {}
 | 
						|
 | 
						|
    void clear() {
 | 
						|
      ReadyInsts.clear();
 | 
						|
      ScheduleStart = nullptr;
 | 
						|
      ScheduleEnd = nullptr;
 | 
						|
      FirstLoadStoreInRegion = nullptr;
 | 
						|
      LastLoadStoreInRegion = nullptr;
 | 
						|
 | 
						|
      // Reduce the maximum schedule region size by the size of the
 | 
						|
      // previous scheduling run.
 | 
						|
      ScheduleRegionSizeLimit -= ScheduleRegionSize;
 | 
						|
      if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
 | 
						|
        ScheduleRegionSizeLimit = MinScheduleRegionSize;
 | 
						|
      ScheduleRegionSize = 0;
 | 
						|
 | 
						|
      // Make a new scheduling region, i.e. all existing ScheduleData is not
 | 
						|
      // in the new region yet.
 | 
						|
      ++SchedulingRegionID;
 | 
						|
    }
 | 
						|
 | 
						|
    ScheduleData *getScheduleData(Value *V) {
 | 
						|
      ScheduleData *SD = ScheduleDataMap[V];
 | 
						|
      if (SD && SD->SchedulingRegionID == SchedulingRegionID)
 | 
						|
        return SD;
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    bool isInSchedulingRegion(ScheduleData *SD) {
 | 
						|
      return SD->SchedulingRegionID == SchedulingRegionID;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Marks an instruction as scheduled and puts all dependent ready
 | 
						|
    /// instructions into the ready-list.
 | 
						|
    template <typename ReadyListType>
 | 
						|
    void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
 | 
						|
      SD->IsScheduled = true;
 | 
						|
      DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
 | 
						|
 | 
						|
      ScheduleData *BundleMember = SD;
 | 
						|
      while (BundleMember) {
 | 
						|
        // Handle the def-use chain dependencies.
 | 
						|
        for (Use &U : BundleMember->Inst->operands()) {
 | 
						|
          ScheduleData *OpDef = getScheduleData(U.get());
 | 
						|
          if (OpDef && OpDef->hasValidDependencies() &&
 | 
						|
              OpDef->incrementUnscheduledDeps(-1) == 0) {
 | 
						|
            // There are no more unscheduled dependencies after decrementing,
 | 
						|
            // so we can put the dependent instruction into the ready list.
 | 
						|
            ScheduleData *DepBundle = OpDef->FirstInBundle;
 | 
						|
            assert(!DepBundle->IsScheduled &&
 | 
						|
                   "already scheduled bundle gets ready");
 | 
						|
            ReadyList.insert(DepBundle);
 | 
						|
            DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // Handle the memory dependencies.
 | 
						|
        for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
 | 
						|
          if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
 | 
						|
            // There are no more unscheduled dependencies after decrementing,
 | 
						|
            // so we can put the dependent instruction into the ready list.
 | 
						|
            ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
 | 
						|
            assert(!DepBundle->IsScheduled &&
 | 
						|
                   "already scheduled bundle gets ready");
 | 
						|
            ReadyList.insert(DepBundle);
 | 
						|
            DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
 | 
						|
          }
 | 
						|
        }
 | 
						|
        BundleMember = BundleMember->NextInBundle;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Put all instructions into the ReadyList which are ready for scheduling.
 | 
						|
    template <typename ReadyListType>
 | 
						|
    void initialFillReadyList(ReadyListType &ReadyList) {
 | 
						|
      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | 
						|
        ScheduleData *SD = getScheduleData(I);
 | 
						|
        if (SD->isSchedulingEntity() && SD->isReady()) {
 | 
						|
          ReadyList.insert(SD);
 | 
						|
          DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Checks if a bundle of instructions can be scheduled, i.e. has no
 | 
						|
    /// cyclic dependencies. This is only a dry-run, no instructions are
 | 
						|
    /// actually moved at this stage.
 | 
						|
    bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
 | 
						|
 | 
						|
    /// Un-bundles a group of instructions.
 | 
						|
    void cancelScheduling(ArrayRef<Value *> VL);
 | 
						|
 | 
						|
    /// Extends the scheduling region so that V is inside the region.
 | 
						|
    /// \returns true if the region size is within the limit.
 | 
						|
    bool extendSchedulingRegion(Value *V);
 | 
						|
 | 
						|
    /// Initialize the ScheduleData structures for new instructions in the
 | 
						|
    /// scheduling region.
 | 
						|
    void initScheduleData(Instruction *FromI, Instruction *ToI,
 | 
						|
                          ScheduleData *PrevLoadStore,
 | 
						|
                          ScheduleData *NextLoadStore);
 | 
						|
 | 
						|
    /// Updates the dependency information of a bundle and of all instructions/
 | 
						|
    /// bundles which depend on the original bundle.
 | 
						|
    void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
 | 
						|
                               BoUpSLP *SLP);
 | 
						|
 | 
						|
    /// Sets all instruction in the scheduling region to un-scheduled.
 | 
						|
    void resetSchedule();
 | 
						|
 | 
						|
    BasicBlock *BB;
 | 
						|
 | 
						|
    /// Simple memory allocation for ScheduleData.
 | 
						|
    std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
 | 
						|
 | 
						|
    /// The size of a ScheduleData array in ScheduleDataChunks.
 | 
						|
    int ChunkSize;
 | 
						|
 | 
						|
    /// The allocator position in the current chunk, which is the last entry
 | 
						|
    /// of ScheduleDataChunks.
 | 
						|
    int ChunkPos;
 | 
						|
 | 
						|
    /// Attaches ScheduleData to Instruction.
 | 
						|
    /// Note that the mapping survives during all vectorization iterations, i.e.
 | 
						|
    /// ScheduleData structures are recycled.
 | 
						|
    DenseMap<Value *, ScheduleData *> ScheduleDataMap;
 | 
						|
 | 
						|
    struct ReadyList : SmallVector<ScheduleData *, 8> {
 | 
						|
      void insert(ScheduleData *SD) { push_back(SD); }
 | 
						|
    };
 | 
						|
 | 
						|
    /// The ready-list for scheduling (only used for the dry-run).
 | 
						|
    ReadyList ReadyInsts;
 | 
						|
 | 
						|
    /// The first instruction of the scheduling region.
 | 
						|
    Instruction *ScheduleStart;
 | 
						|
 | 
						|
    /// The first instruction _after_ the scheduling region.
 | 
						|
    Instruction *ScheduleEnd;
 | 
						|
 | 
						|
    /// The first memory accessing instruction in the scheduling region
 | 
						|
    /// (can be null).
 | 
						|
    ScheduleData *FirstLoadStoreInRegion;
 | 
						|
 | 
						|
    /// The last memory accessing instruction in the scheduling region
 | 
						|
    /// (can be null).
 | 
						|
    ScheduleData *LastLoadStoreInRegion;
 | 
						|
 | 
						|
    /// The current size of the scheduling region.
 | 
						|
    int ScheduleRegionSize;
 | 
						|
 | 
						|
    /// The maximum size allowed for the scheduling region.
 | 
						|
    int ScheduleRegionSizeLimit;
 | 
						|
 | 
						|
    /// The ID of the scheduling region. For a new vectorization iteration this
 | 
						|
    /// is incremented which "removes" all ScheduleData from the region.
 | 
						|
    int SchedulingRegionID;
 | 
						|
  };
 | 
						|
 | 
						|
  /// Attaches the BlockScheduling structures to basic blocks.
 | 
						|
  MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
 | 
						|
 | 
						|
  /// Performs the "real" scheduling. Done before vectorization is actually
 | 
						|
  /// performed in a basic block.
 | 
						|
  void scheduleBlock(BlockScheduling *BS);
 | 
						|
 | 
						|
  /// List of users to ignore during scheduling and that don't need extracting.
 | 
						|
  ArrayRef<Value *> UserIgnoreList;
 | 
						|
 | 
						|
  // Number of load-bundles, which contain consecutive loads.
 | 
						|
  int NumLoadsWantToKeepOrder;
 | 
						|
 | 
						|
  // Number of load-bundles of size 2, which are consecutive loads if reversed.
 | 
						|
  int NumLoadsWantToChangeOrder;
 | 
						|
 | 
						|
  // Analysis and block reference.
 | 
						|
  Function *F;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  TargetTransformInfo *TTI;
 | 
						|
  TargetLibraryInfo *TLI;
 | 
						|
  AliasAnalysis *AA;
 | 
						|
  LoopInfo *LI;
 | 
						|
  DominatorTree *DT;
 | 
						|
  AssumptionCache *AC;
 | 
						|
  DemandedBits *DB;
 | 
						|
  const DataLayout *DL;
 | 
						|
  unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
 | 
						|
  unsigned MinVecRegSize; // Set by cl::opt (default: 128).
 | 
						|
  /// Instruction builder to construct the vectorized tree.
 | 
						|
  IRBuilder<> Builder;
 | 
						|
 | 
						|
  /// A map of scalar integer values to the smallest bit width with which they
 | 
						|
  /// can legally be represented.
 | 
						|
  MapVector<Value *, uint64_t> MinBWs;
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
} // end namespace slpvectorizer
 | 
						|
 | 
						|
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
 | 
						|
                        ArrayRef<Value *> UserIgnoreLst) {
 | 
						|
  deleteTree();
 | 
						|
  UserIgnoreList = UserIgnoreLst;
 | 
						|
  if (!getSameType(Roots))
 | 
						|
    return;
 | 
						|
  buildTree_rec(Roots, 0);
 | 
						|
 | 
						|
  // Collect the values that we need to extract from the tree.
 | 
						|
  for (TreeEntry &EIdx : VectorizableTree) {
 | 
						|
    TreeEntry *Entry = &EIdx;
 | 
						|
 | 
						|
    // For each lane:
 | 
						|
    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | 
						|
      Value *Scalar = Entry->Scalars[Lane];
 | 
						|
 | 
						|
      // No need to handle users of gathered values.
 | 
						|
      if (Entry->NeedToGather)
 | 
						|
        continue;
 | 
						|
 | 
						|
      for (User *U : Scalar->users()) {
 | 
						|
        DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
 | 
						|
 | 
						|
        Instruction *UserInst = dyn_cast<Instruction>(U);
 | 
						|
        if (!UserInst)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Skip in-tree scalars that become vectors
 | 
						|
        if (ScalarToTreeEntry.count(U)) {
 | 
						|
          int Idx = ScalarToTreeEntry[U];
 | 
						|
          TreeEntry *UseEntry = &VectorizableTree[Idx];
 | 
						|
          Value *UseScalar = UseEntry->Scalars[0];
 | 
						|
          // Some in-tree scalars will remain as scalar in vectorized
 | 
						|
          // instructions. If that is the case, the one in Lane 0 will
 | 
						|
          // be used.
 | 
						|
          if (UseScalar != U ||
 | 
						|
              !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
 | 
						|
            DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
 | 
						|
                         << ".\n");
 | 
						|
            assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Ignore users in the user ignore list.
 | 
						|
        if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
 | 
						|
            UserIgnoreList.end())
 | 
						|
          continue;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
 | 
						|
              Lane << " from " << *Scalar << ".\n");
 | 
						|
        ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
 | 
						|
  bool SameTy = allConstant(VL) || getSameType(VL); (void)SameTy;
 | 
						|
  bool isAltShuffle = false;
 | 
						|
  assert(SameTy && "Invalid types!");
 | 
						|
 | 
						|
  if (Depth == RecursionMaxDepth) {
 | 
						|
    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
 | 
						|
    newTreeEntry(VL, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't handle vectors.
 | 
						|
  if (VL[0]->getType()->isVectorTy()) {
 | 
						|
    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
 | 
						|
    newTreeEntry(VL, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | 
						|
    if (SI->getValueOperand()->getType()->isVectorTy()) {
 | 
						|
      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
 | 
						|
      newTreeEntry(VL, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  unsigned Opcode = getSameOpcode(VL);
 | 
						|
 | 
						|
  // Check that this shuffle vector refers to the alternate
 | 
						|
  // sequence of opcodes.
 | 
						|
  if (Opcode == Instruction::ShuffleVector) {
 | 
						|
    Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						|
    unsigned Op = I0->getOpcode();
 | 
						|
    if (Op != Instruction::ShuffleVector)
 | 
						|
      isAltShuffle = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of the operands are identical or constant we have a simple solution.
 | 
						|
  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
 | 
						|
    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
 | 
						|
    newTreeEntry(VL, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We now know that this is a vector of instructions of the same type from
 | 
						|
  // the same block.
 | 
						|
 | 
						|
  // Don't vectorize ephemeral values.
 | 
						|
  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
    if (EphValues.count(VL[i])) {
 | 
						|
      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
 | 
						|
            ") is ephemeral.\n");
 | 
						|
      newTreeEntry(VL, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if this is a duplicate of another entry.
 | 
						|
  if (ScalarToTreeEntry.count(VL[0])) {
 | 
						|
    int Idx = ScalarToTreeEntry[VL[0]];
 | 
						|
    TreeEntry *E = &VectorizableTree[Idx];
 | 
						|
    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
 | 
						|
      if (E->Scalars[i] != VL[i]) {
 | 
						|
        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
 | 
						|
        newTreeEntry(VL, false);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that none of the instructions in the bundle are already in the tree.
 | 
						|
  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
    if (ScalarToTreeEntry.count(VL[i])) {
 | 
						|
      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
 | 
						|
            ") is already in tree.\n");
 | 
						|
      newTreeEntry(VL, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If any of the scalars is marked as a value that needs to stay scalar then
 | 
						|
  // we need to gather the scalars.
 | 
						|
  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | 
						|
    if (MustGather.count(VL[i])) {
 | 
						|
      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
 | 
						|
      newTreeEntry(VL, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that all of the users of the scalars that we want to vectorize are
 | 
						|
  // schedulable.
 | 
						|
  Instruction *VL0 = cast<Instruction>(VL[0]);
 | 
						|
  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
 | 
						|
 | 
						|
  if (!DT->isReachableFromEntry(BB)) {
 | 
						|
    // Don't go into unreachable blocks. They may contain instructions with
 | 
						|
    // dependency cycles which confuse the final scheduling.
 | 
						|
    DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
 | 
						|
    newTreeEntry(VL, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that every instructions appears once in this bundle.
 | 
						|
  for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | 
						|
    for (unsigned j = i+1; j < e; ++j)
 | 
						|
      if (VL[i] == VL[j]) {
 | 
						|
        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
 | 
						|
        newTreeEntry(VL, false);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
  auto &BSRef = BlocksSchedules[BB];
 | 
						|
  if (!BSRef) {
 | 
						|
    BSRef = llvm::make_unique<BlockScheduling>(BB);
 | 
						|
  }
 | 
						|
  BlockScheduling &BS = *BSRef.get();
 | 
						|
 | 
						|
  if (!BS.tryScheduleBundle(VL, this)) {
 | 
						|
    DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
 | 
						|
    assert((!BS.getScheduleData(VL[0]) ||
 | 
						|
            !BS.getScheduleData(VL[0])->isPartOfBundle()) &&
 | 
						|
           "tryScheduleBundle should cancelScheduling on failure");
 | 
						|
    newTreeEntry(VL, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
    case Instruction::PHI: {
 | 
						|
      PHINode *PH = dyn_cast<PHINode>(VL0);
 | 
						|
 | 
						|
      // Check for terminator values (e.g. invoke).
 | 
						|
      for (unsigned j = 0; j < VL.size(); ++j)
 | 
						|
        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | 
						|
          TerminatorInst *Term = dyn_cast<TerminatorInst>(
 | 
						|
              cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
 | 
						|
          if (Term) {
 | 
						|
            DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
 | 
						|
            BS.cancelScheduling(VL);
 | 
						|
            newTreeEntry(VL, false);
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
 | 
						|
 | 
						|
      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (Value *j : VL)
 | 
						|
          Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
 | 
						|
              PH->getIncomingBlock(i)));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth + 1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::ExtractValue:
 | 
						|
    case Instruction::ExtractElement: {
 | 
						|
      bool Reuse = canReuseExtract(VL, Opcode);
 | 
						|
      if (Reuse) {
 | 
						|
        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
 | 
						|
      } else {
 | 
						|
        BS.cancelScheduling(VL);
 | 
						|
      }
 | 
						|
      newTreeEntry(VL, Reuse);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::Load: {
 | 
						|
      // Check that a vectorized load would load the same memory as a scalar
 | 
						|
      // load.
 | 
						|
      // For example we don't want vectorize loads that are smaller than 8 bit.
 | 
						|
      // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
 | 
						|
      // loading/storing it as an i8 struct. If we vectorize loads/stores from
 | 
						|
      // such a struct we read/write packed bits disagreeing with the
 | 
						|
      // unvectorized version.
 | 
						|
      Type *ScalarTy = VL[0]->getType();
 | 
						|
 | 
						|
      if (DL->getTypeSizeInBits(ScalarTy) !=
 | 
						|
          DL->getTypeAllocSizeInBits(ScalarTy)) {
 | 
						|
        BS.cancelScheduling(VL);
 | 
						|
        newTreeEntry(VL, false);
 | 
						|
        DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // Check if the loads are consecutive or of we need to swizzle them.
 | 
						|
      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
 | 
						|
        LoadInst *L = cast<LoadInst>(VL[i]);
 | 
						|
        if (!L->isSimple()) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
 | 
						|
          if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], *DL, *SE)) {
 | 
						|
            ++NumLoadsWantToChangeOrder;
 | 
						|
          }
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ++NumLoadsWantToKeepOrder;
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::BitCast: {
 | 
						|
      Type *SrcTy = VL0->getOperand(0)->getType();
 | 
						|
      for (unsigned i = 0; i < VL.size(); ++i) {
 | 
						|
        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
 | 
						|
        if (Ty != SrcTy || !isValidElementType(Ty)) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
 | 
						|
 | 
						|
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (Value *j : VL)
 | 
						|
          Operands.push_back(cast<Instruction>(j)->getOperand(i));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth+1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp: {
 | 
						|
      // Check that all of the compares have the same predicate.
