669 lines
22 KiB
C++
669 lines
22 KiB
C++
/*
|
|
** Copyright 2011, The Android Open Source Project
|
|
**
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
**
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
**
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*/
|
|
|
|
#include "BlobCache.h"
|
|
|
|
#include <fcntl.h>
|
|
#include <gtest/gtest.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <random>
|
|
|
|
namespace android {
|
|
|
|
template <typename T>
|
|
using sp = std::shared_ptr<T>;
|
|
|
|
class BlobCacheTest : public ::testing::TestWithParam<BlobCache::Policy> {
|
|
protected:
|
|
enum { OK = 0, BAD_VALUE = -EINVAL };
|
|
|
|
enum {
|
|
MAX_KEY_SIZE = 6,
|
|
MAX_VALUE_SIZE = 8,
|
|
MAX_TOTAL_SIZE = 13,
|
|
};
|
|
|
|
virtual void SetUp() {
|
|
mBC.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE, GetParam()));
|
|
}
|
|
|
|
virtual void TearDown() { mBC.reset(); }
|
|
|
|
std::unique_ptr<BlobCache> mBC;
|
|
};
|
|
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
Policy, BlobCacheTest,
|
|
::testing::Values(
|
|
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::HALVE),
|
|
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::HALVE),
|
|
|
|
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT),
|
|
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT),
|
|
|
|
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT_HALVE),
|
|
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT_HALVE)));
|
|
|
|
TEST_P(BlobCacheTest, CacheSingleValueSucceeds) {
|
|
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4));
|
|
ASSERT_EQ('e', buf[0]);
|
|
ASSERT_EQ('f', buf[1]);
|
|
ASSERT_EQ('g', buf[2]);
|
|
ASSERT_EQ('h', buf[3]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, CacheTwoValuesSucceeds) {
|
|
unsigned char buf[2] = {0xee, 0xee};
|
|
mBC->set("ab", 2, "cd", 2);
|
|
mBC->set("ef", 2, "gh", 2);
|
|
ASSERT_EQ(size_t(2), mBC->get("ab", 2, buf, 2));
|
|
ASSERT_EQ('c', buf[0]);
|
|
ASSERT_EQ('d', buf[1]);
|
|
ASSERT_EQ(size_t(2), mBC->get("ef", 2, buf, 2));
|
|
ASSERT_EQ('g', buf[0]);
|
|
ASSERT_EQ('h', buf[1]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, CacheTwoValuesMallocSucceeds) {
|
|
unsigned char* bufPtr;
|
|
mBC->set("ab", 2, "cd", 2);
|
|
mBC->set("ef", 2, "gh", 2);
|
|
|
|
bufPtr = nullptr;
|
|
ASSERT_EQ(size_t(2), mBC->get("ab", 2, &bufPtr, malloc));
|
|
ASSERT_NE(nullptr, bufPtr);
|
|
ASSERT_EQ('c', bufPtr[0]);
|
|
ASSERT_EQ('d', bufPtr[1]);
|
|
free(bufPtr);
|
|
|
|
bufPtr = nullptr;
|
|
ASSERT_EQ(size_t(2), mBC->get("ef", 2, &bufPtr, malloc));
|
|
ASSERT_NE(nullptr, bufPtr);
|
|
ASSERT_EQ('g', bufPtr[0]);
|
|
ASSERT_EQ('h', bufPtr[1]);
|
|
free(bufPtr);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, GetOnlyWritesInsideBounds) {
|
|
unsigned char buf[6] = {0xee, 0xee, 0xee, 0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf + 1, 4));
|
|
ASSERT_EQ(0xee, buf[0]);
|
|
ASSERT_EQ('e', buf[1]);
|
|
ASSERT_EQ('f', buf[2]);
|
|
ASSERT_EQ('g', buf[3]);
|
|
ASSERT_EQ('h', buf[4]);
|
|
ASSERT_EQ(0xee, buf[5]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, GetOnlyWritesIfBufferIsLargeEnough) {
|
|
unsigned char buf[3] = {0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 3));
|
|
ASSERT_EQ(0xee, buf[0]);
|
|
ASSERT_EQ(0xee, buf[1]);
|
|
ASSERT_EQ(0xee, buf[2]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, GetWithFailedAllocator) {
|
|
unsigned char buf[3] = {0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
|
|
// If allocator fails, verify that we set the value pointer to
|
|
// nullptr, and that we do not modify the buffer that the value
|
|
// pointer originally pointed to.
