android13/packages/modules/NeuralNetworks/runtime/test/android_fuzzing/FuzzTest.cpp

214 lines
7.4 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/logging.h>
#include <cstdlib>
#include <optional>
#include <utility>
#include "NeuralNetworksWrapper.h"
#include "TestHarness.h"
namespace {
using ::android::nn::wrapper::Compilation;
using ::android::nn::wrapper::Execution;
using ::android::nn::wrapper::Model;
using ::android::nn::wrapper::OperandType;
using ::android::nn::wrapper::Result;
using ::android::nn::wrapper::SymmPerChannelQuantParams;
using ::android::nn::wrapper::Type;
using ::test_helper::TestModel;
using ::test_helper::TestOperand;
using ::test_helper::TestOperandLifeTime;
using ::test_helper::TestOperandType;
using ::test_helper::TestSubgraph;
OperandType getOperandType(const TestOperand& op) {
const auto& dims = op.dimensions;
if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
return OperandType(
static_cast<Type>(op.type), dims,
SymmPerChannelQuantParams(op.channelQuant.scales, op.channelQuant.channelDim));
} else {
return OperandType(static_cast<Type>(op.type), dims, op.scale, op.zeroPoint);
}
}
enum class Visited : uint8_t {
NOT_YET_VISITED,
CURRENTLY_VISITING,
ALREADY_VISITED,
};
bool areSubgraphsAcyclic(const TestModel& testModel, size_t index, std::vector<Visited>* visited,
std::vector<size_t>* order) {
if (index >= visited->size()) return false;
Visited& status = (*visited)[index];
if (status == Visited::CURRENTLY_VISITING) return false;
if (status == Visited::ALREADY_VISITED) return true;
status = Visited::CURRENTLY_VISITING;
const auto& subgraph = index == 0 ? testModel.main : testModel.referenced[index - 1];
for (const auto& operand : subgraph.operands) {
if (operand.lifetime != TestOperandLifeTime::SUBGRAPH) continue;
if (operand.data.size() < sizeof(uint32_t)) return false;
if (operand.data.get<void>() == nullptr) return false;
const uint32_t subgraphIndex = *operand.data.get<uint32_t>();
if (!areSubgraphsAcyclic(testModel, subgraphIndex + 1, visited, order)) return false;
}
status = Visited::ALREADY_VISITED;
order->push_back(index);
return true;
}
std::optional<std::vector<size_t>> getSubgraphOrder(const TestModel& testModel) {
std::vector<Visited> visited(testModel.referenced.size() + 1, Visited::NOT_YET_VISITED);
std::vector<size_t> order;
order.reserve(visited.size());
if (!areSubgraphsAcyclic(testModel, 0, &visited, &order)) return std::nullopt;
return order;
}
std::optional<Model> CreateSubgraph(const TestModel& testModel, size_t subgraphIndex,
const std::vector<Model>& subgraphs) {
const TestSubgraph& testSubgraph =
subgraphIndex == 0 ? testModel.main : testModel.referenced[subgraphIndex - 1];
Model model;
// Operands.
for (const auto& operand : testSubgraph.operands) {
auto type = getOperandType(operand);
auto index = model.addOperand(&type);
switch (operand.lifetime) {
case TestOperandLifeTime::CONSTANT_COPY:
case TestOperandLifeTime::CONSTANT_REFERENCE:
model.setOperandValue(index, operand.data.get<void>(), operand.data.size());
break;
case TestOperandLifeTime::NO_VALUE:
model.setOperandValue(index, nullptr, 0);
break;
case TestOperandLifeTime::SUBGRAPH: {
const uint32_t referencedSubgraphIndex = *operand.data.get<uint32_t>();
model.setOperandValueFromModel(index, &subgraphs[referencedSubgraphIndex]);
} break;
case TestOperandLifeTime::SUBGRAPH_INPUT:
case TestOperandLifeTime::SUBGRAPH_OUTPUT:
case TestOperandLifeTime::TEMPORARY_VARIABLE:
// Nothing to do here.
break;
}
if (!model.isValid()) return std::nullopt;
}
// Operations.
for (const auto& operation : testSubgraph.operations) {
model.addOperation(static_cast<int>(operation.type), operation.inputs, operation.outputs);
if (!model.isValid()) return std::nullopt;
}
// Inputs and outputs.
model.identifyInputsAndOutputs(testSubgraph.inputIndexes, testSubgraph.outputIndexes);
if (!model.isValid()) return std::nullopt;
// Relaxed computation.
model.relaxComputationFloat32toFloat16(testModel.isRelaxed);
if (!model.isValid()) return std::nullopt;
if (model.finish() != Result::NO_ERROR) {
return std::nullopt;
}
return model;
}
// The first Model returned is the main model. Any subsequent Models are referenced models.
std::optional<std::vector<Model>> CreateModels(const TestModel& testModel) {
auto subgraphOrder = getSubgraphOrder(testModel);
if (!subgraphOrder.has_value()) return std::nullopt;
std::vector<Model> subgraphs(testModel.referenced.size() + 1);
for (size_t index : subgraphOrder.value()) {
auto subgraph = CreateSubgraph(testModel, index, subgraphs);
if (!subgraph.has_value()) return std::nullopt;
subgraphs[index] = std::move(subgraph).value();
}
return subgraphs;
}
std::optional<Compilation> CreateCompilation(const Model& model) {
Compilation compilation(&model);
if (compilation.finish() != Result::NO_ERROR) {
return std::nullopt;
}
return compilation;
}
std::optional<Execution> CreateExecution(const Compilation& compilation,
const TestModel& testModel) {
Execution execution(&compilation);
// Model inputs.
for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
const auto& operand = testModel.main.operands[testModel.main.inputIndexes[i]];
if (execution.setInput(i, operand.data.get<void>(), operand.data.size()) !=
Result::NO_ERROR) {
return std::nullopt;
}
}
// Model outputs.
for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
const auto& operand = testModel.main.operands[testModel.main.outputIndexes[i]];
if (execution.setOutput(i, const_cast<void*>(operand.data.get<void>()),
operand.data.size()) != Result::NO_ERROR) {
return std::nullopt;
}
}
return execution;
}
} // anonymous namespace
void nnapiFuzzTest(const TestModel& testModel) {
// set up model
auto models = CreateModels(testModel);
if (!models.has_value() || models->empty()) {
return;
}
// set up compilation
auto compilation = CreateCompilation(models->front());
if (!compilation.has_value()) {
return;
}
// set up execution
auto execution = CreateExecution(*compilation, testModel);
if (!execution.has_value()) {
return;
}
// perform execution
execution->compute();
}