 | 
						|
      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
 | 
						|
      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
 | 
						|
      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | 
						|
        CmpInst *Cmp = cast<CmpInst>(VL[i]);
 | 
						|
        if (Cmp->getPredicate() != P0 ||
 | 
						|
            Cmp->getOperand(0)->getType() != ComparedTy) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
 | 
						|
 | 
						|
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (Value *j : VL)
 | 
						|
          Operands.push_back(cast<Instruction>(j)->getOperand(i));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth+1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::Select:
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
 | 
						|
 | 
						|
      // Sort operands of the instructions so that each side is more likely to
 | 
						|
      // have the same opcode.
 | 
						|
      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
 | 
						|
        ValueList Left, Right;
 | 
						|
        reorderInputsAccordingToOpcode(VL, Left, Right);
 | 
						|
        buildTree_rec(Left, Depth + 1);
 | 
						|
        buildTree_rec(Right, Depth + 1);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (Value *j : VL)
 | 
						|
          Operands.push_back(cast<Instruction>(j)->getOperand(i));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth+1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      // We don't combine GEPs with complicated (nested) indexing.
 | 
						|
      for (unsigned j = 0; j < VL.size(); ++j) {
 | 
						|
        if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
 | 
						|
          DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // We can't combine several GEPs into one vector if they operate on
 | 
						|
      // different types.
 | 
						|
      Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
 | 
						|
      for (unsigned j = 0; j < VL.size(); ++j) {
 | 
						|
        Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
 | 
						|
        if (Ty0 != CurTy) {
 | 
						|
          DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // We don't combine GEPs with non-constant indexes.
 | 
						|
      for (unsigned j = 0; j < VL.size(); ++j) {
 | 
						|
        auto Op = cast<Instruction>(VL[j])->getOperand(1);
 | 
						|
        if (!isa<ConstantInt>(Op)) {
 | 
						|
          DEBUG(
 | 
						|
              dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
 | 
						|
      for (unsigned i = 0, e = 2; i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (Value *j : VL)
 | 
						|
          Operands.push_back(cast<Instruction>(j)->getOperand(i));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth + 1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::Store: {
 | 
						|
      // Check if the stores are consecutive or of we need to swizzle them.
 | 
						|
      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
 | 
						|
        if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
 | 
						|
 | 
						|
      ValueList Operands;
 | 
						|
      for (Value *j : VL)
 | 
						|
        Operands.push_back(cast<Instruction>(j)->getOperand(0));
 | 
						|
 | 
						|
      buildTree_rec(Operands, Depth + 1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::Call: {
 | 
						|
      // Check if the calls are all to the same vectorizable intrinsic.
 | 
						|
      CallInst *CI = cast<CallInst>(VL[0]);
 | 
						|
      // Check if this is an Intrinsic call or something that can be
 | 
						|
      // represented by an intrinsic call
 | 
						|
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | 
						|
      if (!isTriviallyVectorizable(ID)) {
 | 
						|
        BS.cancelScheduling(VL);
 | 
						|
        newTreeEntry(VL, false);
 | 
						|
        DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      Function *Int = CI->getCalledFunction();
 | 
						|
      Value *A1I = nullptr;
 | 
						|
      if (hasVectorInstrinsicScalarOpd(ID, 1))
 | 
						|
        A1I = CI->getArgOperand(1);
 | 
						|
      for (unsigned i = 1, e = VL.size(); i != e; ++i) {
 | 
						|
        CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
 | 
						|
        if (!CI2 || CI2->getCalledFunction() != Int ||
 | 
						|
            getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
 | 
						|
            !CI->hasIdenticalOperandBundleSchema(*CI2)) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
 | 
						|
                       << "\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        // ctlz,cttz and powi are special intrinsics whose second argument
 | 
						|
        // should be same in order for them to be vectorized.
 | 
						|
        if (hasVectorInstrinsicScalarOpd(ID, 1)) {
 | 
						|
          Value *A1J = CI2->getArgOperand(1);
 | 
						|
          if (A1I != A1J) {
 | 
						|
            BS.cancelScheduling(VL);
 | 
						|
            newTreeEntry(VL, false);
 | 
						|
            DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
 | 
						|
                         << " argument "<< A1I<<"!=" << A1J
 | 
						|
                         << "\n");
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // Verify that the bundle operands are identical between the two calls.
 | 
						|
        if (CI->hasOperandBundles() &&
 | 
						|
            !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
 | 
						|
                        CI->op_begin() + CI->getBundleOperandsEndIndex(),
 | 
						|
                        CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
 | 
						|
          BS.cancelScheduling(VL);
 | 
						|
          newTreeEntry(VL, false);
 | 
						|
          DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="
 | 
						|
                       << *VL[i] << '\n');
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (Value *j : VL) {
 | 
						|
          CallInst *CI2 = dyn_cast<CallInst>(j);
 | 
						|
          Operands.push_back(CI2->getArgOperand(i));
 | 
						|
        }
 | 
						|
        buildTree_rec(Operands, Depth + 1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::ShuffleVector: {
 | 
						|
      // If this is not an alternate sequence of opcode like add-sub
 | 
						|
      // then do not vectorize this instruction.
 | 
						|
      if (!isAltShuffle) {
 | 
						|
        BS.cancelScheduling(VL);
 | 
						|
        newTreeEntry(VL, false);
 | 
						|
        DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      newTreeEntry(VL, true);
 | 
						|
      DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
 | 
						|
 | 
						|
      // Reorder operands if reordering would enable vectorization.
 | 
						|
      if (isa<BinaryOperator>(VL0)) {
 | 
						|
        ValueList Left, Right;
 | 
						|
        reorderAltShuffleOperands(VL, Left, Right);
 | 
						|
        buildTree_rec(Left, Depth + 1);
 | 
						|
        buildTree_rec(Right, Depth + 1);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (Value *j : VL)
 | 
						|
          Operands.push_back(cast<Instruction>(j)->getOperand(i));
 | 
						|
 | 
						|
        buildTree_rec(Operands, Depth + 1);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      BS.cancelScheduling(VL);
 | 
						|
      newTreeEntry(VL, false);
 | 
						|
      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
 | 
						|
      return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
 | 
						|
  unsigned N;
 | 
						|
  Type *EltTy;
 | 
						|
  auto *ST = dyn_cast<StructType>(T);
 | 
						|
  if (ST) {
 | 
						|
    N = ST->getNumElements();
 | 
						|
    EltTy = *ST->element_begin();
 | 
						|
  } else {
 | 
						|
    N = cast<ArrayType>(T)->getNumElements();
 | 
						|
    EltTy = cast<ArrayType>(T)->getElementType();
 | 
						|
  }
 | 
						|
  if (!isValidElementType(EltTy))
 | 
						|
    return 0;
 | 
						|
  uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
 | 
						|
  if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
 | 
						|
    return 0;
 | 
						|
  if (ST) {
 | 
						|
    // Check that struct is homogeneous.
 | 
						|
    for (const auto *Ty : ST->elements())
 | 
						|
      if (Ty != EltTy)
 | 
						|
        return 0;
 | 
						|
  }
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const {
 | 
						|
  assert(Opcode == Instruction::ExtractElement ||
 | 
						|
         Opcode == Instruction::ExtractValue);
 | 
						|
  assert(Opcode == getSameOpcode(VL) && "Invalid opcode");
 | 
						|
  // Check if all of the extracts come from the same vector and from the
 | 
						|
  // correct offset.
 | 
						|
  Value *VL0 = VL[0];
 | 
						|
  Instruction *E0 = cast<Instruction>(VL0);
 | 
						|
  Value *Vec = E0->getOperand(0);
 | 
						|
 | 
						|
  // We have to extract from a vector/aggregate with the same number of elements.
 | 
						|
  unsigned NElts;
 | 
						|
  if (Opcode == Instruction::ExtractValue) {
 | 
						|
    const DataLayout &DL = E0->getModule()->getDataLayout();
 | 
						|
    NElts = canMapToVector(Vec->getType(), DL);
 | 
						|
    if (!NElts)
 | 
						|
      return false;
 | 
						|
    // Check if load can be rewritten as load of vector.
 | 
						|
    LoadInst *LI = dyn_cast<LoadInst>(Vec);
 | 
						|
    if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    NElts = Vec->getType()->getVectorNumElements();
 | 
						|
  }
 | 
						|
 | 
						|
  if (NElts != VL.size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that all of the indices extract from the correct offset.
 | 
						|
  if (!matchExtractIndex(E0, 0, Opcode))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | 
						|
    Instruction *E = cast<Instruction>(VL[i]);
 | 
						|
    if (!matchExtractIndex(E, i, Opcode))
 | 
						|
      return false;
 | 
						|
    if (E->getOperand(0) != Vec)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
int BoUpSLP::getEntryCost(TreeEntry *E) {
 | 
						|
  ArrayRef<Value*> VL = E->Scalars;
 | 
						|
 | 
						|
  Type *ScalarTy = VL[0]->getType();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | 
						|
    ScalarTy = SI->getValueOperand()->getType();
 | 
						|
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | 
						|
 | 
						|
  // If we have computed a smaller type for the expression, update VecTy so
 | 
						|
  // that the costs will be accurate.
 | 
						|
  if (MinBWs.count(VL[0]))
 | 
						|
    VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]),
 | 
						|
                            VL.size());
 | 
						|
 | 
						|
  if (E->NeedToGather) {
 | 
						|
    if (allConstant(VL))
 | 
						|
      return 0;
 | 
						|
    if (isSplat(VL)) {
 | 
						|
      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
 | 
						|
    }
 | 
						|
    return getGatherCost(E->Scalars);
 | 
						|
  }
 | 
						|
  unsigned Opcode = getSameOpcode(VL);
 | 
						|
  assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
 | 
						|
  Instruction *VL0 = cast<Instruction>(VL[0]);
 | 
						|
  switch (Opcode) {
 | 
						|
    case Instruction::PHI: {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    case Instruction::ExtractValue:
 | 
						|
    case Instruction::ExtractElement: {
 | 
						|
      if (canReuseExtract(VL, Opcode)) {
 | 
						|
        int DeadCost = 0;
 | 
						|
        for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | 
						|
          Instruction *E = cast<Instruction>(VL[i]);
 | 
						|
          if (E->hasOneUse())
 | 
						|
            // Take credit for instruction that will become dead.
 | 
						|
            DeadCost +=
 | 
						|
                TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
 | 
						|
        }
 | 
						|
        return -DeadCost;
 | 
						|
      }
 | 
						|
      return getGatherCost(VecTy);
 | 
						|
    }
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::BitCast: {
 | 
						|
      Type *SrcTy = VL0->getOperand(0)->getType();
 | 
						|
 | 
						|
      // Calculate the cost of this instruction.
 | 
						|
      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
 | 
						|
                                                         VL0->getType(), SrcTy);
 | 
						|
 | 
						|
      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
 | 
						|
      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
 | 
						|
      return VecCost - ScalarCost;
 | 
						|
    }
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::Select: {
 | 
						|
      // Calculate the cost of this instruction.
 | 
						|
      VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
 | 
						|
      int ScalarCost = VecTy->getNumElements() *
 | 
						|
          TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
 | 
						|
      int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
 | 
						|
      return VecCost - ScalarCost;
 | 
						|
    }
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      // Certain instructions can be cheaper to vectorize if they have a
 | 
						|
      // constant second vector operand.
 | 
						|
      TargetTransformInfo::OperandValueKind Op1VK =
 | 
						|
          TargetTransformInfo::OK_AnyValue;
 | 
						|
      TargetTransformInfo::OperandValueKind Op2VK =
 | 
						|
          TargetTransformInfo::OK_UniformConstantValue;
 | 
						|
      TargetTransformInfo::OperandValueProperties Op1VP =
 | 
						|
          TargetTransformInfo::OP_None;
 | 
						|
      TargetTransformInfo::OperandValueProperties Op2VP =
 | 
						|
          TargetTransformInfo::OP_None;
 | 
						|
 | 
						|
      // If all operands are exactly the same ConstantInt then set the
 | 
						|
      // operand kind to OK_UniformConstantValue.
 | 
						|
      // If instead not all operands are constants, then set the operand kind
 | 
						|
      // to OK_AnyValue. If all operands are constants but not the same,
 | 
						|
      // then set the operand kind to OK_NonUniformConstantValue.
 | 
						|
      ConstantInt *CInt = nullptr;
 | 
						|
      for (unsigned i = 0; i < VL.size(); ++i) {
 | 
						|
        const Instruction *I = cast<Instruction>(VL[i]);
 | 
						|
        if (!isa<ConstantInt>(I->getOperand(1))) {
 | 
						|
          Op2VK = TargetTransformInfo::OK_AnyValue;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (i == 0) {
 | 
						|
          CInt = cast<ConstantInt>(I->getOperand(1));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
 | 
						|
            CInt != cast<ConstantInt>(I->getOperand(1)))
 | 
						|
          Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
 | 
						|
      }
 | 
						|
      // FIXME: Currently cost of model modification for division by power of
 | 
						|
      // 2 is handled for X86 and AArch64. Add support for other targets.
 | 
						|
      if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
 | 
						|
          CInt->getValue().isPowerOf2())
 | 
						|
        Op2VP = TargetTransformInfo::OP_PowerOf2;
 | 
						|
 | 
						|
      int ScalarCost = VecTy->getNumElements() *
 | 
						|
                       TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK,
 | 
						|
                                                   Op2VK, Op1VP, Op2VP);
 | 
						|
      int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
 | 
						|
                                                Op1VP, Op2VP);
 | 
						|
      return VecCost - ScalarCost;
 | 
						|
    }
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      TargetTransformInfo::OperandValueKind Op1VK =
 | 
						|
          TargetTransformInfo::OK_AnyValue;
 | 
						|
      TargetTransformInfo::OperandValueKind Op2VK =
 | 
						|
          TargetTransformInfo::OK_UniformConstantValue;
 | 
						|
 | 
						|
      int ScalarCost =
 | 
						|
          VecTy->getNumElements() *
 | 
						|
          TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
 | 
						|
      int VecCost =
 | 
						|
          TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
 | 
						|
 | 
						|
      return VecCost - ScalarCost;
 | 
						|
    }
 | 
						|
    case Instruction::Load: {
 | 
						|
      // Cost of wide load - cost of scalar loads.
 | 
						|
      unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment();
 | 
						|
      int ScalarLdCost = VecTy->getNumElements() *
 | 
						|
            TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0);
 | 
						|
      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load,
 | 
						|
                                           VecTy, alignment, 0);
 | 
						|
      return VecLdCost - ScalarLdCost;
 | 
						|
    }
 | 
						|
    case Instruction::Store: {
 | 
						|
      // We know that we can merge the stores. Calculate the cost.
 | 
						|
      unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment();
 | 
						|
      int ScalarStCost = VecTy->getNumElements() *
 | 
						|
            TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0);
 | 
						|
      int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
 | 
						|
                                           VecTy, alignment, 0);
 | 
						|
      return VecStCost - ScalarStCost;
 | 
						|
    }
 | 
						|
    case Instruction::Call: {
 | 
						|
      CallInst *CI = cast<CallInst>(VL0);
 | 
						|
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | 
						|
 | 
						|
      // Calculate the cost of the scalar and vector calls.
 | 
						|
      SmallVector<Type*, 4> ScalarTys, VecTys;
 | 
						|
      for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
 | 
						|
        ScalarTys.push_back(CI->getArgOperand(op)->getType());
 | 
						|
        VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
 | 
						|
                                         VecTy->getNumElements()));
 | 
						|
      }
 | 
						|
 | 
						|
      FastMathFlags FMF;
 | 
						|
      if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
 | 
						|
        FMF = FPMO->getFastMathFlags();
 | 
						|
 | 
						|
      int ScalarCallCost = VecTy->getNumElements() *
 | 
						|
          TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
 | 
						|
 | 
						|
      int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF);
 | 
						|
 | 
						|
      DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
 | 
						|
            << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
 | 
						|
            << " for " << *CI << "\n");
 | 
						|
 | 
						|
      return VecCallCost - ScalarCallCost;
 | 
						|
    }
 | 
						|
    case Instruction::ShuffleVector: {
 | 
						|
      TargetTransformInfo::OperandValueKind Op1VK =
 | 
						|
          TargetTransformInfo::OK_AnyValue;
 | 
						|
      TargetTransformInfo::OperandValueKind Op2VK =
 | 
						|
          TargetTransformInfo::OK_AnyValue;
 | 
						|
      int ScalarCost = 0;
 | 
						|
      int VecCost = 0;
 | 
						|
      for (Value *i : VL) {
 | 
						|
        Instruction *I = cast<Instruction>(i);
 | 
						|
        if (!I)
 | 
						|
          break;
 | 
						|
        ScalarCost +=
 | 
						|
            TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
 | 
						|
      }
 | 
						|
      // VecCost is equal to sum of the cost of creating 2 vectors
 | 
						|
      // and the cost of creating shuffle.
 | 
						|
      Instruction *I0 = cast<Instruction>(VL[0]);
 | 
						|
      VecCost =
 | 
						|
          TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
 | 
						|
      Instruction *I1 = cast<Instruction>(VL[1]);
 | 
						|
      VecCost +=
 | 
						|
          TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
 | 
						|
      VecCost +=
 | 
						|
          TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
 | 
						|
      return VecCost - ScalarCost;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown instruction");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool BoUpSLP::isFullyVectorizableTinyTree() {
 | 
						|
  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
 | 
						|
        VectorizableTree.size() << " is fully vectorizable .\n");
 | 
						|
 | 
						|
  // We only handle trees of height 2.
 | 
						|
  if (VectorizableTree.size() != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Handle splat and all-constants stores.
 | 
						|
  if (!VectorizableTree[0].NeedToGather &&
 | 
						|
      (allConstant(VectorizableTree[1].Scalars) ||
 | 
						|
       isSplat(VectorizableTree[1].Scalars)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Gathering cost would be too much for tiny trees.
 | 
						|
  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
int BoUpSLP::getSpillCost() {
 | 
						|
  // Walk from the bottom of the tree to the top, tracking which values are
 | 
						|
  // live. When we see a call instruction that is not part of our tree,
 | 
						|
  // query TTI to see if there is a cost to keeping values live over it
 | 
						|
  // (for example, if spills and fills are required).