|
|
unsigned char* bufPtr = &buf[0];
|
|
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, &bufPtr, [](size_t) -> void* { return nullptr; }));
|
|
ASSERT_EQ(nullptr, bufPtr);
|
|
ASSERT_EQ(0xee, buf[0]);
|
|
ASSERT_EQ(0xee, buf[1]);
|
|
ASSERT_EQ(0xee, buf[2]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, GetDoesntAccessNullBuffer) {
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, NULL, 0));
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, MultipleSetsCacheLatestValue) {
|
|
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
mBC->set("abcd", 4, "ijkl", 4);
|
|
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4));
|
|
ASSERT_EQ('i', buf[0]);
|
|
ASSERT_EQ('j', buf[1]);
|
|
ASSERT_EQ('k', buf[2]);
|
|
ASSERT_EQ('l', buf[3]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, SecondSetKeepsFirstValueIfTooLarge) {
|
|
unsigned char buf[MAX_VALUE_SIZE + 1] = {0xee, 0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
mBC->set("abcd", 4, buf, MAX_VALUE_SIZE + 1);
|
|
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4));
|
|
ASSERT_EQ('e', buf[0]);
|
|
ASSERT_EQ('f', buf[1]);
|
|
ASSERT_EQ('g', buf[2]);
|
|
ASSERT_EQ('h', buf[3]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, DoesntCacheIfKeyIsTooBig) {
|
|
char key[MAX_KEY_SIZE + 1];
|
|
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
|
|
for (int i = 0; i < MAX_KEY_SIZE + 1; i++) {
|
|
key[i] = 'a';
|
|
}
|
|
mBC->set(key, MAX_KEY_SIZE + 1, "bbbb", 4);
|
|
|
|
ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE + 1, buf, 4));
|
|
ASSERT_EQ(0xee, buf[0]);
|
|
ASSERT_EQ(0xee, buf[1]);
|
|
ASSERT_EQ(0xee, buf[2]);
|
|
ASSERT_EQ(0xee, buf[3]);
|
|
|
|
// If key is too large, verify that we do not call the allocator,
|
|
// that we set the value pointer to nullptr, and that we do not
|
|
// modify the buffer that the value pointer originally pointed to.
|
|
unsigned char* bufPtr = &buf[0];
|
|
bool calledAlloc = false;
|
|
ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE + 1, &bufPtr, [&calledAlloc](size_t) -> void* {
|
|
calledAlloc = true;
|
|
return nullptr;
|
|
}));
|
|
ASSERT_EQ(false, calledAlloc);
|
|
ASSERT_EQ(nullptr, bufPtr);
|
|
ASSERT_EQ(0xee, buf[0]);
|
|
ASSERT_EQ(0xee, buf[1]);
|
|
ASSERT_EQ(0xee, buf[2]);
|
|
ASSERT_EQ(0xee, buf[3]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, DoesntCacheIfValueIsTooBig) {
|
|
unsigned char buf[MAX_VALUE_SIZE + 1];
|
|
for (int i = 0; i < MAX_VALUE_SIZE + 1; i++) {
|
|
buf[i] = 'b';
|
|
}
|
|
mBC->set("abcd", 4, buf, MAX_VALUE_SIZE + 1);
|
|
for (int i = 0; i < MAX_VALUE_SIZE + 1; i++) {
|
|
buf[i] = 0xee;
|
|
}
|
|
ASSERT_EQ(size_t(0), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE + 1));
|
|
for (int i = 0; i < MAX_VALUE_SIZE + 1; i++) {
|
|
SCOPED_TRACE(i);
|
|
ASSERT_EQ(0xee, buf[i]);
|
|
}
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, DoesntCacheIfKeyValuePairIsTooBig) {
|
|
// Check a testing assumptions
|
|
ASSERT_TRUE(MAX_TOTAL_SIZE < MAX_KEY_SIZE + MAX_VALUE_SIZE);
|
|
ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE);
|
|
|
|
enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE + 1 };
|
|
|
|
char key[MAX_KEY_SIZE];
|
|
char buf[bufSize];
|
|
for (int i = 0; i < MAX_KEY_SIZE; i++) {
|
|
key[i] = 'a';
|
|
}
|
|
for (int i = 0; i < bufSize; i++) {
|
|
buf[i] = 'b';
|
|
}
|
|
|
|
mBC->set(key, MAX_KEY_SIZE, buf, MAX_VALUE_SIZE);
|
|
ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE, NULL, 0));
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, CacheMaxKeySizeSucceeds) {
|
|
char key[MAX_KEY_SIZE];
|
|
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
|
|
for (int i = 0; i < MAX_KEY_SIZE; i++) {
|
|
key[i] = 'a';
|
|
}
|
|
mBC->set(key, MAX_KEY_SIZE, "wxyz", 4);
|
|
ASSERT_EQ(size_t(4), mBC->get(key, MAX_KEY_SIZE, buf, 4));
|
|
ASSERT_EQ('w', buf[0]);
|
|
ASSERT_EQ('x', buf[1]);
|
|
ASSERT_EQ('y', buf[2]);
|
|
ASSERT_EQ('z', buf[3]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, CacheMaxValueSizeSucceeds) {
|
|
char buf[MAX_VALUE_SIZE];
|
|
for (int i = 0; i < MAX_VALUE_SIZE; i++) {
|
|
buf[i] = 'b';
|
|
}
|
|
mBC->set("abcd", 4, buf, MAX_VALUE_SIZE);
|
|
for (int i = 0; i < MAX_VALUE_SIZE; i++) {
|
|
buf[i] = 0xee;
|
|
}
|
|
ASSERT_EQ(size_t(MAX_VALUE_SIZE), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE));
|
|
for (int i = 0; i < MAX_VALUE_SIZE; i++) {
|
|
SCOPED_TRACE(i);
|
|
ASSERT_EQ('b', buf[i]);
|
|
}
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, CacheMaxKeyValuePairSizeSucceeds) {
|
|
// Check a testing assumption
|
|
ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE);
|
|
|
|
enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE };
|
|
|
|
char key[MAX_KEY_SIZE];
|
|
char buf[bufSize];
|
|
for (int i = 0; i < MAX_KEY_SIZE; i++) {
|
|
key[i] = 'a';
|
|
}
|
|
for (int i = 0; i < bufSize; i++) {
|
|
buf[i] = 'b';
|
|
}
|
|
|
|
mBC->set(key, MAX_KEY_SIZE, buf, bufSize);
|
|
ASSERT_EQ(size_t(bufSize), mBC->get(key, MAX_KEY_SIZE, NULL, 0));
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, CacheMinKeyAndValueSizeSucceeds) {
|
|
unsigned char buf[1] = {0xee};
|
|
mBC->set("x", 1, "y", 1);
|
|
ASSERT_EQ(size_t(1), mBC->get("x", 1, buf, 1));
|
|
ASSERT_EQ('y', buf[0]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, CacheSizeDoesntExceedTotalLimit) {
|
|
for (int i = 0; i < 256; i++) {
|
|
uint8_t k = i;
|
|
mBC->set(&k, 1, "x", 1);
|
|
}
|
|
int numCached = 0;
|
|
for (int i = 0; i < 256; i++) {
|
|
uint8_t k = i;
|
|
if (mBC->get(&k, 1, NULL, 0) == 1) {
|
|
numCached++;
|
|
}
|
|
}
|
|
ASSERT_GE(MAX_TOTAL_SIZE / 2, numCached);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, ExceedingTotalLimitHalvesCacheSize) {
|
|
if (GetParam().second == BlobCache::Capacity::FIT)
|
|
return; // test doesn't apply for this policy
|
|
|
|
// Fill up the entire cache with 1 char key/value pairs.
|
|
const int maxEntries = MAX_TOTAL_SIZE / 2;
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = i;
|
|
mBC->set(&k, 1, "x", 1);
|
|
}
|
|
// Insert one more entry, causing a cache overflow.
|
|
{
|
|
uint8_t k = maxEntries;
|
|
mBC->set(&k, 1, "x", 1);
|
|
}
|
|
// Count the number of entries in the cache; and check which
|
|
// entries they are.
|
|
int numCached = 0;
|
|
for (int i = 0; i < maxEntries + 1; i++) {
|
|
uint8_t k = i;
|
|
bool found = (mBC->get(&k, 1, NULL, 0) == 1);
|
|
if (found) numCached++;
|
|
if (GetParam().first == BlobCache::Select::LRU) {
|
|
SCOPED_TRACE(i);
|
|
ASSERT_EQ(found, i >= maxEntries / 2);
|
|
}
|
|
}
|
|
ASSERT_EQ(maxEntries / 2 + 1, numCached);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, ExceedingTotalLimitJustFitsSmallEntry) {
|
|
if (GetParam().second != BlobCache::Capacity::FIT)
|
|
return; // test doesn't apply for this policy
|
|
|
|
// Fill up the entire cache with 1 char key/value pairs.
