476 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			476 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2008 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "fault_handler.h"
 | |
| 
 | |
| #include <sys/ucontext.h>
 | |
| 
 | |
| #include "arch/instruction_set.h"
 | |
| #include "art_method.h"
 | |
| #include "base/enums.h"
 | |
| #include "base/hex_dump.h"
 | |
| #include "base/logging.h"  // For VLOG.
 | |
| #include "base/macros.h"
 | |
| #include "base/safe_copy.h"
 | |
| #include "runtime_globals.h"
 | |
| #include "thread-current-inl.h"
 | |
| 
 | |
| #if defined(__APPLE__)
 | |
| #define ucontext __darwin_ucontext
 | |
| 
 | |
| #if defined(__x86_64__)
 | |
| // 64 bit mac build.
 | |
| #define CTX_ESP uc_mcontext->__ss.__rsp
 | |
| #define CTX_EIP uc_mcontext->__ss.__rip
 | |
| #define CTX_EAX uc_mcontext->__ss.__rax
 | |
| #define CTX_METHOD uc_mcontext->__ss.__rdi
 | |
| #define CTX_RDI uc_mcontext->__ss.__rdi
 | |
| #define CTX_JMP_BUF uc_mcontext->__ss.__rdi
 | |
| #else
 | |
| // 32 bit mac build.
 | |
| #define CTX_ESP uc_mcontext->__ss.__esp
 | |
| #define CTX_EIP uc_mcontext->__ss.__eip
 | |
| #define CTX_EAX uc_mcontext->__ss.__eax
 | |
| #define CTX_METHOD uc_mcontext->__ss.__eax
 | |
| #define CTX_JMP_BUF uc_mcontext->__ss.__eax
 | |
| #endif
 | |
| 
 | |
| #elif defined(__x86_64__)
 | |
| // 64 bit linux build.
 | |
| #define CTX_ESP uc_mcontext.gregs[REG_RSP]
 | |
| #define CTX_EIP uc_mcontext.gregs[REG_RIP]
 | |
| #define CTX_EAX uc_mcontext.gregs[REG_RAX]
 | |
| #define CTX_METHOD uc_mcontext.gregs[REG_RDI]
 | |
| #define CTX_RDI uc_mcontext.gregs[REG_RDI]
 | |
| #define CTX_JMP_BUF uc_mcontext.gregs[REG_RDI]
 | |
| #else
 | |
| // 32 bit linux build.
 | |
| #define CTX_ESP uc_mcontext.gregs[REG_ESP]
 | |
| #define CTX_EIP uc_mcontext.gregs[REG_EIP]
 | |
| #define CTX_EAX uc_mcontext.gregs[REG_EAX]
 | |
| #define CTX_METHOD uc_mcontext.gregs[REG_EAX]
 | |
| #define CTX_JMP_BUF uc_mcontext.gregs[REG_EAX]
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // X86 (and X86_64) specific fault handler functions.
 | |
| //
 | |
| 
 | |
| namespace art {
 | |
| 
 | |
| extern "C" void art_quick_throw_null_pointer_exception_from_signal();
 | |
| extern "C" void art_quick_throw_stack_overflow();
 | |
| extern "C" void art_quick_test_suspend();
 | |
| 
 | |
| // Get the size of an instruction in bytes.
 | |
| // Return 0 if the instruction is not handled.
 | |
| static uint32_t GetInstructionSize(const uint8_t* pc) {
 | |
|   // Don't segfault if pc points to garbage.
 | |
|   char buf[15];  // x86/x86-64 have a maximum instruction length of 15 bytes.
 | |
|   ssize_t bytes = SafeCopy(buf, pc, sizeof(buf));
 | |
| 
 | |
|   if (bytes == 0) {
 | |
|     // Nothing was readable.
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (bytes == -1) {
 | |
|     // SafeCopy not supported, assume that the entire range is readable.
 | |
|     bytes = 16;
 | |
|   } else {
 | |
|     pc = reinterpret_cast<uint8_t*>(buf);
 | |
|   }
 | |
| 
 | |
| #define INCREMENT_PC()          \
 | |
|   do {                          \
 | |
|     pc++;                       \
 | |
|     if (pc - startpc > bytes) { \
 | |
|       return 0;                 \
 | |
|     }                           \
 | |
|   } while (0)
 | |
| 
 | |
| #if defined(__x86_64)
 | |
|   const bool x86_64 = true;
 | |
| #else
 | |
|   const bool x86_64 = false;
 | |
| #endif
 | |
| 
 | |
|   const uint8_t* startpc = pc;
 | |
| 
 | |
|   uint8_t opcode = *pc;
 | |
|   INCREMENT_PC();
 | |
|   uint8_t modrm;
 | |
|   bool has_modrm = false;
 | |
|   bool two_byte = false;
 | |
|   uint32_t displacement_size = 0;
 | |
|   uint32_t immediate_size = 0;
 | |
|   bool operand_size_prefix = false;
 | |
| 
 | |
|   // Prefixes.