 | 
						|
  unsigned BundleWidth = VectorizableTree.front().Scalars.size();
 | 
						|
  int Cost = 0;
 | 
						|
 | 
						|
  SmallPtrSet<Instruction*, 4> LiveValues;
 | 
						|
  Instruction *PrevInst = nullptr;
 | 
						|
 | 
						|
  for (const auto &N : VectorizableTree) {
 | 
						|
    Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
 | 
						|
    if (!Inst)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!PrevInst) {
 | 
						|
      PrevInst = Inst;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Update LiveValues.
 | 
						|
    LiveValues.erase(PrevInst);
 | 
						|
    for (auto &J : PrevInst->operands()) {
 | 
						|
      if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
 | 
						|
        LiveValues.insert(cast<Instruction>(&*J));
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(
 | 
						|
      dbgs() << "SLP: #LV: " << LiveValues.size();
 | 
						|
      for (auto *X : LiveValues)
 | 
						|
        dbgs() << " " << X->getName();
 | 
						|
      dbgs() << ", Looking at ";
 | 
						|
      Inst->dump();
 | 
						|
      );
 | 
						|
 | 
						|
    // Now find the sequence of instructions between PrevInst and Inst.
 | 
						|
    BasicBlock::reverse_iterator InstIt(Inst->getIterator()),
 | 
						|
        PrevInstIt(PrevInst->getIterator());
 | 
						|
    --PrevInstIt;
 | 
						|
    while (InstIt != PrevInstIt) {
 | 
						|
      if (PrevInstIt == PrevInst->getParent()->rend()) {
 | 
						|
        PrevInstIt = Inst->getParent()->rbegin();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
 | 
						|
        SmallVector<Type*, 4> V;
 | 
						|
        for (auto *II : LiveValues)
 | 
						|
          V.push_back(VectorType::get(II->getType(), BundleWidth));
 | 
						|
        Cost += TTI->getCostOfKeepingLiveOverCall(V);
 | 
						|
      }
 | 
						|
 | 
						|
      ++PrevInstIt;
 | 
						|
    }
 | 
						|
 | 
						|
    PrevInst = Inst;
 | 
						|
  }
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int BoUpSLP::getTreeCost() {
 | 
						|
  int Cost = 0;
 | 
						|
  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
 | 
						|
        VectorizableTree.size() << ".\n");
 | 
						|
 | 
						|
  // We only vectorize tiny trees if it is fully vectorizable.
 | 
						|
  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
 | 
						|
    if (VectorizableTree.empty()) {
 | 
						|
      assert(!ExternalUses.size() && "We should not have any external users");
 | 
						|
    }
 | 
						|
    return INT_MAX;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
 | 
						|
 | 
						|
  for (TreeEntry &TE : VectorizableTree) {
 | 
						|
    int C = getEntryCost(&TE);
 | 
						|
    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
 | 
						|
                 << *TE.Scalars[0] << ".\n");
 | 
						|
    Cost += C;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallSet<Value *, 16> ExtractCostCalculated;
 | 
						|
  int ExtractCost = 0;
 | 
						|
  for (ExternalUser &EU : ExternalUses) {
 | 
						|
    // We only add extract cost once for the same scalar.
 | 
						|
    if (!ExtractCostCalculated.insert(EU.Scalar).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Uses by ephemeral values are free (because the ephemeral value will be
 | 
						|
    // removed prior to code generation, and so the extraction will be
 | 
						|
    // removed as well).
 | 
						|
    if (EphValues.count(EU.User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If we plan to rewrite the tree in a smaller type, we will need to sign
 | 
						|
    // extend the extracted value back to the original type. Here, we account
 | 
						|
    // for the extract and the added cost of the sign extend if needed.
 | 
						|
    auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
 | 
						|
    auto *ScalarRoot = VectorizableTree[0].Scalars[0];
 | 
						|
    if (MinBWs.count(ScalarRoot)) {
 | 
						|
      auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]);
 | 
						|
      VecTy = VectorType::get(MinTy, BundleWidth);
 | 
						|
      ExtractCost += TTI->getExtractWithExtendCost(
 | 
						|
          Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane);
 | 
						|
    } else {
 | 
						|
      ExtractCost +=
 | 
						|
          TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  int SpillCost = getSpillCost();
 | 
						|
  Cost += SpillCost + ExtractCost;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n"
 | 
						|
               << "SLP: Extract Cost = " << ExtractCost << ".\n"
 | 
						|
               << "SLP: Total Cost = " << Cost << ".\n");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int BoUpSLP::getGatherCost(Type *Ty) {
 | 
						|
  int Cost = 0;
 | 
						|
  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
 | 
						|
    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
 | 
						|
  // Find the type of the operands in VL.
 | 
						|
  Type *ScalarTy = VL[0]->getType();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | 
						|
    ScalarTy = SI->getValueOperand()->getType();
 | 
						|
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | 
						|
  // Find the cost of inserting/extracting values from the vector.
 | 
						|
  return getGatherCost(VecTy);
 | 
						|
}
 | 
						|
 | 
						|
// Reorder commutative operations in alternate shuffle if the resulting vectors
 | 
						|
// are consecutive loads. This would allow us to vectorize the tree.
 | 
						|
// If we have something like-
 | 
						|
// load a[0] - load b[0]
 | 
						|
// load b[1] + load a[1]
 | 
						|
// load a[2] - load b[2]
 | 
						|
// load a[3] + load b[3]
 | 
						|
// Reordering the second load b[1]  load a[1] would allow us to vectorize this
 | 
						|
// code.
 | 
						|
void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
 | 
						|
                                        SmallVectorImpl<Value *> &Left,
 | 
						|
                                        SmallVectorImpl<Value *> &Right) {
 | 
						|
  // Push left and right operands of binary operation into Left and Right
 | 
						|
  for (Value *i : VL) {
 | 
						|
    Left.push_back(cast<Instruction>(i)->getOperand(0));
 | 
						|
    Right.push_back(cast<Instruction>(i)->getOperand(1));
 | 
						|
  }
 | 
						|
 | 
						|
  // Reorder if we have a commutative operation and consecutive access
 | 
						|
  // are on either side of the alternate instructions.
 | 
						|
  for (unsigned j = 0; j < VL.size() - 1; ++j) {
 | 
						|
    if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
 | 
						|
      if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
 | 
						|
        Instruction *VL1 = cast<Instruction>(VL[j]);
 | 
						|
        Instruction *VL2 = cast<Instruction>(VL[j + 1]);
 | 
						|
        if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
 | 
						|
          std::swap(Left[j], Right[j]);
 | 
						|
          continue;
 | 
						|
        } else if (VL2->isCommutative() &&
 | 
						|
                   isConsecutiveAccess(L, L1, *DL, *SE)) {
 | 
						|
          std::swap(Left[j + 1], Right[j + 1]);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // else unchanged
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
 | 
						|
      if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
 | 
						|
        Instruction *VL1 = cast<Instruction>(VL[j]);
 | 
						|
        Instruction *VL2 = cast<Instruction>(VL[j + 1]);
 | 
						|
        if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
 | 
						|
          std::swap(Left[j], Right[j]);
 | 
						|
          continue;
 | 
						|
        } else if (VL2->isCommutative() &&
 | 
						|
                   isConsecutiveAccess(L, L1, *DL, *SE)) {
 | 
						|
          std::swap(Left[j + 1], Right[j + 1]);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // else unchanged
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Return true if I should be commuted before adding it's left and right
 | 
						|
// operands to the arrays Left and Right.
 | 
						|
//
 | 
						|
// The vectorizer is trying to either have all elements one side being
 | 
						|
// instruction with the same opcode to enable further vectorization, or having
 | 
						|
// a splat to lower the vectorizing cost.
 | 
						|
static bool shouldReorderOperands(int i, Instruction &I,
 | 
						|
                                  SmallVectorImpl<Value *> &Left,
 | 
						|
                                  SmallVectorImpl<Value *> &Right,
 | 
						|
                                  bool AllSameOpcodeLeft,
 | 
						|
                                  bool AllSameOpcodeRight, bool SplatLeft,
 | 
						|
                                  bool SplatRight) {
 | 
						|
  Value *VLeft = I.getOperand(0);
 | 
						|
  Value *VRight = I.getOperand(1);
 | 
						|
  // If we have "SplatRight", try to see if commuting is needed to preserve it.
 | 
						|
  if (SplatRight) {
 | 
						|
    if (VRight == Right[i - 1])
 | 
						|
      // Preserve SplatRight
 | 
						|
      return false;
 | 
						|
    if (VLeft == Right[i - 1]) {
 | 
						|
      // Commuting would preserve SplatRight, but we don't want to break
 | 
						|
      // SplatLeft either, i.e. preserve the original order if possible.
 | 
						|
      // (FIXME: why do we care?)
 | 
						|
      if (SplatLeft && VLeft == Left[i - 1])
 | 
						|
        return false;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Symmetrically handle Right side.
 | 
						|
  if (SplatLeft) {
 | 
						|
    if (VLeft == Left[i - 1])
 | 
						|
      // Preserve SplatLeft
 | 
						|
      return false;
 | 
						|
    if (VRight == Left[i - 1])
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *ILeft = dyn_cast<Instruction>(VLeft);
 | 
						|
  Instruction *IRight = dyn_cast<Instruction>(VRight);
 | 
						|
 | 
						|
  // If we have "AllSameOpcodeRight", try to see if the left operands preserves
 | 
						|
  // it and not the right, in this case we want to commute.
 | 
						|
  if (AllSameOpcodeRight) {
 | 
						|
    unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
 | 
						|
    if (IRight && RightPrevOpcode == IRight->getOpcode())
 | 
						|
      // Do not commute, a match on the right preserves AllSameOpcodeRight
 | 
						|
      return false;
 | 
						|
    if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
 | 
						|
      // We have a match and may want to commute, but first check if there is
 | 
						|
      // not also a match on the existing operands on the Left to preserve
 | 
						|
      // AllSameOpcodeLeft, i.e. preserve the original order if possible.
 | 
						|
      // (FIXME: why do we care?)
 | 
						|
      if (AllSameOpcodeLeft && ILeft &&
 | 
						|
          cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
 | 
						|
        return false;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Symmetrically handle Left side.
 | 
						|
  if (AllSameOpcodeLeft) {
 | 
						|
    unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
 | 
						|
    if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
 | 
						|
      return false;
 | 
						|
    if (IRight && LeftPrevOpcode == IRight->getOpcode())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
 | 
						|
                                             SmallVectorImpl<Value *> &Left,
 | 
						|
                                             SmallVectorImpl<Value *> &Right) {
 | 
						|
 | 
						|
  if (VL.size()) {
 | 
						|
    // Peel the first iteration out of the loop since there's nothing
 | 
						|
    // interesting to do anyway and it simplifies the checks in the loop.
 | 
						|
    auto VLeft = cast<Instruction>(VL[0])->getOperand(0);
 | 
						|
    auto VRight = cast<Instruction>(VL[0])->getOperand(1);
 | 
						|
    if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
 | 
						|
      // Favor having instruction to the right. FIXME: why?
 | 
						|
      std::swap(VLeft, VRight);
 | 
						|
    Left.push_back(VLeft);
 | 
						|
    Right.push_back(VRight);
 | 
						|
  }
 | 
						|
 | 
						|
  // Keep track if we have instructions with all the same opcode on one side.
 | 
						|
  bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
 | 
						|
  bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
 | 
						|
  // Keep track if we have one side with all the same value (broadcast).
 | 
						|
  bool SplatLeft = true;
 | 
						|
  bool SplatRight = true;
 | 
						|
 | 
						|
  for (unsigned i = 1, e = VL.size(); i != e; ++i) {
 | 
						|
    Instruction *I = cast<Instruction>(VL[i]);
 | 
						|
    assert(I->isCommutative() && "Can only process commutative instruction");
 | 
						|
    // Commute to favor either a splat or maximizing having the same opcodes on
 | 
						|
    // one side.
 | 
						|
    if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft,
 | 
						|
                              AllSameOpcodeRight, SplatLeft, SplatRight)) {
 | 
						|
      Left.push_back(I->getOperand(1));
 | 
						|
      Right.push_back(I->getOperand(0));
 | 
						|
    } else {
 | 
						|
      Left.push_back(I->getOperand(0));
 | 
						|
      Right.push_back(I->getOperand(1));
 | 
						|
    }
 | 
						|
    // Update Splat* and AllSameOpcode* after the insertion.
 | 
						|
    SplatRight = SplatRight && (Right[i - 1] == Right[i]);
 | 
						|
    SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
 | 
						|
    AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
 | 
						|
                        (cast<Instruction>(Left[i - 1])->getOpcode() ==
 | 
						|
                         cast<Instruction>(Left[i])->getOpcode());
 | 
						|
    AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
 | 
						|
                         (cast<Instruction>(Right[i - 1])->getOpcode() ==
 | 
						|
                          cast<Instruction>(Right[i])->getOpcode());
 | 
						|
  }
 | 
						|
 | 
						|
  // If one operand end up being broadcast, return this operand order.
 | 
						|
  if (SplatRight || SplatLeft)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Finally check if we can get longer vectorizable chain by reordering
 | 
						|
  // without breaking the good operand order detected above.
 | 
						|
  // E.g. If we have something like-
 | 
						|
  // load a[0]  load b[0]
 | 
						|
  // load b[1]  load a[1]
 | 
						|
  // load a[2]  load b[2]
 | 
						|
  // load a[3]  load b[3]
 | 
						|
  // Reordering the second load b[1]  load a[1] would allow us to vectorize
 | 
						|
  // this code and we still retain AllSameOpcode property.
 | 
						|
  // FIXME: This load reordering might break AllSameOpcode in some rare cases
 | 
						|
  // such as-
 | 
						|
  // add a[0],c[0]  load b[0]
 | 
						|
  // add a[1],c[2]  load b[1]
 | 
						|
  // b[2]           load b[2]
 | 
						|
  // add a[3],c[3]  load b[3]
 | 
						|
  for (unsigned j = 0; j < VL.size() - 1; ++j) {
 | 
						|
    if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
 | 
						|
      if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
 | 
						|
        if (isConsecutiveAccess(L, L1, *DL, *SE)) {
 | 
						|
          std::swap(Left[j + 1], Right[j + 1]);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
 | 
						|
      if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
 | 
						|
        if (isConsecutiveAccess(L, L1, *DL, *SE)) {
 | 
						|
          std::swap(Left[j + 1], Right[j + 1]);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // else unchanged
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
 | 
						|
  Instruction *VL0 = cast<Instruction>(VL[0]);
 | 
						|
  BasicBlock::iterator NextInst(VL0);
 | 
						|
  ++NextInst;
 | 
						|
  Builder.SetInsertPoint(VL0->getParent(), NextInst);
 | 
						|
  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
 | 
						|
  Value *Vec = UndefValue::get(Ty);
 | 
						|
  // Generate the 'InsertElement' instruction.
 | 
						|
  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
 | 
						|
    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
 | 
						|
    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
 | 
						|
      GatherSeq.insert(Insrt);
 | 
						|
      CSEBlocks.insert(Insrt->getParent());
 | 
						|
 | 
						|
      // Add to our 'need-to-extract' list.
 | 
						|
      if (ScalarToTreeEntry.count(VL[i])) {
 | 
						|
        int Idx = ScalarToTreeEntry[VL[i]];
 | 
						|
        TreeEntry *E = &VectorizableTree[Idx];
 | 
						|
        // Find which lane we need to extract.
 | 
						|
        int FoundLane = -1;
 | 
						|
        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
 | 
						|
          // Is this the lane of the scalar that we are looking for ?
 | 
						|
          if (E->Scalars[Lane] == VL[i]) {
 | 
						|
            FoundLane = Lane;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        assert(FoundLane >= 0 && "Could not find the correct lane");
 | 
						|
        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Vec;
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
 | 
						|
  SmallDenseMap<Value*, int>::const_iterator Entry
 | 
						|
    = ScalarToTreeEntry.find(VL[0]);
 | 
						|
  if (Entry != ScalarToTreeEntry.end()) {
 | 
						|
    int Idx = Entry->second;
 | 
						|
    const TreeEntry *En = &VectorizableTree[Idx];
 | 
						|
    if (En->isSame(VL) && En->VectorizedValue)
 | 
						|
      return En->VectorizedValue;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
 | 
						|
  if (ScalarToTreeEntry.count(VL[0])) {
 | 
						|
    int Idx = ScalarToTreeEntry[VL[0]];
 | 
						|
    TreeEntry *E = &VectorizableTree[Idx];
 | 
						|
    if (E->isSame(VL))
 | 
						|
      return vectorizeTree(E);
 | 
						|
  }
 | 
						|
 | 
						|
  Type *ScalarTy = VL[0]->getType();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | 
						|
    ScalarTy = SI->getValueOperand()->getType();
 | 
						|
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | 
						|
 | 
						|
  return Gather(VL, VecTy);
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
 | 
						|
  IRBuilder<>::InsertPointGuard Guard(Builder);
 | 
						|
 | 
						|
  if (E->VectorizedValue) {
 | 
						|
    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
 | 
						|
    return E->VectorizedValue;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
 | 
						|
  Type *ScalarTy = VL0->getType();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
 | 
						|
    ScalarTy = SI->getValueOperand()->getType();
 | 
						|
  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
 | 
						|
 | 
						|
  if (E->NeedToGather) {
 | 
						|
    setInsertPointAfterBundle(E->Scalars);
 | 
						|
    return Gather(E->Scalars, VecTy);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Opcode = getSameOpcode(E->Scalars);
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
    case Instruction::PHI: {
 | 
						|
      PHINode *PH = dyn_cast<PHINode>(VL0);
 | 
						|
      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
 | 
						|
      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | 
						|
      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
 | 
						|
      E->VectorizedValue = NewPhi;
 | 
						|
 | 
						|
      // PHINodes may have multiple entries from the same block. We want to
 | 
						|
      // visit every block once.