|
|
const int maxEntries = MAX_TOTAL_SIZE / 2;
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = i;
|
|
mBC->set(&k, 1, "x", 1);
|
|
}
|
|
// Insert one more entry, causing a cache overflow.
|
|
{
|
|
uint8_t k = maxEntries;
|
|
mBC->set(&k, 1, "x", 1);
|
|
}
|
|
// Count the number of entries in the cache.
|
|
int numCached = 0;
|
|
for (int i = 0; i < maxEntries + 1; i++) {
|
|
uint8_t k = i;
|
|
if (mBC->get(&k, 1, NULL, 0) == 1) numCached++;
|
|
}
|
|
ASSERT_EQ(maxEntries, numCached);
|
|
}
|
|
|
|
// Also see corresponding test in nnCache_test.cpp
|
|
TEST_P(BlobCacheTest, ExceedingTotalLimitFitsBigEntry) {
|
|
// Fill up the entire cache with 1 char key/value pairs.
|
|
const int maxEntries = MAX_TOTAL_SIZE / 2;
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = i;
|
|
mBC->set(&k, 1, "x", 1);
|
|
}
|
|
// Insert one more entry, causing a cache overflow.
|
|
const int bigValueSize = std::min((MAX_TOTAL_SIZE * 3) / 4 - 1, int(MAX_VALUE_SIZE));
|
|
ASSERT_GT(bigValueSize + 1, MAX_TOTAL_SIZE / 2); // Check testing assumption
|
|
{
|
|
unsigned char buf[MAX_VALUE_SIZE];
|
|
for (int i = 0; i < bigValueSize; i++) buf[i] = 0xee;
|
|
uint8_t k = maxEntries;
|
|
mBC->set(&k, 1, buf, bigValueSize);
|
|
}
|
|
// Count the number and size of entries in the cache.
|
|
int numCached = 0;
|
|
size_t sizeCached = 0;
|
|
for (int i = 0; i < maxEntries + 1; i++) {
|
|
uint8_t k = i;
|
|
size_t size = mBC->get(&k, 1, NULL, 0);
|
|
if (size) {
|
|
numCached++;
|
|
sizeCached += (size + 1);
|
|
}
|
|
}
|
|
switch (GetParam().second) {
|
|
case BlobCache::Capacity::HALVE:
|
|
// New value is too big for this cleaning algorithm. So
|
|
// we cleaned the cache, but did not insert the new value.
|
|
ASSERT_EQ(maxEntries / 2, numCached);
|
|
ASSERT_EQ(size_t((maxEntries / 2) * 2), sizeCached);
|
|
break;
|
|
case BlobCache::Capacity::FIT:
|
|
case BlobCache::Capacity::FIT_HALVE: {
|
|
// We had to clean more than half the cache to fit the new
|
|
// value.
|
|
const int initialNumEntries = maxEntries;
|
|
const int initialSizeCached = initialNumEntries * 2;
|
|
const int initialFreeSpace = MAX_TOTAL_SIZE - initialSizeCached;
|
|
|
|
// (bigValueSize + 1) = value size + key size
|
|
// trailing "+ 1" is in order to round up
|
|
// "/ 2" is because initial entries are size 2 (1 byte key, 1 byte value)
|
|
const int cleanNumEntries = ((bigValueSize + 1) - initialFreeSpace + 1) / 2;
|
|
|
|
const int cleanSpace = cleanNumEntries * 2;
|
|
const int postCleanNumEntries = initialNumEntries - cleanNumEntries;
|
|
const int postCleanSizeCached = initialSizeCached - cleanSpace;
|
|
ASSERT_EQ(postCleanNumEntries + 1, numCached);
|
|
ASSERT_EQ(size_t(postCleanSizeCached + bigValueSize + 1), sizeCached);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
FAIL() << "Unknown Capacity value";
|
|
}
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, FailedGetWithAllocator) {
|
|
// If get doesn't find anything, verify that we do not call the
|
|
// allocator, that we set the value pointer to nullptr, and that
|
|
// we do not modify the buffer that the value pointer originally
|
|
// pointed to.