 | |
|   while (true) {
 | |
|     bool prefix_present = false;
 | |
|     switch (opcode) {
 | |
|       // Group 3
 | |
|       case 0x66:
 | |
|         operand_size_prefix = true;
 | |
|         FALLTHROUGH_INTENDED;
 | |
| 
 | |
|       // Group 1
 | |
|       case 0xf0:
 | |
|       case 0xf2:
 | |
|       case 0xf3:
 | |
| 
 | |
|       // Group 2
 | |
|       case 0x2e:
 | |
|       case 0x36:
 | |
|       case 0x3e:
 | |
|       case 0x26:
 | |
|       case 0x64:
 | |
|       case 0x65:
 | |
| 
 | |
|       // Group 4
 | |
|       case 0x67:
 | |
|         opcode = *pc;
 | |
|         INCREMENT_PC();
 | |
|         prefix_present = true;
 | |
|         break;
 | |
|     }
 | |
|     if (!prefix_present) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (x86_64 && opcode >= 0x40 && opcode <= 0x4f) {
 | |
|     opcode = *pc;
 | |
|     INCREMENT_PC();
 | |
|   }
 | |
| 
 | |
|   if (opcode == 0x0f) {
 | |
|     // Two byte opcode
 | |
|     two_byte = true;
 | |
|     opcode = *pc;
 | |
|     INCREMENT_PC();
 | |
|   }
 | |
| 
 | |
|   bool unhandled_instruction = false;
 | |
| 
 | |
|   if (two_byte) {
 | |
|     switch (opcode) {
 | |
|       case 0x10:        // vmovsd/ss
 | |
|       case 0x11:        // vmovsd/ss
 | |
|       case 0xb6:        // movzx
 | |
|       case 0xb7:
 | |
|       case 0xbe:        // movsx
 | |
|       case 0xbf:
 | |
|         modrm = *pc;
 | |
|         INCREMENT_PC();
 | |
|         has_modrm = true;
 | |
|         break;
 | |
|       default:
 | |
|         unhandled_instruction = true;
 | |
|         break;
 | |
|     }
 | |
|   } else {
 | |
|     switch (opcode) {
 | |
|       case 0x88:        // mov byte
 | |
|       case 0x89:        // mov
 | |
|       case 0x8b:
 | |
|       case 0x38:        // cmp with memory.
 | |
|       case 0x39:
 | |
|       case 0x3a:
 | |
|       case 0x3b:
 | |
|       case 0x3c:
 | |
|       case 0x3d:
 | |
|       case 0x85:        // test.
 | |
|         modrm = *pc;
 | |
|         INCREMENT_PC();
 | |
|         has_modrm = true;
 | |
|         break;
 | |
| 
 | |
|       case 0x80:        // group 1, byte immediate.
 | |
|       case 0x83:
 | |
|       case 0xc6:
 | |
|         modrm = *pc;
 | |
|         INCREMENT_PC();
 | |
|         has_modrm = true;
 | |
|         immediate_size = 1;
 | |
|         break;
 | |
| 
 | |
|       case 0x81:        // group 1, word immediate.
 | |
|       case 0xc7:        // mov
 | |
|         modrm = *pc;
 | |
|         INCREMENT_PC();
 | |
|         has_modrm = true;
 | |
|         immediate_size = operand_size_prefix ? 2 : 4;
 | |
|         break;
 | |
| 
 | |
|       case 0xf6:
 | |
|       case 0xf7:
 | |
|         modrm = *pc;
 | |
|         INCREMENT_PC();
 | |
|         has_modrm = true;
 | |
|         switch ((modrm >> 3) & 7) {  // Extract "reg/opcode" from "modr/m".