 | 
						|
      SmallSet<BasicBlock*, 4> VisitedBBs;
 | 
						|
 | 
						|
      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | 
						|
        ValueList Operands;
 | 
						|
        BasicBlock *IBB = PH->getIncomingBlock(i);
 | 
						|
 | 
						|
        if (!VisitedBBs.insert(IBB).second) {
 | 
						|
          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Prepare the operand vector.
 | 
						|
        for (Value *V : E->Scalars)
 | 
						|
          Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
 | 
						|
 | 
						|
        Builder.SetInsertPoint(IBB->getTerminator());
 | 
						|
        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | 
						|
        Value *Vec = vectorizeTree(Operands);
 | 
						|
        NewPhi->addIncoming(Vec, IBB);
 | 
						|
      }
 | 
						|
 | 
						|
      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
 | 
						|
             "Invalid number of incoming values");
 | 
						|
      return NewPhi;
 | 
						|
    }
 | 
						|
 | 
						|
    case Instruction::ExtractElement: {
 | 
						|
      if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) {
 | 
						|
        Value *V = VL0->getOperand(0);
 | 
						|
        E->VectorizedValue = V;
 | 
						|
        return V;
 | 
						|
      }
 | 
						|
      return Gather(E->Scalars, VecTy);
 | 
						|
    }
 | 
						|
    case Instruction::ExtractValue: {
 | 
						|
      if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) {
 | 
						|
        LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
 | 
						|
        Builder.SetInsertPoint(LI);
 | 
						|
        PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
 | 
						|
        Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
 | 
						|
        LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
 | 
						|
        E->VectorizedValue = V;
 | 
						|
        return propagateMetadata(V, E->Scalars);
 | 
						|
      }
 | 
						|
      return Gather(E->Scalars, VecTy);
 | 
						|
    }
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::BitCast: {
 | 
						|
      ValueList INVL;
 | 
						|
      for (Value *V : E->Scalars)
 | 
						|
        INVL.push_back(cast<Instruction>(V)->getOperand(0));
 | 
						|
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *InVec = vectorizeTree(INVL);
 | 
						|
 | 
						|
      if (Value *V = alreadyVectorized(E->Scalars))
 | 
						|
        return V;
 | 
						|
 | 
						|
      CastInst *CI = dyn_cast<CastInst>(VL0);
 | 
						|
      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::ICmp: {
 | 
						|
      ValueList LHSV, RHSV;
 | 
						|
      for (Value *V : E->Scalars) {
 | 
						|
        LHSV.push_back(cast<Instruction>(V)->getOperand(0));
 | 
						|
        RHSV.push_back(cast<Instruction>(V)->getOperand(1));
 | 
						|
      }
 | 
						|
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *L = vectorizeTree(LHSV);
 | 
						|
      Value *R = vectorizeTree(RHSV);
 | 
						|
 | 
						|
      if (Value *V = alreadyVectorized(E->Scalars))
 | 
						|
        return V;
 | 
						|
 | 
						|
      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
 | 
						|
      Value *V;
 | 
						|
      if (Opcode == Instruction::FCmp)
 | 
						|
        V = Builder.CreateFCmp(P0, L, R);
 | 
						|
      else
 | 
						|
        V = Builder.CreateICmp(P0, L, R);
 | 
						|
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::Select: {
 | 
						|
      ValueList TrueVec, FalseVec, CondVec;
 | 
						|
      for (Value *V : E->Scalars) {
 | 
						|
        CondVec.push_back(cast<Instruction>(V)->getOperand(0));
 | 
						|
        TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
 | 
						|
        FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
 | 
						|
      }
 | 
						|
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *Cond = vectorizeTree(CondVec);
 | 
						|
      Value *True = vectorizeTree(TrueVec);
 | 
						|
      Value *False = vectorizeTree(FalseVec);
 | 
						|
 | 
						|
      if (Value *V = alreadyVectorized(E->Scalars))
 | 
						|
        return V;
 | 
						|
 | 
						|
      Value *V = Builder.CreateSelect(Cond, True, False);
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      ValueList LHSVL, RHSVL;
 | 
						|
      if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
 | 
						|
        reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
 | 
						|
      else
 | 
						|
        for (Value *V : E->Scalars) {
 | 
						|
          LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
 | 
						|
          RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
 | 
						|
        }
 | 
						|
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *LHS = vectorizeTree(LHSVL);
 | 
						|
      Value *RHS = vectorizeTree(RHSVL);
 | 
						|
 | 
						|
      if (LHS == RHS && isa<Instruction>(LHS)) {
 | 
						|
        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
 | 
						|
      }
 | 
						|
 | 
						|
      if (Value *V = alreadyVectorized(E->Scalars))
 | 
						|
        return V;
 | 
						|
 | 
						|
      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
 | 
						|
      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      propagateIRFlags(E->VectorizedValue, E->Scalars);
 | 
						|
      ++NumVectorInstructions;
 | 
						|
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
        return propagateMetadata(I, E->Scalars);
 | 
						|
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::Load: {
 | 
						|
      // Loads are inserted at the head of the tree because we don't want to
 | 
						|
      // sink them all the way down past store instructions.
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      LoadInst *LI = cast<LoadInst>(VL0);
 | 
						|
      Type *ScalarLoadTy = LI->getType();
 | 
						|
      unsigned AS = LI->getPointerAddressSpace();
 | 
						|
 | 
						|
      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
 | 
						|
                                            VecTy->getPointerTo(AS));
 | 
						|
 | 
						|
      // The pointer operand uses an in-tree scalar so we add the new BitCast to
 | 
						|
      // ExternalUses list to make sure that an extract will be generated in the
 | 
						|
      // future.
 | 
						|
      if (ScalarToTreeEntry.count(LI->getPointerOperand()))
 | 
						|
        ExternalUses.push_back(
 | 
						|
            ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
 | 
						|
 | 
						|
      unsigned Alignment = LI->getAlignment();
 | 
						|
      LI = Builder.CreateLoad(VecPtr);
 | 
						|
      if (!Alignment) {
 | 
						|
        Alignment = DL->getABITypeAlignment(ScalarLoadTy);
 | 
						|
      }
 | 
						|
      LI->setAlignment(Alignment);
 | 
						|
      E->VectorizedValue = LI;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return propagateMetadata(LI, E->Scalars);
 | 
						|
    }
 | 
						|
    case Instruction::Store: {
 | 
						|
      StoreInst *SI = cast<StoreInst>(VL0);
 | 
						|
      unsigned Alignment = SI->getAlignment();
 | 
						|
      unsigned AS = SI->getPointerAddressSpace();
 | 
						|
 | 
						|
      ValueList ValueOp;
 | 
						|
      for (Value *V : E->Scalars)
 | 
						|
        ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
 | 
						|
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *VecValue = vectorizeTree(ValueOp);
 | 
						|
      Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
 | 
						|
                                            VecTy->getPointerTo(AS));
 | 
						|
      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
 | 
						|
 | 
						|
      // The pointer operand uses an in-tree scalar so we add the new BitCast to
 | 
						|
      // ExternalUses list to make sure that an extract will be generated in the
 | 
						|
      // future.
 | 
						|
      if (ScalarToTreeEntry.count(SI->getPointerOperand()))
 | 
						|
        ExternalUses.push_back(
 | 
						|
            ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
 | 
						|
 | 
						|
      if (!Alignment) {
 | 
						|
        Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
 | 
						|
      }
 | 
						|
      S->setAlignment(Alignment);
 | 
						|
      E->VectorizedValue = S;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return propagateMetadata(S, E->Scalars);
 | 
						|
    }
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      ValueList Op0VL;
 | 
						|
      for (Value *V : E->Scalars)
 | 
						|
        Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
 | 
						|
 | 
						|
      Value *Op0 = vectorizeTree(Op0VL);
 | 
						|
 | 
						|
      std::vector<Value *> OpVecs;
 | 
						|
      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
 | 
						|
           ++j) {
 | 
						|
        ValueList OpVL;
 | 
						|
        for (Value *V : E->Scalars)
 | 
						|
          OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
 | 
						|
 | 
						|
        Value *OpVec = vectorizeTree(OpVL);
 | 
						|
        OpVecs.push_back(OpVec);
 | 
						|
      }
 | 
						|
 | 
						|
      Value *V = Builder.CreateGEP(
 | 
						|
          cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
        return propagateMetadata(I, E->Scalars);
 | 
						|
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::Call: {
 | 
						|
      CallInst *CI = cast<CallInst>(VL0);
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
      Function *FI;
 | 
						|
      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
 | 
						|
      Value *ScalarArg = nullptr;
 | 
						|
      if (CI && (FI = CI->getCalledFunction())) {
 | 
						|
        IID = FI->getIntrinsicID();
 | 
						|
      }
 | 
						|
      std::vector<Value *> OpVecs;
 | 
						|
      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
 | 
						|
        ValueList OpVL;
 | 
						|
        // ctlz,cttz and powi are special intrinsics whose second argument is
 | 
						|
        // a scalar. This argument should not be vectorized.
 | 
						|
        if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
 | 
						|
          CallInst *CEI = cast<CallInst>(E->Scalars[0]);
 | 
						|
          ScalarArg = CEI->getArgOperand(j);
 | 
						|
          OpVecs.push_back(CEI->getArgOperand(j));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        for (Value *V : E->Scalars) {
 | 
						|
          CallInst *CEI = cast<CallInst>(V);
 | 
						|
          OpVL.push_back(CEI->getArgOperand(j));
 | 
						|
        }
 | 
						|
 | 
						|
        Value *OpVec = vectorizeTree(OpVL);
 | 
						|
        DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
 | 
						|
        OpVecs.push_back(OpVec);
 | 
						|
      }
 | 
						|
 | 
						|
      Module *M = F->getParent();
 | 
						|
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | 
						|
      Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
 | 
						|
      Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
 | 
						|
      SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						|
      CI->getOperandBundlesAsDefs(OpBundles);
 | 
						|
      Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
 | 
						|
 | 
						|
      // The scalar argument uses an in-tree scalar so we add the new vectorized
 | 
						|
      // call to ExternalUses list to make sure that an extract will be
 | 
						|
      // generated in the future.
 | 
						|
      if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
 | 
						|
        ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
 | 
						|
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    case Instruction::ShuffleVector: {
 | 
						|
      ValueList LHSVL, RHSVL;
 | 
						|
      assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
 | 
						|
      reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
 | 
						|
      setInsertPointAfterBundle(E->Scalars);
 | 
						|
 | 
						|
      Value *LHS = vectorizeTree(LHSVL);
 | 
						|
      Value *RHS = vectorizeTree(RHSVL);
 | 
						|
 | 
						|
      if (Value *V = alreadyVectorized(E->Scalars))
 | 
						|
        return V;
 | 
						|
 | 
						|
      // Create a vector of LHS op1 RHS
 | 
						|
      BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
 | 
						|
      Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
 | 
						|
 | 
						|
      // Create a vector of LHS op2 RHS
 | 
						|
      Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
 | 
						|
      BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
 | 
						|
      Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
 | 
						|
 | 
						|
      // Create shuffle to take alternate operations from the vector.
 | 
						|
      // Also, gather up odd and even scalar ops to propagate IR flags to
 | 
						|
      // each vector operation.
 | 
						|
      ValueList OddScalars, EvenScalars;
 | 
						|
      unsigned e = E->Scalars.size();
 | 
						|
      SmallVector<Constant *, 8> Mask(e);
 | 
						|
      for (unsigned i = 0; i < e; ++i) {
 | 
						|
        if (i & 1) {
 | 
						|
          Mask[i] = Builder.getInt32(e + i);
 | 
						|
          OddScalars.push_back(E->Scalars[i]);
 | 
						|
        } else {
 | 
						|
          Mask[i] = Builder.getInt32(i);
 | 
						|
          EvenScalars.push_back(E->Scalars[i]);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      Value *ShuffleMask = ConstantVector::get(Mask);
 | 
						|
      propagateIRFlags(V0, EvenScalars);
 | 
						|
      propagateIRFlags(V1, OddScalars);
 | 
						|
 | 
						|
      Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
 | 
						|
      E->VectorizedValue = V;
 | 
						|
      ++NumVectorInstructions;
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
        return propagateMetadata(I, E->Scalars);
 | 
						|
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
    llvm_unreachable("unknown inst");
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *BoUpSLP::vectorizeTree() {
 | 
						|
 | 
						|
  // All blocks must be scheduled before any instructions are inserted.
 | 
						|
  for (auto &BSIter : BlocksSchedules) {
 | 
						|
    scheduleBlock(BSIter.second.get());
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.SetInsertPoint(&F->getEntryBlock().front());
 | 
						|
  auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
 | 
						|
 | 
						|
  // If the vectorized tree can be rewritten in a smaller type, we truncate the
 | 
						|
  // vectorized root. InstCombine will then rewrite the entire expression. We
 | 
						|
  // sign extend the extracted values below.
 | 
						|
  auto *ScalarRoot = VectorizableTree[0].Scalars[0];
 | 
						|
  if (MinBWs.count(ScalarRoot)) {
 | 
						|
    if (auto *I = dyn_cast<Instruction>(VectorRoot))
 | 
						|
      Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
 | 
						|
    auto BundleWidth = VectorizableTree[0].Scalars.size();
 | 
						|
    auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]);
 | 
						|
    auto *VecTy = VectorType::get(MinTy, BundleWidth);
 | 
						|
    auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
 | 
						|
    VectorizableTree[0].VectorizedValue = Trunc;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
 | 
						|
 | 
						|
  // Extract all of the elements with the external uses.
 | 
						|
  for (const auto &ExternalUse : ExternalUses) {
 | 
						|
    Value *Scalar = ExternalUse.Scalar;
 | 
						|
    llvm::User *User = ExternalUse.User;
 | 
						|
 | 
						|
    // Skip users that we already RAUW. This happens when one instruction
 | 
						|
    // has multiple uses of the same value.
 | 
						|
    if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
 | 
						|
        Scalar->user_end())
 | 
						|
      continue;
 | 
						|
    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
 | 
						|
 | 
						|
    int Idx = ScalarToTreeEntry[Scalar];
 | 
						|
    TreeEntry *E = &VectorizableTree[Idx];
 | 
						|
    assert(!E->NeedToGather && "Extracting from a gather list");
 | 
						|
 | 
						|
    Value *Vec = E->VectorizedValue;
 | 
						|
    assert(Vec && "Can't find vectorizable value");
 | 
						|
 | 
						|
    Value *Lane = Builder.getInt32(ExternalUse.Lane);
 | 
						|
    // Generate extracts for out-of-tree users.
 | 
						|
    // Find the insertion point for the extractelement lane.
 | 
						|
    if (auto *VecI = dyn_cast<Instruction>(Vec)) {
 | 
						|
      if (PHINode *PH = dyn_cast<PHINode>(User)) {
 | 
						|
        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
 | 
						|
          if (PH->getIncomingValue(i) == Scalar) {
 | 
						|
            TerminatorInst *IncomingTerminator =
 | 
						|
                PH->getIncomingBlock(i)->getTerminator();
 | 
						|
            if (isa<CatchSwitchInst>(IncomingTerminator)) {
 | 
						|
              Builder.SetInsertPoint(VecI->getParent(),
 | 
						|
                                     std::next(VecI->getIterator()));
 | 
						|
            } else {
 | 
						|
              Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
 | 
						|
            }
 | 
						|
            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | 
						|
            if (MinBWs.count(ScalarRoot))
 | 
						|
              Ex = Builder.CreateSExt(Ex, Scalar->getType());
 | 
						|
            CSEBlocks.insert(PH->getIncomingBlock(i));
 | 
						|
            PH->setOperand(i, Ex);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        Builder.SetInsertPoint(cast<Instruction>(User));
 | 
						|
        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | 
						|
        if (MinBWs.count(ScalarRoot))
 | 
						|
          Ex = Builder.CreateSExt(Ex, Scalar->getType());
 | 
						|
        CSEBlocks.insert(cast<Instruction>(User)->getParent());
 | 
						|
        User->replaceUsesOfWith(Scalar, Ex);
 | 
						|
     }
 | 
						|
    } else {
 | 
						|
      Builder.SetInsertPoint(&F->getEntryBlock().front());
 | 
						|
      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | 
						|
      if (MinBWs.count(ScalarRoot))
 | 
						|
        Ex = Builder.CreateSExt(Ex, Scalar->getType());
 | 
						|
      CSEBlocks.insert(&F->getEntryBlock());
 | 
						|
      User->replaceUsesOfWith(Scalar, Ex);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // For each vectorized value:
 | 
						|
  for (TreeEntry &EIdx : VectorizableTree) {
 | 
						|
    TreeEntry *Entry = &EIdx;
 | 
						|
 | 
						|
    // For each lane:
 | 
						|
    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | 
						|
      Value *Scalar = Entry->Scalars[Lane];
 | 
						|
      // No need to handle users of gathered values.
 | 
						|
      if (Entry->NeedToGather)
 | 
						|
        continue;
 | 
						|
 | 
						|
      assert(Entry->VectorizedValue && "Can't find vectorizable value");
 | 
						|
 | 
						|
      Type *Ty = Scalar->getType();
 | 
						|
      if (!Ty->isVoidTy()) {
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (User *U : Scalar->users()) {
 | 
						|
          DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
 | 
						|
 | 
						|
          assert((ScalarToTreeEntry.count(U) ||
 | 
						|
                  // It is legal to replace users in the ignorelist by undef.
 | 
						|
                  (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
 | 
						|
                   UserIgnoreList.end())) &&
 | 
						|
                 "Replacing out-of-tree value with undef");
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        Value *Undef = UndefValue::get(Ty);
 | 
						|
        Scalar->replaceAllUsesWith(Undef);
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
 | 
						|
      eraseInstruction(cast<Instruction>(Scalar));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.ClearInsertionPoint();
 | 
						|
 | 
						|
  return VectorizableTree[0].VectorizedValue;
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::optimizeGatherSequence() {
 | 
						|
  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
 | 
						|
        << " gather sequences instructions.\n");
 | 
						|
  // LICM InsertElementInst sequences.