|
|
unsigned char buf[1] = {0xee};
|
|
unsigned char* bufPtr = &buf[0];
|
|
bool calledAlloc = false;
|
|
ASSERT_EQ(size_t(0), mBC->get("a", 1, &bufPtr, [&calledAlloc](size_t) -> void* {
|
|
calledAlloc = true;
|
|
return nullptr;
|
|
}));
|
|
ASSERT_EQ(false, calledAlloc);
|
|
ASSERT_EQ(nullptr, bufPtr);
|
|
ASSERT_EQ(0xee, buf[0]);
|
|
}
|
|
|
|
TEST_P(BlobCacheTest, ExceedingTotalLimitRemovesLRUEntries) {
|
|
if (GetParam().first != BlobCache::Select::LRU) return; // test doesn't apply for this policy
|
|
|
|
// Fill up the entire cache with 1 char key/value pairs.
|
|
static const int maxEntries = MAX_TOTAL_SIZE / 2;
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = i;
|
|
mBC->set(&k, 1, "x", 1);
|
|
}
|
|
|
|
// Access entries in some known pseudorandom order.
|
|
int accessSequence[maxEntries];
|
|
std::iota(&accessSequence[0], &accessSequence[maxEntries], 0);
|
|
std::mt19937 randomEngine(MAX_TOTAL_SIZE /* seed */);
|
|
std::shuffle(&accessSequence[0], &accessSequence[maxEntries], randomEngine);
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = accessSequence[i];
|
|
uint8_t buf[1];
|
|
// If we were to pass NULL to get() as the value pointer, this
|
|
// won't count as an access for LRU purposes.
|
|
mBC->get(&k, 1, buf, 1);
|
|
}
|
|
|
|
// Insert one more entry, causing a cache overflow.
|
|
{
|
|
uint8_t k = maxEntries;
|
|
mBC->set(&k, 1, "x", 1);
|
|
}
|
|
|
|
// Check which entries are in the cache. We expect to see the
|
|
// "one more entry" we just added, and also the most-recently
|
|
// accessed (according to accessSequence). That is, we should
|
|
// find exactly the entries with the following keys:
|
|
// . maxEntries
|
|
// . accessSequence[j..maxEntries-1] for some 0 <= j < maxEntries
|
|
uint8_t k = maxEntries;
|
|
ASSERT_EQ(size_t(1), mBC->get(&k, 1, NULL, 0));
|
|
bool foundAny = false;
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = accessSequence[i];
|
|
bool found = (mBC->get(&k, 1, NULL, 0) == 1);
|
|
if (foundAny == found) continue;
|
|
if (!foundAny) {
|
|
// found == true, so we just discovered j == i
|
|
foundAny = true;
|
|
} else {
|
|
// foundAny == true, found == false -- oops
|
|
FAIL() << "found [" << i - 1 << "]th entry but not [" << i << "]th entry";
|
|
}
|
|
}
|
|
}
|
|
|
|
class BlobCacheFlattenTest : public BlobCacheTest {
|
|
protected:
|
|
virtual void SetUp() {
|
|
BlobCacheTest::SetUp();
|
|
mBC2.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE, GetParam()));
|
|
}
|
|
|
|
virtual void TearDown() {
|
|
mBC2.reset();
|
|
BlobCacheTest::TearDown();
|
|
}
|
|
|
|
void roundTrip() {
|
|
size_t size = mBC->getFlattenedSize();
|
|
uint8_t* flat = new uint8_t[size];
|
|
ASSERT_EQ(OK, mBC->flatten(flat, size));
|
|
ASSERT_EQ(OK, mBC2->unflatten(flat, size));
|
|
delete[] flat;
|
|
}
|
|
|
|
sp<BlobCache> mBC2;
|
|
};
|
|
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
Policy, BlobCacheFlattenTest,
|
|
::testing::Values(
|
|
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::HALVE),
|
|
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::HALVE),
|
|
|
|
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT),
|
|
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT),
|
|
|
|
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT_HALVE),
|
|
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT_HALVE)));
|
|
|
|
TEST_P(BlobCacheFlattenTest, FlattenOneValue) {
|
|
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
roundTrip();
|
|
ASSERT_EQ(size_t(4), mBC2->get("abcd", 4, buf, 4));
|
|
ASSERT_EQ('e', buf[0]);
|
|
ASSERT_EQ('f', buf[1]);
|
|
ASSERT_EQ('g', buf[2]);
|
|
ASSERT_EQ('h', buf[3]);
|
|
}
|
|
|
|
TEST_P(BlobCacheFlattenTest, FlattenFullCache) {
|
|
// Fill up the entire cache with 1 char key/value pairs.