 | |
|           case 0:  // test
 | |
|             immediate_size = (opcode == 0xf6) ? 1 : (operand_size_prefix ? 2 : 4);
 | |
|             break;
 | |
|           case 2:  // not
 | |
|           case 3:  // neg
 | |
|           case 4:  // mul
 | |
|           case 5:  // imul
 | |
|           case 6:  // div
 | |
|           case 7:  // idiv
 | |
|             break;
 | |
|           default:
 | |
|             unhandled_instruction = true;
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       default:
 | |
|         unhandled_instruction = true;
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (unhandled_instruction) {
 | |
|     VLOG(signals) << "Unhandled x86 instruction with opcode " << static_cast<int>(opcode);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (has_modrm) {
 | |
|     uint8_t mod = (modrm >> 6) & 3U /* 0b11 */;
 | |
| 
 | |
|     // Check for SIB.
 | |
|     if (mod != 3U /* 0b11 */ && (modrm & 7U /* 0b111 */) == 4) {
 | |
|       INCREMENT_PC();     // SIB
 | |
|     }
 | |
| 
 | |
|     switch (mod) {
 | |
|       case 0U /* 0b00 */: break;
 | |
|       case 1U /* 0b01 */: displacement_size = 1; break;
 | |
|       case 2U /* 0b10 */: displacement_size = 4; break;
 | |
|       case 3U /* 0b11 */:
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Skip displacement and immediate.
 | |
|   pc += displacement_size + immediate_size;
 | |
| 
 | |
|   VLOG(signals) << "x86 instruction length calculated as " << (pc - startpc);
 | |
|   if (pc - startpc > bytes) {
 | |
|     return 0;
 | |
|   }
 | |
|   return pc - startpc;
 | |
| }
 | |
| 
 | |
| void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context,
 | |
|                                              ArtMethod** out_method,
 | |
|                                              uintptr_t* out_return_pc,
 | |
|                                              uintptr_t* out_sp,
 | |
|                                              bool* out_is_stack_overflow) {
 | |
|   struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
 | |
|   *out_sp = static_cast<uintptr_t>(uc->CTX_ESP);
 | |
|   VLOG(signals) << "sp: " << std::hex << *out_sp;
 | |
|   if (*out_sp == 0) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // In the case of a stack overflow, the stack is not valid and we can't
 | |
|   // get the method from the top of the stack.  However it's in EAX(x86)/RDI(x86_64).
 | |
|   uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(siginfo->si_addr);
 | |
|   uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>(
 | |
| #if defined(__x86_64__)
 | |
|       reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(InstructionSet::kX86_64));
 | |
| #else
 | |
|       reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(InstructionSet::kX86));
 | |
| #endif
 | |
|   if (overflow_addr == fault_addr) {
 | |
|     *out_method = reinterpret_cast<ArtMethod*>(uc->CTX_METHOD);
 | |
|     *out_is_stack_overflow = true;
 | |
|   } else {
 | |
|     // The method is at the top of the stack.
 | |
|     *out_method = *reinterpret_cast<ArtMethod**>(*out_sp);
 | |
|     *out_is_stack_overflow = false;
 | |
|   }
 | |
| 
 | |
|   uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
 | |
|   VLOG(signals) << HexDump(pc, 32, true, "PC ");
 | |
| 
 | |
|   if (pc == nullptr) {
 | |
|     // Somebody jumped to 0x0. Definitely not ours, and will definitely segfault below.
 | |
|     *out_method = nullptr;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint32_t instr_size = GetInstructionSize(pc);
 | |
|   if (instr_size == 0) {
 | |
|     // Unknown instruction, tell caller it's not ours.
 | |
|     *out_method = nullptr;
 | |
|     return;
 | |
|   }
 | |
|   *out_return_pc = reinterpret_cast<uintptr_t>(pc + instr_size);
 | |
| }
 | |
| 
 | |
| bool NullPointerHandler::Action(int, siginfo_t* sig, void* context) {
 | |
|   if (!IsValidImplicitCheck(sig)) {
 | |
|     return false;
 | |
|   }
 | |
|   struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
 | |
|   uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
 | |
|   uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
 | |
| 
 | |
|   uint32_t instr_size = GetInstructionSize(pc);
 | |
|   if (instr_size == 0) {
 | |
|     // Unknown instruction, can't really happen.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We need to arrange for the signal handler to return to the null pointer
 | |
|   // exception generator.  The return address must be the address of the
 | |
|   // next instruction (this instruction + instruction size).  The return address
 | |
|   // is on the stack at the top address of the current frame.
 | |
| 
 | |
|   // Push the return address and fault address onto the stack.