 | 
						|
  for (Instruction *it : GatherSeq) {
 | 
						|
    InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
 | 
						|
 | 
						|
    if (!Insert)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if this block is inside a loop.
 | 
						|
    Loop *L = LI->getLoopFor(Insert->getParent());
 | 
						|
    if (!L)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if it has a preheader.
 | 
						|
    BasicBlock *PreHeader = L->getLoopPreheader();
 | 
						|
    if (!PreHeader)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the vector or the element that we insert into it are
 | 
						|
    // instructions that are defined in this basic block then we can't
 | 
						|
    // hoist this instruction.
 | 
						|
    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
 | 
						|
    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
 | 
						|
    if (CurrVec && L->contains(CurrVec))
 | 
						|
      continue;
 | 
						|
    if (NewElem && L->contains(NewElem))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We can hoist this instruction. Move it to the pre-header.
 | 
						|
    Insert->moveBefore(PreHeader->getTerminator());
 | 
						|
  }
 | 
						|
 | 
						|
  // Make a list of all reachable blocks in our CSE queue.
 | 
						|
  SmallVector<const DomTreeNode *, 8> CSEWorkList;
 | 
						|
  CSEWorkList.reserve(CSEBlocks.size());
 | 
						|
  for (BasicBlock *BB : CSEBlocks)
 | 
						|
    if (DomTreeNode *N = DT->getNode(BB)) {
 | 
						|
      assert(DT->isReachableFromEntry(N));
 | 
						|
      CSEWorkList.push_back(N);
 | 
						|
    }
 | 
						|
 | 
						|
  // Sort blocks by domination. This ensures we visit a block after all blocks
 | 
						|
  // dominating it are visited.
 | 
						|
  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
 | 
						|
                   [this](const DomTreeNode *A, const DomTreeNode *B) {
 | 
						|
    return DT->properlyDominates(A, B);
 | 
						|
  });
 | 
						|
 | 
						|
  // Perform O(N^2) search over the gather sequences and merge identical
 | 
						|
  // instructions. TODO: We can further optimize this scan if we split the
 | 
						|
  // instructions into different buckets based on the insert lane.
 | 
						|
  SmallVector<Instruction *, 16> Visited;
 | 
						|
  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
 | 
						|
    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
 | 
						|
           "Worklist not sorted properly!");
 | 
						|
    BasicBlock *BB = (*I)->getBlock();
 | 
						|
    // For all instructions in blocks containing gather sequences:
 | 
						|
    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
 | 
						|
      Instruction *In = &*it++;
 | 
						|
      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Check if we can replace this instruction with any of the
 | 
						|
      // visited instructions.
 | 
						|
      for (Instruction *v : Visited) {
 | 
						|
        if (In->isIdenticalTo(v) &&
 | 
						|
            DT->dominates(v->getParent(), In->getParent())) {
 | 
						|
          In->replaceAllUsesWith(v);
 | 
						|
          eraseInstruction(In);
 | 
						|
          In = nullptr;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (In) {
 | 
						|
        assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
 | 
						|
        Visited.push_back(In);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  CSEBlocks.clear();
 | 
						|
  GatherSeq.clear();
 | 
						|
}
 | 
						|
 | 
						|
// Groups the instructions to a bundle (which is then a single scheduling entity)
 | 
						|
// and schedules instructions until the bundle gets ready.
 | 
						|
bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
 | 
						|
                                                 BoUpSLP *SLP) {
 | 
						|
  if (isa<PHINode>(VL[0]))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Initialize the instruction bundle.
 | 
						|
  Instruction *OldScheduleEnd = ScheduleEnd;
 | 
						|
  ScheduleData *PrevInBundle = nullptr;
 | 
						|
  ScheduleData *Bundle = nullptr;
 | 
						|
  bool ReSchedule = false;
 | 
						|
  DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
 | 
						|
 | 
						|
  // Make sure that the scheduling region contains all
 | 
						|
  // instructions of the bundle.
 | 
						|
  for (Value *V : VL) {
 | 
						|
    if (!extendSchedulingRegion(V))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (Value *V : VL) {
 | 
						|
    ScheduleData *BundleMember = getScheduleData(V);
 | 
						|
    assert(BundleMember &&
 | 
						|
           "no ScheduleData for bundle member (maybe not in same basic block)");
 | 
						|
    if (BundleMember->IsScheduled) {
 | 
						|
      // A bundle member was scheduled as single instruction before and now
 | 
						|
      // needs to be scheduled as part of the bundle. We just get rid of the
 | 
						|
      // existing schedule.
 | 
						|
      DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
 | 
						|
                   << " was already scheduled\n");
 | 
						|
      ReSchedule = true;
 | 
						|
    }
 | 
						|
    assert(BundleMember->isSchedulingEntity() &&
 | 
						|
           "bundle member already part of other bundle");
 | 
						|
    if (PrevInBundle) {
 | 
						|
      PrevInBundle->NextInBundle = BundleMember;
 | 
						|
    } else {
 | 
						|
      Bundle = BundleMember;
 | 
						|
    }
 | 
						|
    BundleMember->UnscheduledDepsInBundle = 0;
 | 
						|
    Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
 | 
						|
 | 
						|
    // Group the instructions to a bundle.
 | 
						|
    BundleMember->FirstInBundle = Bundle;
 | 
						|
    PrevInBundle = BundleMember;
 | 
						|
  }
 | 
						|
  if (ScheduleEnd != OldScheduleEnd) {
 | 
						|
    // The scheduling region got new instructions at the lower end (or it is a
 | 
						|
    // new region for the first bundle). This makes it necessary to
 | 
						|
    // recalculate all dependencies.
 | 
						|
    // It is seldom that this needs to be done a second time after adding the
 | 
						|
    // initial bundle to the region.
 | 
						|
    for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | 
						|
      ScheduleData *SD = getScheduleData(I);
 | 
						|
      SD->clearDependencies();
 | 
						|
    }
 | 
						|
    ReSchedule = true;
 | 
						|
  }
 | 
						|
  if (ReSchedule) {
 | 
						|
    resetSchedule();
 | 
						|
    initialFillReadyList(ReadyInsts);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
 | 
						|
               << BB->getName() << "\n");
 | 
						|
 | 
						|
  calculateDependencies(Bundle, true, SLP);
 | 
						|
 | 
						|
  // Now try to schedule the new bundle. As soon as the bundle is "ready" it
 | 
						|
  // means that there are no cyclic dependencies and we can schedule it.
 | 
						|
  // Note that's important that we don't "schedule" the bundle yet (see
 | 
						|
  // cancelScheduling).
 | 
						|
  while (!Bundle->isReady() && !ReadyInsts.empty()) {
 | 
						|
 | 
						|
    ScheduleData *pickedSD = ReadyInsts.back();
 | 
						|
    ReadyInsts.pop_back();
 | 
						|
 | 
						|
    if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
 | 
						|
      schedule(pickedSD, ReadyInsts);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!Bundle->isReady()) {
 | 
						|
    cancelScheduling(VL);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
 | 
						|
  if (isa<PHINode>(VL[0]))
 | 
						|
    return;
 | 
						|
 | 
						|
  ScheduleData *Bundle = getScheduleData(VL[0]);
 | 
						|
  DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
 | 
						|
  assert(!Bundle->IsScheduled &&
 | 
						|
         "Can't cancel bundle which is already scheduled");
 | 
						|
  assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
 | 
						|
         "tried to unbundle something which is not a bundle");
 | 
						|
 | 
						|
  // Un-bundle: make single instructions out of the bundle.
 | 
						|
  ScheduleData *BundleMember = Bundle;
 | 
						|
  while (BundleMember) {
 | 
						|
    assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
 | 
						|
    BundleMember->FirstInBundle = BundleMember;
 | 
						|
    ScheduleData *Next = BundleMember->NextInBundle;
 | 
						|
    BundleMember->NextInBundle = nullptr;
 | 
						|
    BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
 | 
						|
    if (BundleMember->UnscheduledDepsInBundle == 0) {
 | 
						|
      ReadyInsts.insert(BundleMember);
 | 
						|
    }
 | 
						|
    BundleMember = Next;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
 | 
						|
  if (getScheduleData(V))
 | 
						|
    return true;
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  assert(I && "bundle member must be an instruction");
 | 
						|
  assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
 | 
						|
  if (!ScheduleStart) {
 | 
						|
    // It's the first instruction in the new region.
 | 
						|
    initScheduleData(I, I->getNextNode(), nullptr, nullptr);
 | 
						|
    ScheduleStart = I;
 | 
						|
    ScheduleEnd = I->getNextNode();
 | 
						|
    assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
 | 
						|
    DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Search up and down at the same time, because we don't know if the new
 | 
						|
  // instruction is above or below the existing scheduling region.
 | 
						|
  BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator());
 | 
						|
  BasicBlock::reverse_iterator UpperEnd = BB->rend();
 | 
						|
  BasicBlock::iterator DownIter(ScheduleEnd);
 | 
						|
  BasicBlock::iterator LowerEnd = BB->end();
 | 
						|
  for (;;) {
 | 
						|
    if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
 | 
						|
      DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (UpIter != UpperEnd) {
 | 
						|
      if (&*UpIter == I) {
 | 
						|
        initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
 | 
						|
        ScheduleStart = I;
 | 
						|
        DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      UpIter++;
 | 
						|
    }
 | 
						|
    if (DownIter != LowerEnd) {
 | 
						|
      if (&*DownIter == I) {
 | 
						|
        initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
 | 
						|
                         nullptr);
 | 
						|
        ScheduleEnd = I->getNextNode();
 | 
						|
        assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
 | 
						|
        DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      DownIter++;
 | 
						|
    }
 | 
						|
    assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
 | 
						|
           "instruction not found in block");
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
 | 
						|
                                                Instruction *ToI,
 | 
						|
                                                ScheduleData *PrevLoadStore,
 | 
						|
                                                ScheduleData *NextLoadStore) {
 | 
						|
  ScheduleData *CurrentLoadStore = PrevLoadStore;
 | 
						|
  for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
 | 
						|
    ScheduleData *SD = ScheduleDataMap[I];
 | 
						|
    if (!SD) {
 | 
						|
      // Allocate a new ScheduleData for the instruction.
 | 
						|
      if (ChunkPos >= ChunkSize) {
 | 
						|
        ScheduleDataChunks.push_back(
 | 
						|
            llvm::make_unique<ScheduleData[]>(ChunkSize));
 | 
						|
        ChunkPos = 0;
 | 
						|
      }
 | 
						|
      SD = &(ScheduleDataChunks.back()[ChunkPos++]);
 | 
						|
      ScheduleDataMap[I] = SD;
 | 
						|
      SD->Inst = I;
 | 
						|
    }
 | 
						|
    assert(!isInSchedulingRegion(SD) &&
 | 
						|
           "new ScheduleData already in scheduling region");
 | 
						|
    SD->init(SchedulingRegionID);
 | 
						|
 | 
						|
    if (I->mayReadOrWriteMemory()) {
 | 
						|
      // Update the linked list of memory accessing instructions.
 | 
						|
      if (CurrentLoadStore) {
 | 
						|
        CurrentLoadStore->NextLoadStore = SD;
 | 
						|
      } else {
 | 
						|
        FirstLoadStoreInRegion = SD;
 | 
						|
      }
 | 
						|
      CurrentLoadStore = SD;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (NextLoadStore) {
 | 
						|
    if (CurrentLoadStore)
 | 
						|
      CurrentLoadStore->NextLoadStore = NextLoadStore;
 | 
						|
  } else {
 | 
						|
    LastLoadStoreInRegion = CurrentLoadStore;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
 | 
						|
                                                     bool InsertInReadyList,
 | 
						|
                                                     BoUpSLP *SLP) {
 | 
						|
  assert(SD->isSchedulingEntity());
 | 
						|
 | 
						|
  SmallVector<ScheduleData *, 10> WorkList;
 | 
						|
  WorkList.push_back(SD);
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    ScheduleData *SD = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
 | 
						|
    ScheduleData *BundleMember = SD;
 | 
						|
    while (BundleMember) {
 | 
						|
      assert(isInSchedulingRegion(BundleMember));
 | 
						|
      if (!BundleMember->hasValidDependencies()) {
 | 
						|
 | 
						|
        DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
 | 
						|
        BundleMember->Dependencies = 0;
 | 
						|
        BundleMember->resetUnscheduledDeps();
 | 
						|
 | 
						|
        // Handle def-use chain dependencies.
 | 
						|
        for (User *U : BundleMember->Inst->users()) {
 | 
						|
          if (isa<Instruction>(U)) {
 | 
						|
            ScheduleData *UseSD = getScheduleData(U);
 | 
						|
            if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
 | 
						|
              BundleMember->Dependencies++;
 | 
						|
              ScheduleData *DestBundle = UseSD->FirstInBundle;
 | 
						|
              if (!DestBundle->IsScheduled) {
 | 
						|
                BundleMember->incrementUnscheduledDeps(1);
 | 
						|
              }
 | 
						|
              if (!DestBundle->hasValidDependencies()) {
 | 
						|
                WorkList.push_back(DestBundle);
 | 
						|
              }
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            // I'm not sure if this can ever happen. But we need to be safe.
 | 
						|
            // This lets the instruction/bundle never be scheduled and
 | 
						|
            // eventually disable vectorization.
 | 
						|
            BundleMember->Dependencies++;
 | 
						|
            BundleMember->incrementUnscheduledDeps(1);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Handle the memory dependencies.
 | 
						|
        ScheduleData *DepDest = BundleMember->NextLoadStore;
 | 
						|
        if (DepDest) {
 | 
						|
          Instruction *SrcInst = BundleMember->Inst;
 | 
						|
          MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
 | 
						|
          bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
 | 
						|
          unsigned numAliased = 0;
 | 
						|
          unsigned DistToSrc = 1;
 | 
						|
 | 
						|
          while (DepDest) {
 | 
						|
            assert(isInSchedulingRegion(DepDest));
 | 
						|
 | 
						|
            // We have two limits to reduce the complexity:
 | 
						|
            // 1) AliasedCheckLimit: It's a small limit to reduce calls to
 | 
						|
            //    SLP->isAliased (which is the expensive part in this loop).
 | 
						|
            // 2) MaxMemDepDistance: It's for very large blocks and it aborts
 | 
						|
            //    the whole loop (even if the loop is fast, it's quadratic).
 | 
						|
            //    It's important for the loop break condition (see below) to
 | 
						|
            //    check this limit even between two read-only instructions.
 | 
						|
            if (DistToSrc >= MaxMemDepDistance ||
 | 
						|
                    ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
 | 
						|
                     (numAliased >= AliasedCheckLimit ||
 | 
						|
                      SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
 | 
						|
 | 
						|
              // We increment the counter only if the locations are aliased
 | 
						|
              // (instead of counting all alias checks). This gives a better
 | 
						|
              // balance between reduced runtime and accurate dependencies.
 | 
						|
              numAliased++;
 | 
						|
 | 
						|
              DepDest->MemoryDependencies.push_back(BundleMember);
 | 
						|
              BundleMember->Dependencies++;
 | 
						|
              ScheduleData *DestBundle = DepDest->FirstInBundle;
 | 
						|
              if (!DestBundle->IsScheduled) {
 | 
						|
                BundleMember->incrementUnscheduledDeps(1);
 | 
						|
              }
 | 
						|
              if (!DestBundle->hasValidDependencies()) {
 | 
						|
                WorkList.push_back(DestBundle);
 | 
						|
              }
 | 
						|
            }
 | 
						|
            DepDest = DepDest->NextLoadStore;
 | 
						|
 | 
						|
            // Example, explaining the loop break condition: Let's assume our
 | 
						|
            // starting instruction is i0 and MaxMemDepDistance = 3.
 | 
						|
            //
 | 
						|
            //                      +--------v--v--v
 | 
						|
            //             i0,i1,i2,i3,i4,i5,i6,i7,i8
 | 
						|
            //             +--------^--^--^
 | 
						|
            //
 | 
						|
            // MaxMemDepDistance let us stop alias-checking at i3 and we add
 | 
						|
            // dependencies from i0 to i3,i4,.. (even if they are not aliased).
 | 
						|
            // Previously we already added dependencies from i3 to i6,i7,i8
 | 
						|
            // (because of MaxMemDepDistance). As we added a dependency from
 | 
						|
            // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
 | 
						|
            // and we can abort this loop at i6.
 | 
						|
            if (DistToSrc >= 2 * MaxMemDepDistance)
 | 
						|
                break;
 | 
						|
            DistToSrc++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      BundleMember = BundleMember->NextInBundle;
 | 
						|
    }
 | 
						|
    if (InsertInReadyList && SD->isReady()) {
 | 
						|
      ReadyInsts.push_back(SD);
 | 
						|
      DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::BlockScheduling::resetSchedule() {
 | 
						|
  assert(ScheduleStart &&
 | 
						|
         "tried to reset schedule on block which has not been scheduled");
 | 
						|
  for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | 
						|
    ScheduleData *SD = getScheduleData(I);
 | 
						|
    assert(isInSchedulingRegion(SD));
 | 
						|
    SD->IsScheduled = false;
 | 
						|
    SD->resetUnscheduledDeps();
 | 
						|
  }
 | 
						|
  ReadyInsts.clear();
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
 | 
						|
 | 
						|
  if (!BS->ScheduleStart)
 | 
						|
    return;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
 | 
						|
 | 
						|
  BS->resetSchedule();
 | 
						|
 | 
						|
  // For the real scheduling we use a more sophisticated ready-list: it is
 | 
						|
  // sorted by the original instruction location. This lets the final schedule
 | 
						|
  // be as  close as possible to the original instruction order.
 | 
						|
  struct ScheduleDataCompare {
 | 
						|
    bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
 | 
						|
      return SD2->SchedulingPriority < SD1->SchedulingPriority;
 | 
						|
    }
 | 
						|
  };
 | 
						|
  std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
 | 
						|
 | 
						|
  // Ensure that all dependency data is updated and fill the ready-list with
 | 
						|
  // initial instructions.