|
|
const int maxEntries = MAX_TOTAL_SIZE / 2;
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = i;
|
|
mBC->set(&k, 1, &k, 1);
|
|
}
|
|
|
|
roundTrip();
|
|
|
|
// Verify the deserialized cache
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = i;
|
|
uint8_t v = 0xee;
|
|
ASSERT_EQ(size_t(1), mBC2->get(&k, 1, &v, 1));
|
|
ASSERT_EQ(k, v);
|
|
}
|
|
}
|
|
|
|
TEST_P(BlobCacheFlattenTest, FlattenDoesntChangeCache) {
|
|
// Fill up the entire cache with 1 char key/value pairs.
|
|
const int maxEntries = MAX_TOTAL_SIZE / 2;
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = i;
|
|
mBC->set(&k, 1, &k, 1);
|
|
}
|
|
|
|
size_t size = mBC->getFlattenedSize();
|
|
uint8_t* flat = new uint8_t[size];
|
|
ASSERT_EQ(OK, mBC->flatten(flat, size));
|
|
delete[] flat;
|
|
|
|
// Verify the cache that we just serialized
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = i;
|
|
uint8_t v = 0xee;
|
|
ASSERT_EQ(size_t(1), mBC->get(&k, 1, &v, 1));
|
|
ASSERT_EQ(k, v);
|
|
}
|
|
}
|
|
|
|
TEST_P(BlobCacheFlattenTest, FlattenCatchesBufferTooSmall) {
|
|
// Fill up the entire cache with 1 char key/value pairs.
|
|
const int maxEntries = MAX_TOTAL_SIZE / 2;
|
|
for (int i = 0; i < maxEntries; i++) {
|
|
uint8_t k = i;
|
|
mBC->set(&k, 1, &k, 1);
|
|
}
|
|
|
|
size_t size = mBC->getFlattenedSize() - 1;
|
|
uint8_t* flat = new uint8_t[size];
|
|
// ASSERT_EQ(BAD_VALUE, mBC->flatten(flat, size));
|
|
// TODO: The above fails. I expect this is so because getFlattenedSize()
|
|
// overstimates the size by using PROPERTY_VALUE_MAX.
|
|
delete[] flat;
|
|
}
|
|
|
|
TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadMagic) {
|
|
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
|
|
size_t size = mBC->getFlattenedSize();
|
|
uint8_t* flat = new uint8_t[size];
|
|
ASSERT_EQ(OK, mBC->flatten(flat, size));
|
|
flat[1] = ~flat[1];
|
|
|
|
// Bad magic should cause an error.
|
|
ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size));
|
|
delete[] flat;
|
|
|
|
// The error should cause the unflatten to result in an empty cache
|
|
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
|
|
}
|
|
|
|
TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheVersion) {
|
|
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
|
|
size_t size = mBC->getFlattenedSize();
|
|
uint8_t* flat = new uint8_t[size];
|
|
ASSERT_EQ(OK, mBC->flatten(flat, size));
|
|
flat[5] = ~flat[5];
|
|
|
|
// Version mismatches shouldn't cause errors, but should not use the
|
|
// serialized entries
|
|
ASSERT_EQ(OK, mBC2->unflatten(flat, size));
|
|
delete[] flat;
|
|
|
|
// The version mismatch should cause the unflatten to result in an empty
|
|
// cache
|
|
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
|
|
}
|
|
|
|
TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheDeviceVersion) {
|
|
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
|
|
size_t size = mBC->getFlattenedSize();
|
|
uint8_t* flat = new uint8_t[size];
|
|
ASSERT_EQ(OK, mBC->flatten(flat, size));
|
|
flat[10] = ~flat[10];
|
|
|
|
// Version mismatches shouldn't cause errors, but should not use the
|
|
// serialized entries
|
|
ASSERT_EQ(OK, mBC2->unflatten(flat, size));
|
|
delete[] flat;
|
|
|
|
// The version mismatch should cause the unflatten to result in an empty
|
|
// cache
|
|
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
|
|
}
|
|
|
|
TEST_P(BlobCacheFlattenTest, UnflattenCatchesBufferTooSmall) {
|
|
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
|
|
mBC->set("abcd", 4, "efgh", 4);
|
|
|
|
size_t size = mBC->getFlattenedSize();
|
|
uint8_t* flat = new uint8_t[size];
|
|
ASSERT_EQ(OK, mBC->flatten(flat, size));
|
|
|
|
// A buffer truncation shouldt cause an error
|
|
// ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size-1));
|
|
// TODO: The above appears to fail because getFlattenedSize() is
|
|
// conservative.
|
|
delete[] flat;
|
|
|
|
// The error should cause the unflatten to result in an empty cache
|
|
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
|
|
}
|
|
|
|
} // namespace android
|