android13/packages/modules/DnsResolver/doh/boot_time.rs

223 lines
7.7 KiB
Rust

/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! This module provides a time hack to work around the broken `Instant` type in the standard
//! library.
//!
//! `BootTime` looks like `Instant`, but represents `CLOCK_BOOTTIME` instead of `CLOCK_MONOTONIC`.
//! This means the clock increments correctly during suspend.
pub use std::time::Duration;
use std::io;
use futures::future::pending;
use std::convert::TryInto;
use std::fmt;
use std::future::Future;
use std::os::unix::io::{AsRawFd, RawFd};
use tokio::io::unix::AsyncFd;
use tokio::select;
/// Represents a moment in time, with differences including time spent in suspend. Only valid for
/// a single boot - numbers from different boots are incomparable.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct BootTime {
d: Duration,
}
// Return an error with the same structure as tokio::time::timeout to facilitate migration off it,
// and hopefully some day back to it.
/// Error returned by timeout
#[derive(Debug, PartialEq)]
pub struct Elapsed(());
impl fmt::Display for Elapsed {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
"deadline has elapsed".fmt(fmt)
}
}
impl std::error::Error for Elapsed {}
impl BootTime {
/// Gets a `BootTime` representing the current moment in time.
pub fn now() -> BootTime {
let mut t = libc::timespec { tv_sec: 0, tv_nsec: 0 };
// # Safety
// clock_gettime's only action will be to possibly write to the pointer provided,
// and no borrows exist from that object other than the &mut used to construct the pointer
// itself.
if unsafe { libc::clock_gettime(libc::CLOCK_BOOTTIME, &mut t as *mut libc::timespec) } != 0
{
panic!(
"libc::clock_gettime(libc::CLOCK_BOOTTIME) failed: {:?}",
io::Error::last_os_error()
);
}
BootTime { d: Duration::new(t.tv_sec as u64, t.tv_nsec as u32) }
}
/// Determines how long has elapsed since the provided `BootTime`.
pub fn elapsed(&self) -> Duration {
BootTime::now().checked_duration_since(*self).unwrap()
}
/// Add a specified time delta to a moment in time. If this would overflow the representation,
/// returns `None`.
pub fn checked_add(&self, duration: Duration) -> Option<BootTime> {
Some(BootTime { d: self.d.checked_add(duration)? })
}
/// Finds the difference from an earlier point in time. If the provided time is later, returns
/// `None`.
pub fn checked_duration_since(&self, earlier: BootTime) -> Option<Duration> {
self.d.checked_sub(earlier.d)
}
}
struct TimerFd(RawFd);
impl Drop for TimerFd {
fn drop(&mut self) {
// # Safety
// The fd is owned by the TimerFd struct, and no memory access occurs as a result of this
// call.
unsafe {
libc::close(self.0);
}
}
}
impl AsRawFd for TimerFd {
fn as_raw_fd(&self) -> RawFd {
self.0
}
}
impl TimerFd {
fn create() -> io::Result<Self> {
// # Unsafe
// This libc call will either give us back a file descriptor or fail, it does not act on
// memory or resources.
let raw = unsafe {
libc::timerfd_create(libc::CLOCK_BOOTTIME, libc::TFD_NONBLOCK | libc::TFD_CLOEXEC)
};
if raw < 0 {
return Err(io::Error::last_os_error());
}
Ok(Self(raw))
}
fn set(&self, duration: Duration) {
assert_ne!(duration, Duration::from_millis(0));
let timer = libc::itimerspec {
it_interval: libc::timespec { tv_sec: 0, tv_nsec: 0 },
it_value: libc::timespec {
tv_sec: duration.as_secs().try_into().unwrap(),
tv_nsec: duration.subsec_nanos().try_into().unwrap(),
},
};
// # Unsafe
// We own `timer` and there are no borrows to it other than the pointer we pass to
// timerfd_settime. timerfd_settime is explicitly documented to handle a null output
// parameter for its fourth argument by not filling out the output. The fd passed in at
// self.0 is owned by the `TimerFd` struct, so we aren't breaking anyone else's invariants.
if unsafe { libc::timerfd_settime(self.0, 0, &timer, std::ptr::null_mut()) } != 0 {
panic!("timerfd_settime failed: {:?}", io::Error::last_os_error());
}
}
}
/// Runs the provided future until completion or `duration` has passed on the `CLOCK_BOOTTIME`
/// clock. In the event of a timeout, returns the elapsed time as an error.
pub async fn timeout<T>(duration: Duration, future: impl Future<Output = T>) -> Result<T, Elapsed> {
// Ideally, all timeouts in a runtime would share a timerfd. That will be much more
// straightforwards to implement when moving this functionality into `tokio`.
// According to timerfd_settime(), setting zero duration will disarm the timer, so
// we return immediate timeout here.
// Can't use is_zero() for now because sc-mainline-prod's Rust version is below 1.53.
if duration == Duration::from_millis(0) {
return Err(Elapsed(()));
}
// The failure conditions for this are rare (see `man 2 timerfd_create`) and the caller would
// not be able to do much in response to them. When integrated into tokio, this would be called
// during runtime setup.
let timer_fd = TimerFd::create().unwrap();
timer_fd.set(duration);
let async_fd = AsyncFd::new(timer_fd).unwrap();
select! {
v = future => Ok(v),
_ = async_fd.readable() => Err(Elapsed(())),
}
}
/// Provides a future which will complete once the provided duration has passed, as measured by the
/// `CLOCK_BOOTTIME` clock.
pub async fn sleep(duration: Duration) {
assert!(timeout(duration, pending::<()>()).await.is_err());
}
#[test]
fn monotonic_smoke() {
for _ in 0..1000 {
// If BootTime is not monotonic, .elapsed() will panic on the unwrap.
BootTime::now().elapsed();
}
}
#[test]
fn round_trip() {
use std::thread::sleep;
for _ in 0..10 {
let start = BootTime::now();
sleep(Duration::from_millis(1));
let end = BootTime::now();
let delta = end.checked_duration_since(start).unwrap();
assert_eq!(start.checked_add(delta).unwrap(), end);
}
}
#[tokio::test]
async fn timeout_drift() {
let delta = Duration::from_millis(20);
for _ in 0..10 {
let start = BootTime::now();
assert!(timeout(delta, pending::<()>()).await.is_err());
let taken = start.elapsed();
let drift = if taken > delta { taken - delta } else { delta - taken };
assert!(drift < Duration::from_millis(5));
}
for _ in 0..10 {
let start = BootTime::now();
sleep(delta).await;
let taken = start.elapsed();
let drift = if taken > delta { taken - delta } else { delta - taken };
assert!(drift < Duration::from_millis(5));
}
}
#[tokio::test]
async fn timeout_duration_zero() {
let start = BootTime::now();
assert!(timeout(Duration::from_millis(0), pending::<()>()).await.is_err());
let taken = start.elapsed();
assert!(taken < Duration::from_millis(5));
}