 | 
						|
  int Idx = 0;
 | 
						|
  int NumToSchedule = 0;
 | 
						|
  for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
 | 
						|
       I = I->getNextNode()) {
 | 
						|
    ScheduleData *SD = BS->getScheduleData(I);
 | 
						|
    assert(
 | 
						|
        SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
 | 
						|
        "scheduler and vectorizer have different opinion on what is a bundle");
 | 
						|
    SD->FirstInBundle->SchedulingPriority = Idx++;
 | 
						|
    if (SD->isSchedulingEntity()) {
 | 
						|
      BS->calculateDependencies(SD, false, this);
 | 
						|
      NumToSchedule++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  BS->initialFillReadyList(ReadyInsts);
 | 
						|
 | 
						|
  Instruction *LastScheduledInst = BS->ScheduleEnd;
 | 
						|
 | 
						|
  // Do the "real" scheduling.
 | 
						|
  while (!ReadyInsts.empty()) {
 | 
						|
    ScheduleData *picked = *ReadyInsts.begin();
 | 
						|
    ReadyInsts.erase(ReadyInsts.begin());
 | 
						|
 | 
						|
    // Move the scheduled instruction(s) to their dedicated places, if not
 | 
						|
    // there yet.
 | 
						|
    ScheduleData *BundleMember = picked;
 | 
						|
    while (BundleMember) {
 | 
						|
      Instruction *pickedInst = BundleMember->Inst;
 | 
						|
      if (LastScheduledInst->getNextNode() != pickedInst) {
 | 
						|
        BS->BB->getInstList().remove(pickedInst);
 | 
						|
        BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
 | 
						|
                                     pickedInst);
 | 
						|
      }
 | 
						|
      LastScheduledInst = pickedInst;
 | 
						|
      BundleMember = BundleMember->NextInBundle;
 | 
						|
    }
 | 
						|
 | 
						|
    BS->schedule(picked, ReadyInsts);
 | 
						|
    NumToSchedule--;
 | 
						|
  }
 | 
						|
  assert(NumToSchedule == 0 && "could not schedule all instructions");
 | 
						|
 | 
						|
  // Avoid duplicate scheduling of the block.
 | 
						|
  BS->ScheduleStart = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
unsigned BoUpSLP::getVectorElementSize(Value *V) {
 | 
						|
  // If V is a store, just return the width of the stored value without
 | 
						|
  // traversing the expression tree. This is the common case.
 | 
						|
  if (auto *Store = dyn_cast<StoreInst>(V))
 | 
						|
    return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
 | 
						|
 | 
						|
  // If V is not a store, we can traverse the expression tree to find loads
 | 
						|
  // that feed it. The type of the loaded value may indicate a more suitable
 | 
						|
  // width than V's type. We want to base the vector element size on the width
 | 
						|
  // of memory operations where possible.
 | 
						|
  SmallVector<Instruction *, 16> Worklist;
 | 
						|
  SmallPtrSet<Instruction *, 16> Visited;
 | 
						|
  if (auto *I = dyn_cast<Instruction>(V))
 | 
						|
    Worklist.push_back(I);
 | 
						|
 | 
						|
  // Traverse the expression tree in bottom-up order looking for loads. If we
 | 
						|
  // encounter an instruciton we don't yet handle, we give up.
 | 
						|
  auto MaxWidth = 0u;
 | 
						|
  auto FoundUnknownInst = false;
 | 
						|
  while (!Worklist.empty() && !FoundUnknownInst) {
 | 
						|
    auto *I = Worklist.pop_back_val();
 | 
						|
    Visited.insert(I);
 | 
						|
 | 
						|
    // We should only be looking at scalar instructions here. If the current
 | 
						|
    // instruction has a vector type, give up.
 | 
						|
    auto *Ty = I->getType();
 | 
						|
    if (isa<VectorType>(Ty))
 | 
						|
      FoundUnknownInst = true;
 | 
						|
 | 
						|
    // If the current instruction is a load, update MaxWidth to reflect the
 | 
						|
    // width of the loaded value.
 | 
						|
    else if (isa<LoadInst>(I))
 | 
						|
      MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
 | 
						|
 | 
						|
    // Otherwise, we need to visit the operands of the instruction. We only
 | 
						|
    // handle the interesting cases from buildTree here. If an operand is an
 | 
						|
    // instruction we haven't yet visited, we add it to the worklist.
 | 
						|
    else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
 | 
						|
             isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
 | 
						|
      for (Use &U : I->operands())
 | 
						|
        if (auto *J = dyn_cast<Instruction>(U.get()))
 | 
						|
          if (!Visited.count(J))
 | 
						|
            Worklist.push_back(J);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we don't yet handle the instruction, give up.
 | 
						|
    else
 | 
						|
      FoundUnknownInst = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't encounter a memory access in the expression tree, or if we
 | 
						|
  // gave up for some reason, just return the width of V.
 | 
						|
  if (!MaxWidth || FoundUnknownInst)
 | 
						|
    return DL->getTypeSizeInBits(V->getType());
 | 
						|
 | 
						|
  // Otherwise, return the maximum width we found.
 | 
						|
  return MaxWidth;
 | 
						|
}
 | 
						|
 | 
						|
// Determine if a value V in a vectorizable expression Expr can be demoted to a
 | 
						|
// smaller type with a truncation. We collect the values that will be demoted
 | 
						|
// in ToDemote and additional roots that require investigating in Roots.
 | 
						|
static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
 | 
						|
                                  SmallVectorImpl<Value *> &ToDemote,
 | 
						|
                                  SmallVectorImpl<Value *> &Roots) {
 | 
						|
 | 
						|
  // We can always demote constants.
 | 
						|
  if (isa<Constant>(V)) {
 | 
						|
    ToDemote.push_back(V);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the value is not an instruction in the expression with only one use, it
 | 
						|
  // cannot be demoted.
 | 
						|
  auto *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I || !I->hasOneUse() || !Expr.count(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
 | 
						|
  // We can always demote truncations and extensions. Since truncations can
 | 
						|
  // seed additional demotion, we save the truncated value.
 | 
						|
  case Instruction::Trunc:
 | 
						|
    Roots.push_back(I->getOperand(0));
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
    break;
 | 
						|
 | 
						|
  // We can demote certain binary operations if we can demote both of their
 | 
						|
  // operands.
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
 | 
						|
        !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
 | 
						|
  // We can demote selects if we can demote their true and false values.
 | 
						|
  case Instruction::Select: {
 | 
						|
    SelectInst *SI = cast<SelectInst>(I);
 | 
						|
    if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
 | 
						|
        !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // We can demote phis if we can demote all their incoming operands. Note that
 | 
						|
  // we don't need to worry about cycles since we ensure single use above.
 | 
						|
  case Instruction::PHI: {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    for (Value *IncValue : PN->incoming_values())
 | 
						|
      if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
 | 
						|
        return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, conservatively give up.
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Record the value that we can demote.
 | 
						|
  ToDemote.push_back(V);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void BoUpSLP::computeMinimumValueSizes() {
 | 
						|
  // If there are no external uses, the expression tree must be rooted by a
 | 
						|
  // store. We can't demote in-memory values, so there is nothing to do here.
 | 
						|
  if (ExternalUses.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // We only attempt to truncate integer expressions.
 | 
						|
  auto &TreeRoot = VectorizableTree[0].Scalars;
 | 
						|
  auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
 | 
						|
  if (!TreeRootIT)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If the expression is not rooted by a store, these roots should have
 | 
						|
  // external uses. We will rely on InstCombine to rewrite the expression in
 | 
						|
  // the narrower type. However, InstCombine only rewrites single-use values.
 | 
						|
  // This means that if a tree entry other than a root is used externally, it
 | 
						|
  // must have multiple uses and InstCombine will not rewrite it. The code
 | 
						|
  // below ensures that only the roots are used externally.
 | 
						|
  SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
 | 
						|
  for (auto &EU : ExternalUses)
 | 
						|
    if (!Expr.erase(EU.Scalar))
 | 
						|
      return;
 | 
						|
  if (!Expr.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Collect the scalar values of the vectorizable expression. We will use this
 | 
						|
  // context to determine which values can be demoted. If we see a truncation,
 | 
						|
  // we mark it as seeding another demotion.
 | 
						|
  for (auto &Entry : VectorizableTree)
 | 
						|
    Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
 | 
						|
 | 
						|
  // Ensure the roots of the vectorizable tree don't form a cycle. They must
 | 
						|
  // have a single external user that is not in the vectorizable tree.
 | 
						|
  for (auto *Root : TreeRoot)
 | 
						|
    if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
 | 
						|
      return;
 | 
						|
 | 
						|
  // Conservatively determine if we can actually truncate the roots of the
 | 
						|
  // expression. Collect the values that can be demoted in ToDemote and
 | 
						|
  // additional roots that require investigating in Roots.
 | 
						|
  SmallVector<Value *, 32> ToDemote;
 | 
						|
  SmallVector<Value *, 4> Roots;
 | 
						|
  for (auto *Root : TreeRoot)
 | 
						|
    if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
 | 
						|
      return;
 | 
						|
 | 
						|
  // The maximum bit width required to represent all the values that can be
 | 
						|
  // demoted without loss of precision. It would be safe to truncate the roots
 | 
						|
  // of the expression to this width.
 | 
						|
  auto MaxBitWidth = 8u;
 | 
						|
 | 
						|
  // We first check if all the bits of the roots are demanded. If they're not,
 | 
						|
  // we can truncate the roots to this narrower type.
 | 
						|
  for (auto *Root : TreeRoot) {
 | 
						|
    auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
 | 
						|
    MaxBitWidth = std::max<unsigned>(
 | 
						|
        Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  // If all the bits of the roots are demanded, we can try a little harder to
 | 
						|
  // compute a narrower type. This can happen, for example, if the roots are
 | 
						|
  // getelementptr indices. InstCombine promotes these indices to the pointer
 | 
						|
  // width. Thus, all their bits are technically demanded even though the
 | 
						|
  // address computation might be vectorized in a smaller type.
 | 
						|
  //
 | 
						|
  // We start by looking at each entry that can be demoted. We compute the
 | 
						|
  // maximum bit width required to store the scalar by using ValueTracking to
 | 
						|
  // compute the number of high-order bits we can truncate.
 | 
						|
  if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) {
 | 
						|
    MaxBitWidth = 8u;
 | 
						|
    for (auto *Scalar : ToDemote) {
 | 
						|
      auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT);
 | 
						|
      auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
 | 
						|
      MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Round MaxBitWidth up to the next power-of-two.
 | 
						|
  if (!isPowerOf2_64(MaxBitWidth))
 | 
						|
    MaxBitWidth = NextPowerOf2(MaxBitWidth);
 | 
						|
 | 
						|
  // If the maximum bit width we compute is less than the with of the roots'
 | 
						|
  // type, we can proceed with the narrowing. Otherwise, do nothing.
 | 
						|
  if (MaxBitWidth >= TreeRootIT->getBitWidth())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we can truncate the root, we must collect additional values that might
 | 
						|
  // be demoted as a result. That is, those seeded by truncations we will
 | 
						|
  // modify.
 | 
						|
  while (!Roots.empty())
 | 
						|
    collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
 | 
						|
 | 
						|
  // Finally, map the values we can demote to the maximum bit with we computed.
 | 
						|
  for (auto *Scalar : ToDemote)
 | 
						|
    MinBWs[Scalar] = MaxBitWidth;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// The SLPVectorizer Pass.
 | 
						|
struct SLPVectorizer : public FunctionPass {
 | 
						|
  SLPVectorizerPass Impl;
 | 
						|
 | 
						|
  /// Pass identification, replacement for typeid
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  explicit SLPVectorizer() : FunctionPass(ID) {
 | 
						|
    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  bool doInitialization(Module &M) override {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipFunction(F))
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
    auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						|
    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
 | 
						|
    auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
 | 
						|
    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
    auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
 | 
						|
 | 
						|
    return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB);
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    FunctionPass::getAnalysisUsage(AU);
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<ScalarEvolutionWrapperPass>();
 | 
						|
    AU.addRequired<AAResultsWrapperPass>();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<DemandedBitsWrapperPass>();
 | 
						|
    AU.addPreserved<LoopInfoWrapperPass>();
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<AAResultsWrapperPass>();
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
    AU.setPreservesCFG();
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
 | 
						|
  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
 | 
						|
  auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
 | 
						|
  auto *AA = &AM.getResult<AAManager>(F);
 | 
						|
  auto *LI = &AM.getResult<LoopAnalysis>(F);
 | 
						|
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
 | 
						|
  auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
 | 
						|
 | 
						|
  bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB);
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<LoopAnalysis>();
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  PA.preserve<AAManager>();
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
 | 
						|
                                TargetTransformInfo *TTI_,
 | 
						|
                                TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
 | 
						|
                                LoopInfo *LI_, DominatorTree *DT_,
 | 
						|
                                AssumptionCache *AC_, DemandedBits *DB_) {
 | 
						|
  SE = SE_;
 | 
						|
  TTI = TTI_;
 | 
						|
  TLI = TLI_;
 | 
						|
  AA = AA_;
 | 
						|
  LI = LI_;
 | 
						|
  DT = DT_;
 | 
						|
  AC = AC_;
 | 
						|
  DB = DB_;
 | 
						|
  DL = &F.getParent()->getDataLayout();
 | 
						|
 | 
						|
  Stores.clear();
 | 
						|
  GEPs.clear();
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // If the target claims to have no vector registers don't attempt
 | 
						|
  // vectorization.
 | 
						|
  if (!TTI->getNumberOfRegisters(true))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't vectorize when the attribute NoImplicitFloat is used.
 | 
						|
  if (F.hasFnAttribute(Attribute::NoImplicitFloat))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
 | 
						|
 | 
						|
  // Use the bottom up slp vectorizer to construct chains that start with
 | 
						|
  // store instructions.
 | 
						|
  BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL);
 | 
						|
 | 
						|
  // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
 | 
						|
  // delete instructions.
 | 
						|
 | 
						|
  // Scan the blocks in the function in post order.
 | 
						|
  for (auto BB : post_order(&F.getEntryBlock())) {
 | 
						|
    collectSeedInstructions(BB);
 | 
						|
 | 
						|
    // Vectorize trees that end at stores.
 | 
						|
    if (!Stores.empty()) {
 | 
						|
      DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
 | 
						|
                   << " underlying objects.\n");
 | 
						|
      Changed |= vectorizeStoreChains(R);
 | 
						|
    }
 | 
						|
 | 
						|
    // Vectorize trees that end at reductions.
 | 
						|
    Changed |= vectorizeChainsInBlock(BB, R);
 | 
						|
 | 
						|
    // Vectorize the index computations of getelementptr instructions. This
 | 
						|
    // is primarily intended to catch gather-like idioms ending at
 | 
						|
    // non-consecutive loads.
 | 
						|
    if (!GEPs.empty()) {
 | 
						|
      DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
 | 
						|
                   << " underlying objects.\n");
 | 
						|
      Changed |= vectorizeGEPIndices(BB, R);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Changed) {
 | 
						|
    R.optimizeGatherSequence();
 | 
						|
    DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
 | 
						|
    DEBUG(verifyFunction(F));
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the Values in the slice in VL array are still existent in
 | 
						|
/// the WeakVH array.
 | 
						|
/// Vectorization of part of the VL array may cause later values in the VL array
 | 
						|
/// to become invalid. We track when this has happened in the WeakVH array.
 | 
						|
static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
 | 
						|
                               unsigned SliceBegin, unsigned SliceSize) {
 | 
						|
  VL = VL.slice(SliceBegin, SliceSize);
 | 
						|
  VH = VH.slice(SliceBegin, SliceSize);
 | 
						|
  return !std::equal(VL.begin(), VL.end(), VH.begin());
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain,
 | 
						|
                                            int CostThreshold, BoUpSLP &R,
 | 
						|
                                            unsigned VecRegSize) {
 | 
						|
  unsigned ChainLen = Chain.size();
 | 
						|
  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
 | 
						|
        << "\n");
 | 
						|
  unsigned Sz = R.getVectorElementSize(Chain[0]);
 | 
						|
  unsigned VF = VecRegSize / Sz;
 | 
						|
 | 
						|
  if (!isPowerOf2_32(Sz) || VF < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Keep track of values that were deleted by vectorizing in the loop below.
 | 
						|
  SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  // Look for profitable vectorizable trees at all offsets, starting at zero.
 | 
						|
  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
 | 
						|
    if (i + VF > e)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Check that a previous iteration of this loop did not delete the Value.
 | 
						|
    if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
 | 
						|
          << "\n");
 | 
						|
    ArrayRef<Value *> Operands = Chain.slice(i, VF);
 | 
						|
 | 
						|
    R.buildTree(Operands);
 | 
						|
    R.computeMinimumValueSizes();
 | 
						|
 | 
						|
    int Cost = R.getTreeCost();
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
 | 
						|
    if (Cost < CostThreshold) {
 | 
						|
      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
 | 
						|
      R.vectorizeTree();
 | 
						|
 | 
						|
      // Move to the next bundle.
 | 
						|
      i += VF - 1;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
 | 
						|
                                        int costThreshold, BoUpSLP &R) {
 | 
						|
  SetVector<StoreInst *> Heads, Tails;
 | 
						|
  SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
 | 
						|
 | 
						|
  // We may run into multiple chains that merge into a single chain. We mark the
 | 
						|
  // stores that we vectorized so that we don't visit the same store twice.
 | 
						|
  BoUpSLP::ValueSet VectorizedStores;
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Do a quadratic search on all of the given stores and find
 | 
						|
  // all of the pairs of stores that follow each other.
 | 
						|
  SmallVector<unsigned, 16> IndexQueue;
 | 
						|
  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
 | 
						|
    IndexQueue.clear();
 | 
						|
    // If a store has multiple consecutive store candidates, search Stores
 | 
						|
    // array according to the sequence: from i+1 to e, then from i-1 to 0.
 | 
						|
    // This is because usually pairing with immediate succeeding or preceding
 | 
						|
    // candidate create the best chance to find slp vectorization opportunity.
 | 
						|
    unsigned j = 0;
 | 
						|
    for (j = i + 1; j < e; ++j)
 | 
						|
      IndexQueue.push_back(j);
 | 
						|
    for (j = i; j > 0; --j)
 | 
						|
      IndexQueue.push_back(j - 1);
 | 
						|
 | 
						|
    for (auto &k : IndexQueue) {
 | 
						|
      if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) {
 | 
						|
        Tails.insert(Stores[k]);
 | 
						|
        Heads.insert(Stores[i]);
 | 
						|
        ConsecutiveChain[Stores[i]] = Stores[k];
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For stores that start but don't end a link in the chain:
 | 
						|
  for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
 | 
						|
       it != e; ++it) {
 | 
						|
    if (Tails.count(*it))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We found a store instr that starts a chain. Now follow the chain and try
 | 
						|
    // to vectorize it.
 | 
						|
    BoUpSLP::ValueList Operands;
 | 
						|
    StoreInst *I = *it;
 | 
						|
    // Collect the chain into a list.
 | 
						|
    while (Tails.count(I) || Heads.count(I)) {
 | 
						|
      if (VectorizedStores.count(I))
 | 
						|
        break;
 | 
						|
      Operands.push_back(I);
 | 
						|
      // Move to the next value in the chain.
 | 
						|
      I = ConsecutiveChain[I];
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Is division-by-2 the correct step? Should we assert that the
 | 
						|
    // register size is a power-of-2?
 | 
						|
    for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) {
 | 
						|
      if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
 | 
						|
        // Mark the vectorized stores so that we don't vectorize them again.
 | 
						|
        VectorizedStores.insert(Operands.begin(), Operands.end());
 | 
						|
        Changed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
 | 
						|
 | 
						|
  // Initialize the collections. We will make a single pass over the block.
 | 
						|
  Stores.clear();
 | 
						|
  GEPs.clear();
 | 
						|
 | 
						|
  // Visit the store and getelementptr instructions in BB and organize them in
 | 
						|
  // Stores and GEPs according to the underlying objects of their pointer
 | 
						|
  // operands.
 | 
						|
  for (Instruction &I : *BB) {
 | 
						|
 | 
						|
    // Ignore store instructions that are volatile or have a pointer operand
 | 
						|
    // that doesn't point to a scalar type.
 | 
						|
    if (auto *SI = dyn_cast<StoreInst>(&I)) {
 | 
						|
      if (!SI->isSimple())
 | 
						|
        continue;
 | 
						|
      if (!isValidElementType(SI->getValueOperand()->getType()))
 | 
						|
        continue;
 | 
						|
      Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Ignore getelementptr instructions that have more than one index, a
 | 
						|
    // constant index, or a pointer operand that doesn't point to a scalar
 | 
						|
    // type.
 | 
						|
    else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | 
						|
      auto Idx = GEP->idx_begin()->get();
 | 
						|
      if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
 | 
						|
        continue;
 | 
						|
      if (!isValidElementType(Idx->getType()))
 | 
						|
        continue;
 | 
						|
      if (GEP->getType()->isVectorTy())
 | 
						|
        continue;
 | 
						|
      GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
 | 
						|
  if (!A || !B)
 | 
						|
    return false;
 | 
						|
  Value *VL[] = { A, B };
 | 
						|
  return tryToVectorizeList(VL, R, None, true);
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
 | 
						|
                                           ArrayRef<Value *> BuildVector,
 | 
						|
                                           bool allowReorder) {
 | 
						|
  if (VL.size() < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
 | 
						|
 | 
						|
  // Check that all of the parts are scalar instructions of the same type.
 | 
						|
  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | 
						|
  if (!I0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Opcode0 = I0->getOpcode();
 | 
						|
 | 
						|
  // FIXME: Register size should be a parameter to this function, so we can
 | 
						|
  // try different vectorization factors.
 | 
						|
  unsigned Sz = R.getVectorElementSize(I0);
 | 
						|
  unsigned VF = R.getMinVecRegSize() / Sz;
 | 
						|
 | 
						|
  for (Value *V : VL) {
 | 
						|
    Type *Ty = V->getType();
 | 
						|
    if (!isValidElementType(Ty))
 | 
						|
      return false;
 | 
						|
    Instruction *Inst = dyn_cast<Instruction>(V);
 | 
						|
    if (!Inst || Inst->getOpcode() != Opcode0)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Keep track of values that were deleted by vectorizing in the loop below.
 | 
						|
  SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | 
						|
    unsigned OpsWidth = 0;
 | 
						|
 | 
						|
    if (i + VF > e)
 | 
						|
      OpsWidth = e - i;
 | 
						|
    else
 | 
						|
      OpsWidth = VF;
 | 
						|
 | 
						|
    if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Check that a previous iteration of this loop did not delete the Value.
 | 
						|
    if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
 | 
						|
                 << "\n");
 | 
						|
    ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
 | 
						|
 | 
						|
    ArrayRef<Value *> BuildVectorSlice;
 | 
						|
    if (!BuildVector.empty())
 | 
						|
      BuildVectorSlice = BuildVector.slice(i, OpsWidth);
 | 
						|
 | 
						|
    R.buildTree(Ops, BuildVectorSlice);
 | 
						|
    // TODO: check if we can allow reordering also for other cases than
 | 
						|
    // tryToVectorizePair()
 | 
						|
    if (allowReorder && R.shouldReorder()) {
 | 
						|
      assert(Ops.size() == 2);
 | 
						|
      assert(BuildVectorSlice.empty());
 | 
						|
      Value *ReorderedOps[] = { Ops[1], Ops[0] };
 | 
						|
      R.buildTree(ReorderedOps, None);
 | 
						|
    }
 | 
						|
    R.computeMinimumValueSizes();
 | 
						|
    int Cost = R.getTreeCost();
 | 
						|
 | 
						|
    if (Cost < -SLPCostThreshold) {
 | 
						|
      DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
 | 
						|
      Value *VectorizedRoot = R.vectorizeTree();
 | 
						|
 | 
						|
      // Reconstruct the build vector by extracting the vectorized root. This
 | 
						|
      // way we handle the case where some elements of the vector are undefined.
 | 
						|
      //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
 | 
						|
      if (!BuildVectorSlice.empty()) {
 | 
						|
        // The insert point is the last build vector instruction. The vectorized
 | 
						|
        // root will precede it. This guarantees that we get an instruction. The
 | 
						|
        // vectorized tree could have been constant folded.
 | 
						|
        Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
 | 
						|
        unsigned VecIdx = 0;
 | 
						|
        for (auto &V : BuildVectorSlice) {
 | 
						|
          IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
 | 
						|
                                      ++BasicBlock::iterator(InsertAfter));
 | 
						|
          Instruction *I = cast<Instruction>(V);
 | 
						|
          assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I));
 | 
						|
          Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
 | 
						|
              VectorizedRoot, Builder.getInt32(VecIdx++)));
 | 
						|
          I->setOperand(1, Extract);
 | 
						|
          I->removeFromParent();
 | 
						|
          I->insertAfter(Extract);
 | 
						|
          InsertAfter = I;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Move to the next bundle.
 | 
						|
      i += VF - 1;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
 | 
						|
  if (!V)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Try to vectorize V.
 | 
						|
  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
 | 
						|
    return true;
 | 
						|
 | 
						|
  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
 | 
						|
  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
 | 
						|
  // Try to skip B.
 | 
						|
  if (B && B->hasOneUse()) {
 | 
						|
    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
 | 
						|
    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
 | 
						|
    if (tryToVectorizePair(A, B0, R)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (tryToVectorizePair(A, B1, R)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to skip A.
 | 
						|
  if (A && A->hasOneUse()) {
 | 
						|
    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
 | 
						|
    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
 | 
						|
    if (tryToVectorizePair(A0, B, R)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (tryToVectorizePair(A1, B, R)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Generate a shuffle mask to be used in a reduction tree.
 | 
						|
///
 | 
						|
/// \param VecLen The length of the vector to be reduced.
 | 
						|
/// \param NumEltsToRdx The number of elements that should be reduced in the
 | 
						|
///        vector.
 | 
						|
/// \param IsPairwise Whether the reduction is a pairwise or splitting
 | 
						|
///        reduction. A pairwise reduction will generate a mask of
 | 
						|
///        <0,2,...> or <1,3,..> while a splitting reduction will generate
 | 
						|
///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
 | 
						|
/// \param IsLeft True will generate a mask of even elements, odd otherwise.
 | 
						|
static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
 | 
						|
                                   bool IsPairwise, bool IsLeft,
 | 
						|
                                   IRBuilder<> &Builder) {
 | 
						|
  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
 | 
						|
 | 
						|
  SmallVector<Constant *, 32> ShuffleMask(
 | 
						|
      VecLen, UndefValue::get(Builder.getInt32Ty()));
 | 
						|
 | 
						|
  if (IsPairwise)
 | 
						|
    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
 | 
						|
    for (unsigned i = 0; i != NumEltsToRdx; ++i)
 | 
						|
      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
 | 
						|
  else
 | 
						|
    // Move the upper half of the vector to the lower half.
 | 
						|
    for (unsigned i = 0; i != NumEltsToRdx; ++i)
 | 
						|
      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
 | 
						|
 | 
						|
  return ConstantVector::get(ShuffleMask);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Model horizontal reductions.
 | 
						|
///
 | 
						|
/// A horizontal reduction is a tree of reduction operations (currently add and
 | 
						|
/// fadd) that has operations that can be put into a vector as its leaf.
 | 
						|
/// For example, this tree:
 | 
						|
///
 | 
						|
/// mul mul mul mul
 | 
						|
///  \  /    \  /
 | 
						|
///   +       +
 | 
						|
///    \     /
 | 
						|
///       +
 | 
						|
/// This tree has "mul" as its reduced values and "+" as its reduction
 | 
						|
/// operations. A reduction might be feeding into a store or a binary operation
 | 
						|
/// feeding a phi.
 | 
						|
///    ...
 | 
						|
///    \  /
 | 
						|
///     +
 | 
						|
///     |
 | 
						|
///  phi +=
 | 
						|
///
 | 
						|
///  Or:
 | 
						|
///    ...
 | 
						|
///    \  /
 | 
						|
///     +
 | 
						|
///     |
 | 
						|
///   *p =
 | 
						|
///
 | 
						|
class HorizontalReduction {
 | 
						|
  SmallVector<Value *, 16> ReductionOps;
 | 
						|
  SmallVector<Value *, 32> ReducedVals;
 | 
						|
 | 
						|
  BinaryOperator *ReductionRoot;
 | 
						|
  PHINode *ReductionPHI;
 | 
						|
 | 
						|
  /// The opcode of the reduction.
 | 
						|
  unsigned ReductionOpcode;
 | 
						|
  /// The opcode of the values we perform a reduction on.
 | 
						|
  unsigned ReducedValueOpcode;
 | 
						|
  /// Should we model this reduction as a pairwise reduction tree or a tree that
 | 
						|
  /// splits the vector in halves and adds those halves.
 | 
						|
  bool IsPairwiseReduction;
 | 
						|
 | 
						|
public:
 | 
						|
  /// The width of one full horizontal reduction operation.
 | 
						|
  unsigned ReduxWidth;
 | 
						|
 | 
						|
  /// Minimal width of available vector registers. It's used to determine
 | 
						|
  /// ReduxWidth.
 | 
						|
  unsigned MinVecRegSize;
 | 
						|
 | 
						|
  HorizontalReduction(unsigned MinVecRegSize)
 | 
						|
      : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
 | 
						|
        ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0),
 | 
						|
        MinVecRegSize(MinVecRegSize) {}
 | 
						|
 | 
						|
  /// \brief Try to find a reduction tree.
 | 
						|
  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
 | 
						|
    assert((!Phi ||
 | 
						|
            std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
 | 
						|
           "Thi phi needs to use the binary operator");
 | 
						|
 | 
						|
    // We could have a initial reductions that is not an add.
 | 
						|
    //  r *= v1 + v2 + v3 + v4
 | 
						|
    // In such a case start looking for a tree rooted in the first '+'.
 | 
						|
    if (Phi) {
 | 
						|
      if (B->getOperand(0) == Phi) {
 | 
						|
        Phi = nullptr;
 | 
						|
        B = dyn_cast<BinaryOperator>(B->getOperand(1));
 | 
						|
      } else if (B->getOperand(1) == Phi) {
 | 
						|
        Phi = nullptr;
 | 
						|
        B = dyn_cast<BinaryOperator>(B->getOperand(0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!B)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Type *Ty = B->getType();
 | 
						|
    if (!isValidElementType(Ty))
 | 
						|
      return false;
 | 
						|
 | 
						|
    const DataLayout &DL = B->getModule()->getDataLayout();
 | 
						|
    ReductionOpcode = B->getOpcode();
 | 
						|
    ReducedValueOpcode = 0;
 | 
						|
    // FIXME: Register size should be a parameter to this function, so we can
 | 
						|
    // try different vectorization factors.
 | 
						|
    ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
 | 
						|
    ReductionRoot = B;
 | 
						|
    ReductionPHI = Phi;
 | 
						|
 | 
						|
    if (ReduxWidth < 4)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We currently only support adds.
 | 
						|
    if (ReductionOpcode != Instruction::Add &&
 | 
						|
        ReductionOpcode != Instruction::FAdd)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Post order traverse the reduction tree starting at B. We only handle true
 | 
						|
    // trees containing only binary operators or selects.
 | 
						|
    SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
 | 
						|
    Stack.push_back(std::make_pair(B, 0));
 | 
						|
    while (!Stack.empty()) {
 | 
						|
      Instruction *TreeN = Stack.back().first;
 | 
						|
      unsigned EdgeToVist = Stack.back().second++;
 | 
						|
      bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
 | 
						|
 | 
						|
      // Only handle trees in the current basic block.
 | 
						|
      if (TreeN->getParent() != B->getParent())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Each tree node needs to have one user except for the ultimate
 | 
						|
      // reduction.
 | 
						|
      if (!TreeN->hasOneUse() && TreeN != B)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Postorder vist.
 | 
						|
      if (EdgeToVist == 2 || IsReducedValue) {
 | 
						|
        if (IsReducedValue) {
 | 
						|
          // Make sure that the opcodes of the operations that we are going to
 | 
						|
          // reduce match.
 | 
						|
          if (!ReducedValueOpcode)
 | 
						|
            ReducedValueOpcode = TreeN->getOpcode();
 | 
						|
          else if (ReducedValueOpcode != TreeN->getOpcode())
 | 
						|
            return false;
 | 
						|
          ReducedVals.push_back(TreeN);
 | 
						|
        } else {
 | 
						|
          // We need to be able to reassociate the adds.
 | 
						|
          if (!TreeN->isAssociative())
 | 
						|
            return false;
 | 
						|
          ReductionOps.push_back(TreeN);
 | 
						|
        }
 | 
						|
        // Retract.
 | 
						|
        Stack.pop_back();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Visit left or right.
 | 
						|
      Value *NextV = TreeN->getOperand(EdgeToVist);
 | 
						|
      // We currently only allow BinaryOperator's and SelectInst's as reduction
 | 
						|
      // values in our tree.
 | 
						|
      if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV))
 | 
						|
        Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0));
 | 
						|
      else if (NextV != Phi)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Attempt to vectorize the tree found by
 | 
						|
  /// matchAssociativeReduction.
 | 
						|
  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
 | 
						|
    if (ReducedVals.empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned NumReducedVals = ReducedVals.size();
 | 
						|
    if (NumReducedVals < ReduxWidth)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Value *VectorizedTree = nullptr;
 | 
						|
    IRBuilder<> Builder(ReductionRoot);
 | 
						|
    FastMathFlags Unsafe;
 | 
						|
    Unsafe.setUnsafeAlgebra();
 | 
						|
    Builder.setFastMathFlags(Unsafe);
 | 
						|
    unsigned i = 0;
 | 
						|
 | 
						|
    for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
 | 
						|
      V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
 | 
						|
      V.computeMinimumValueSizes();
 | 
						|
 | 
						|
      // Estimate cost.
 | 
						|
      int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
 | 
						|
      if (Cost >= -SLPCostThreshold)
 | 
						|
        break;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
 | 
						|
                   << ". (HorRdx)\n");
 | 
						|
 | 
						|
      // Vectorize a tree.
 | 
						|
      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
 | 
						|
      Value *VectorizedRoot = V.vectorizeTree();
 | 
						|
 | 
						|
      // Emit a reduction.
 | 
						|
      Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
 | 
						|
      if (VectorizedTree) {
 | 
						|
        Builder.SetCurrentDebugLocation(Loc);
 | 
						|
        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
 | 
						|
                                     ReducedSubTree, "bin.rdx");
 | 
						|
      } else
 | 
						|
        VectorizedTree = ReducedSubTree;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VectorizedTree) {
 | 
						|
      // Finish the reduction.
 | 
						|
      for (; i < NumReducedVals; ++i) {
 | 
						|
        Builder.SetCurrentDebugLocation(
 | 
						|
          cast<Instruction>(ReducedVals[i])->getDebugLoc());
 | 
						|
        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
 | 
						|
                                     ReducedVals[i]);
 | 
						|
      }
 | 
						|
      // Update users.
 | 
						|
      if (ReductionPHI) {
 | 
						|
        assert(ReductionRoot && "Need a reduction operation");
 | 
						|
        ReductionRoot->setOperand(0, VectorizedTree);
 | 
						|
        ReductionRoot->setOperand(1, ReductionPHI);
 | 
						|
      } else
 | 
						|
        ReductionRoot->replaceAllUsesWith(VectorizedTree);
 | 
						|
    }
 | 
						|
    return VectorizedTree != nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned numReductionValues() const {
 | 
						|
    return ReducedVals.size();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// \brief Calculate the cost of a reduction.
 | 
						|
  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
 | 
						|
    Type *ScalarTy = FirstReducedVal->getType();
 | 
						|
    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
 | 
						|
 | 
						|
    int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
 | 
						|
    int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
 | 
						|
 | 
						|
    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
 | 
						|
    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
 | 
						|
 | 
						|
    int ScalarReduxCost =
 | 
						|
        ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
 | 
						|
                 << " for reduction that starts with " << *FirstReducedVal
 | 
						|
                 << " (It is a "
 | 
						|
                 << (IsPairwiseReduction ? "pairwise" : "splitting")
 | 
						|
                 << " reduction)\n");
 | 
						|
 | 
						|
    return VecReduxCost - ScalarReduxCost;
 | 
						|
  }
 | 
						|
 | 
						|
  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
 | 
						|
                            Value *R, const Twine &Name = "") {
 | 
						|
    if (Opcode == Instruction::FAdd)
 | 
						|
      return Builder.CreateFAdd(L, R, Name);
 | 
						|
    return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Emit a horizontal reduction of the vectorized value.
 | 
						|
  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
 | 
						|
    assert(VectorizedValue && "Need to have a vectorized tree node");
 | 
						|
    assert(isPowerOf2_32(ReduxWidth) &&
 | 
						|
           "We only handle power-of-two reductions for now");
 | 
						|
 | 
						|
    Value *TmpVec = VectorizedValue;
 | 
						|
    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
 | 
						|
      if (IsPairwiseReduction) {
 | 
						|
        Value *LeftMask =
 | 
						|
          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
 | 
						|
        Value *RightMask =
 | 
						|
          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
 | 
						|
 | 
						|
        Value *LeftShuf = Builder.CreateShuffleVector(
 | 
						|
          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
 | 
						|
        Value *RightShuf = Builder.CreateShuffleVector(
 | 
						|
          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
 | 
						|
          "rdx.shuf.r");
 | 
						|
        TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
 | 
						|
                             "bin.rdx");
 | 
						|
      } else {
 | 
						|
        Value *UpperHalf =
 | 
						|
          createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
 | 
						|
        Value *Shuf = Builder.CreateShuffleVector(
 | 
						|
          TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
 | 
						|
        TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The result is in the first element of the vector.
 | 
						|
    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Recognize construction of vectors like
 | 
						|
///  %ra = insertelement <4 x float> undef, float %s0, i32 0
 | 
						|
///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
 | 
						|
///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
 | 
						|
///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
 | 
						|
///
 | 
						|
/// Returns true if it matches
 | 
						|
///
 | 
						|
static bool findBuildVector(InsertElementInst *FirstInsertElem,
 | 
						|
                            SmallVectorImpl<Value *> &BuildVector,
 | 
						|
                            SmallVectorImpl<Value *> &BuildVectorOpds) {
 | 
						|
  if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  InsertElementInst *IE = FirstInsertElem;
 | 
						|
  while (true) {
 | 
						|
    BuildVector.push_back(IE);
 | 
						|
    BuildVectorOpds.push_back(IE->getOperand(1));
 | 
						|
 | 
						|
    if (IE->use_empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
 | 
						|
    if (!NextUse)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If this isn't the final use, make sure the next insertelement is the only
 | 
						|
    // use. It's OK if the final constructed vector is used multiple times
 | 
						|
    if (!IE->hasOneUse())
 | 
						|
      return false;
 | 
						|
 | 
						|
    IE = NextUse;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Like findBuildVector, but looks backwards for construction of aggregate.
 | 
						|
///
 | 
						|
/// \return true if it matches.
 | 
						|
static bool findBuildAggregate(InsertValueInst *IV,
 | 
						|
                               SmallVectorImpl<Value *> &BuildVector,
 | 
						|
                               SmallVectorImpl<Value *> &BuildVectorOpds) {
 | 
						|
  if (!IV->hasOneUse())
 | 
						|
    return false;
 | 
						|
  Value *V = IV->getAggregateOperand();
 | 
						|
  if (!isa<UndefValue>(V)) {
 | 
						|
    InsertValueInst *I = dyn_cast<InsertValueInst>(V);
 | 
						|
    if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  BuildVector.push_back(IV);
 | 
						|
  BuildVectorOpds.push_back(IV->getInsertedValueOperand());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool PhiTypeSorterFunc(Value *V, Value *V2) {
 | 
						|
  return V->getType() < V2->getType();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try and get a reduction value from a phi node.
 | 
						|
///
 | 
						|
/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
 | 
						|
/// if they come from either \p ParentBB or a containing loop latch.
 | 
						|
///
 | 
						|
/// \returns A candidate reduction value if possible, or \code nullptr \endcode
 | 
						|
/// if not possible.
 | 
						|
static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
 | 
						|
                                BasicBlock *ParentBB, LoopInfo *LI) {
 | 
						|
  // There are situations where the reduction value is not dominated by the
 | 
						|
  // reduction phi. Vectorizing such cases has been reported to cause
 | 
						|
  // miscompiles. See PR25787.
 | 
						|
  auto DominatedReduxValue = [&](Value *R) {
 | 
						|
    return (
 | 
						|
        dyn_cast<Instruction>(R) &&
 | 
						|
        DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
 | 
						|
  };
 | 
						|
 | 
						|
  Value *Rdx = nullptr;
 | 
						|
 | 
						|
  // Return the incoming value if it comes from the same BB as the phi node.
 | 
						|
  if (P->getIncomingBlock(0) == ParentBB) {
 | 
						|
    Rdx = P->getIncomingValue(0);
 | 
						|
  } else if (P->getIncomingBlock(1) == ParentBB) {
 | 
						|
    Rdx = P->getIncomingValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Rdx && DominatedReduxValue(Rdx))
 | 
						|
    return Rdx;
 | 
						|
 | 
						|
  // Otherwise, check whether we have a loop latch to look at.
 | 
						|
  Loop *BBL = LI->getLoopFor(ParentBB);
 | 
						|
  if (!BBL)
 | 
						|
    return nullptr;
 | 
						|
  BasicBlock *BBLatch = BBL->getLoopLatch();
 | 
						|
  if (!BBLatch)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // There is a loop latch, return the incoming value if it comes from
 | 
						|
  // that. This reduction pattern occassionaly turns up.
 | 
						|
  if (P->getIncomingBlock(0) == BBLatch) {
 | 
						|
    Rdx = P->getIncomingValue(0);
 | 
						|
  } else if (P->getIncomingBlock(1) == BBLatch) {
 | 
						|
    Rdx = P->getIncomingValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Rdx && DominatedReduxValue(Rdx))
 | 
						|
    return Rdx;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Attempt to reduce a horizontal reduction.
 | 
						|
/// If it is legal to match a horizontal reduction feeding
 | 
						|
/// the phi node P with reduction operators BI, then check if it
 | 
						|
/// can be done.
 | 
						|
/// \returns true if a horizontal reduction was matched and reduced.
 | 
						|
/// \returns false if a horizontal reduction was not matched.
 | 
						|
static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI,
 | 
						|
                                        BoUpSLP &R, TargetTransformInfo *TTI,
 | 
						|
                                        unsigned MinRegSize) {
 | 
						|
  if (!ShouldVectorizeHor)
 | 
						|
    return false;
 | 
						|
 | 
						|
  HorizontalReduction HorRdx(MinRegSize);
 | 
						|
  if (!HorRdx.matchAssociativeReduction(P, BI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If there is a sufficient number of reduction values, reduce
 | 
						|
  // to a nearby power-of-2. Can safely generate oversized
 | 
						|
  // vectors and rely on the backend to split them to legal sizes.
 | 
						|
  HorRdx.ReduxWidth =
 | 
						|
    std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues()));
 | 
						|
 | 
						|
  return HorRdx.tryToReduce(R, TTI);
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
 | 
						|
  bool Changed = false;
 | 
						|
  SmallVector<Value *, 4> Incoming;
 | 
						|
  SmallSet<Value *, 16> VisitedInstrs;
 | 
						|
 | 
						|
  bool HaveVectorizedPhiNodes = true;
 | 
						|
  while (HaveVectorizedPhiNodes) {
 | 
						|
    HaveVectorizedPhiNodes = false;
 | 
						|
 | 
						|
    // Collect the incoming values from the PHIs.
 | 
						|
    Incoming.clear();
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      PHINode *P = dyn_cast<PHINode>(&I);
 | 
						|
      if (!P)
 | 
						|
        break;
 | 
						|
 | 
						|
      if (!VisitedInstrs.count(P))
 | 
						|
        Incoming.push_back(P);
 | 
						|
    }
 | 
						|
 | 
						|
    // Sort by type.
 | 
						|
    std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
 | 
						|
 | 
						|
    // Try to vectorize elements base on their type.
 | 
						|
    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
 | 
						|
                                           E = Incoming.end();
 | 
						|
         IncIt != E;) {
 | 
						|
 | 
						|
      // Look for the next elements with the same type.
 | 
						|
      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
 | 
						|
      while (SameTypeIt != E &&
 | 
						|
             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
 | 
						|
        VisitedInstrs.insert(*SameTypeIt);
 | 
						|
        ++SameTypeIt;
 | 
						|
      }
 | 
						|
 | 
						|
      // Try to vectorize them.
 | 
						|
      unsigned NumElts = (SameTypeIt - IncIt);
 | 
						|
      DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
 | 
						|
      if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
 | 
						|
        // Success start over because instructions might have been changed.
 | 
						|
        HaveVectorizedPhiNodes = true;
 | 
						|
        Changed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Start over at the next instruction of a different type (or the end).
 | 
						|
      IncIt = SameTypeIt;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  VisitedInstrs.clear();
 | 
						|
 | 
						|
  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
 | 
						|
    // We may go through BB multiple times so skip the one we have checked.
 | 
						|
    if (!VisitedInstrs.insert(&*it).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (isa<DbgInfoIntrinsic>(it))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Try to vectorize reductions that use PHINodes.
 | 
						|
    if (PHINode *P = dyn_cast<PHINode>(it)) {
 | 
						|
      // Check that the PHI is a reduction PHI.
 | 
						|
      if (P->getNumIncomingValues() != 2)
 | 
						|
        return Changed;
 | 
						|
 | 
						|
      Value *Rdx = getReductionValue(DT, P, BB, LI);
 | 
						|
 | 
						|
      // Check if this is a Binary Operator.
 | 
						|
      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
 | 
						|
      if (!BI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Try to match and vectorize a horizontal reduction.
 | 
						|
      if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) {
 | 
						|
        Changed = true;
 | 
						|
        it = BB->begin();
 | 
						|
        e = BB->end();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
     Value *Inst = BI->getOperand(0);
 | 
						|
      if (Inst == P)
 | 
						|
        Inst = BI->getOperand(1);
 | 
						|
 | 
						|
      if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
 | 
						|
        // We would like to start over since some instructions are deleted
 | 
						|
        // and the iterator may become invalid value.
 | 
						|
        Changed = true;
 | 
						|
        it = BB->begin();
 | 
						|
        e = BB->end();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ShouldStartVectorizeHorAtStore)
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(it))
 | 
						|
        if (BinaryOperator *BinOp =
 | 
						|
                dyn_cast<BinaryOperator>(SI->getValueOperand())) {
 | 
						|
          if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI,
 | 
						|
                                          R.getMinVecRegSize()) ||
 | 
						|
              tryToVectorize(BinOp, R)) {
 | 
						|
            Changed = true;
 | 
						|
            it = BB->begin();
 | 
						|
            e = BB->end();
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
    // Try to vectorize horizontal reductions feeding into a return.
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
 | 
						|
      if (RI->getNumOperands() != 0)
 | 
						|
        if (BinaryOperator *BinOp =
 | 
						|
                dyn_cast<BinaryOperator>(RI->getOperand(0))) {
 | 
						|
          DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
 | 
						|
          if (tryToVectorizePair(BinOp->getOperand(0),
 | 
						|
                                 BinOp->getOperand(1), R)) {
 | 
						|
            Changed = true;
 | 
						|
            it = BB->begin();
 | 
						|
            e = BB->end();
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
    // Try to vectorize trees that start at compare instructions.
 | 
						|
    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
 | 
						|
      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
 | 
						|
        Changed = true;
 | 
						|
        // We would like to start over since some instructions are deleted
 | 
						|
        // and the iterator may become invalid value.
 | 
						|
        it = BB->begin();
 | 
						|
        e = BB->end();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      for (int i = 0; i < 2; ++i) {
 | 
						|
        if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
 | 
						|
          if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
 | 
						|
            Changed = true;
 | 
						|
            // We would like to start over since some instructions are deleted
 | 
						|
            // and the iterator may become invalid value.
 | 
						|
            it = BB->begin();
 | 
						|
            e = BB->end();
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to vectorize trees that start at insertelement instructions.
 | 
						|
    if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
 | 
						|
      SmallVector<Value *, 16> BuildVector;
 | 
						|
      SmallVector<Value *, 16> BuildVectorOpds;
 | 
						|
      if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Vectorize starting with the build vector operands ignoring the
 | 
						|
      // BuildVector instructions for the purpose of scheduling and user
 | 
						|
      // extraction.
 | 
						|
      if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
 | 
						|
        Changed = true;
 | 
						|
        it = BB->begin();
 | 
						|
        e = BB->end();
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to vectorize trees that start at insertvalue instructions feeding into
 | 
						|
    // a store.
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(it)) {
 | 
						|
      if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) {
 | 
						|
        const DataLayout &DL = BB->getModule()->getDataLayout();
 | 
						|
        if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) {
 | 
						|
          SmallVector<Value *, 16> BuildVector;
 | 
						|
          SmallVector<Value *, 16> BuildVectorOpds;
 | 
						|
          if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds))
 | 
						|
            continue;
 | 
						|
 | 
						|
          DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n");
 | 
						|
          if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) {
 | 
						|
            Changed = true;
 | 
						|
            it = BB->begin();
 | 
						|
            e = BB->end();
 | 
						|
          }
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
 | 
						|
  auto Changed = false;
 | 
						|
  for (auto &Entry : GEPs) {
 | 
						|
 | 
						|
    // If the getelementptr list has fewer than two elements, there's nothing
 | 
						|
    // to do.
 | 
						|
    if (Entry.second.size() < 2)
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
 | 
						|
                 << Entry.second.size() << ".\n");
 | 
						|
 | 
						|
    // We process the getelementptr list in chunks of 16 (like we do for
 | 
						|
    // stores) to minimize compile-time.
 | 
						|
    for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
 | 
						|
      auto Len = std::min<unsigned>(BE - BI, 16);
 | 
						|
      auto GEPList = makeArrayRef(&Entry.second[BI], Len);
 | 
						|
 | 
						|
      // Initialize a set a candidate getelementptrs. Note that we use a
 | 
						|
      // SetVector here to preserve program order. If the index computations
 | 
						|
      // are vectorizable and begin with loads, we want to minimize the chance
 | 
						|
      // of having to reorder them later.
 | 
						|
      SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
 | 
						|
 | 
						|
      // Some of the candidates may have already been vectorized after we
 | 
						|
      // initially collected them. If so, the WeakVHs will have nullified the
 | 
						|
      // values, so remove them from the set of candidates.
 | 
						|
      Candidates.remove(nullptr);
 | 
						|
 | 
						|
      // Remove from the set of candidates all pairs of getelementptrs with
 | 
						|
      // constant differences. Such getelementptrs are likely not good
 | 
						|
      // candidates for vectorization in a bottom-up phase since one can be
 | 
						|
      // computed from the other. We also ensure all candidate getelementptr
 | 
						|
      // indices are unique.
 | 
						|
      for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
 | 
						|
        auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
 | 
						|
        if (!Candidates.count(GEPI))
 | 
						|
          continue;
 | 
						|
        auto *SCEVI = SE->getSCEV(GEPList[I]);
 | 
						|
        for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
 | 
						|
          auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
 | 
						|
          auto *SCEVJ = SE->getSCEV(GEPList[J]);
 | 
						|
          if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
 | 
						|
            Candidates.remove(GEPList[I]);
 | 
						|
            Candidates.remove(GEPList[J]);
 | 
						|
          } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
 | 
						|
            Candidates.remove(GEPList[J]);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // We break out of the above computation as soon as we know there are
 | 
						|
      // fewer than two candidates remaining.
 | 
						|
      if (Candidates.size() < 2)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Add the single, non-constant index of each candidate to the bundle. We
 | 
						|
      // ensured the indices met these constraints when we originally collected
 | 
						|
      // the getelementptrs.
 | 
						|
      SmallVector<Value *, 16> Bundle(Candidates.size());
 | 
						|
      auto BundleIndex = 0u;
 | 
						|
      for (auto *V : Candidates) {
 | 
						|
        auto *GEP = cast<GetElementPtrInst>(V);
 | 
						|
        auto *GEPIdx = GEP->idx_begin()->get();
 | 
						|
        assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
 | 
						|
        Bundle[BundleIndex++] = GEPIdx;
 | 
						|
      }
 | 
						|
 | 
						|
      // Try and vectorize the indices. We are currently only interested in
 | 
						|
      // gather-like cases of the form:
 | 
						|
      //
 | 
						|
      // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
 | 
						|
      //
 | 
						|
      // where the loads of "a", the loads of "b", and the subtractions can be
 | 
						|
      // performed in parallel. It's likely that detecting this pattern in a
 | 
						|
      // bottom-up phase will be simpler and less costly than building a
 | 
						|
      // full-blown top-down phase beginning at the consecutive loads.
 | 
						|
      Changed |= tryToVectorizeList(Bundle, R);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
 | 
						|
  bool Changed = false;
 | 
						|
  // Attempt to sort and vectorize each of the store-groups.
 | 
						|
  for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
 | 
						|
       ++it) {
 | 
						|
    if (it->second.size() < 2)
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
 | 
						|
          << it->second.size() << ".\n");
 | 
						|
 | 
						|
    // Process the stores in chunks of 16.
 | 
						|
    // TODO: The limit of 16 inhibits greater vectorization factors.
 | 
						|
    //       For example, AVX2 supports v32i8. Increasing this limit, however,
 | 
						|
    //       may cause a significant compile-time increase.
 | 
						|
    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
 | 
						|
      unsigned Len = std::min<unsigned>(CE - CI, 16);
 | 
						|
      Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
 | 
						|
                                 -SLPCostThreshold, R);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
char SLPVectorizer::ID = 0;
 | 
						|
static const char lv_name[] = "SLP Vectorizer";
 | 
						|
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
 | 
						|
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
 | 
						|
}
 |