 | |
|   uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + instr_size);
 | |
|   uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - 2 * sizeof(uintptr_t));
 | |
|   next_sp[1] = retaddr;
 | |
|   next_sp[0] = reinterpret_cast<uintptr_t>(sig->si_addr);
 | |
|   uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
 | |
| 
 | |
|   uc->CTX_EIP = reinterpret_cast<uintptr_t>(
 | |
|       art_quick_throw_null_pointer_exception_from_signal);
 | |
|   VLOG(signals) << "Generating null pointer exception";
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // A suspend check is done using the following instruction sequence:
 | |
| // (x86)
 | |
| // 0xf720f1df:         648B058C000000      mov     eax, fs:[0x8c]  ; suspend_trigger
 | |
| // .. some intervening instructions.
 | |
| // 0xf720f1e6:                   8500      test    eax, [eax]
 | |
| // (x86_64)
 | |
| // 0x7f579de45d9e: 65488B0425A8000000      movq    rax, gs:[0xa8]  ; suspend_trigger
 | |
| // .. some intervening instructions.
 | |
| // 0x7f579de45da7:               8500      test    eax, [eax]
 | |
| 
 | |
| // The offset from fs is Thread::ThreadSuspendTriggerOffset().
 | |
| // To check for a suspend check, we examine the instructions that caused
 | |
| // the fault.
 | |
| bool SuspensionHandler::Action(int, siginfo_t*, void* context) {
 | |
|   // These are the instructions to check for.  The first one is the mov eax, fs:[xxx]
 | |
|   // where xxx is the offset of the suspend trigger.
 | |
|   uint32_t trigger = Thread::ThreadSuspendTriggerOffset<kRuntimePointerSize>().Int32Value();
 | |
| 
 | |
|   VLOG(signals) << "Checking for suspension point";
 | |
| #if defined(__x86_64__)
 | |
|   uint8_t checkinst1[] = {0x65, 0x48, 0x8b, 0x04, 0x25, static_cast<uint8_t>(trigger & 0xff),
 | |
|       static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
 | |
| #else
 | |
|   uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast<uint8_t>(trigger & 0xff),
 | |
|       static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
 | |
| #endif
 | |
|   uint8_t checkinst2[] = {0x85, 0x00};
 | |
| 
 | |
|   struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
 | |
|   uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
 | |
|   uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
 | |
| 
 | |
|   if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) {
 | |
|     // Second instruction is not correct (test eax,[eax]).
 | |
|     VLOG(signals) << "Not a suspension point";
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // The first instruction can a little bit up the stream due to load hoisting
 | |
|   // in the compiler.
 | |
|   uint8_t* limit = pc - 100;   // Compiler will hoist to a max of 20 instructions.
 | |
|   uint8_t* ptr = pc - sizeof(checkinst1);
 | |
|   bool found = false;
 | |
|   while (ptr > limit) {
 | |
|     if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) {
 | |
|       found = true;
 | |
|       break;
 | |
|     }
 | |
|     ptr -= 1;
 | |
|   }
 | |
| 
 | |
|   if (found) {
 | |
|     VLOG(signals) << "suspend check match";
 | |
| 
 | |
|     // We need to arrange for the signal handler to return to the null pointer
 | |
|     // exception generator.  The return address must be the address of the
 | |
|     // next instruction (this instruction + 2).  The return address
 | |
|     // is on the stack at the top address of the current frame.
 | |
| 
 | |
|     // Push the return address onto the stack.
 | |
|     uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + 2);
 | |
|     uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t));
 | |
|     *next_sp = retaddr;
 | |
|     uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
 | |
| 
 | |
|     uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_quick_test_suspend);
 | |
| 
 | |
|     // Now remove the suspend trigger that caused this fault.
 | |
|     Thread::Current()->RemoveSuspendTrigger();
 | |
|     VLOG(signals) << "removed suspend trigger invoking test suspend";
 | |
|     return true;
 | |
|   }
 | |
|   VLOG(signals) << "Not a suspend check match, first instruction mismatch";
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // The stack overflow check is done using the following instruction:
 | |
| // test eax, [esp+ -xxx]
 | |
| // where 'xxx' is the size of the overflow area.
 | |
| //
 | |
| // This is done before any frame is established in the method.  The return
 | |
| // address for the previous method is on the stack at ESP.
 | |
| 
 | |
| bool StackOverflowHandler::Action(int, siginfo_t* info, void* context) {
 | |
|   struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
 | |
|   uintptr_t sp = static_cast<uintptr_t>(uc->CTX_ESP);
 | |
| 
 | |
|   uintptr_t fault_addr = reinterpret_cast<uintptr_t>(info->si_addr);
 | |
|   VLOG(signals) << "fault_addr: " << std::hex << fault_addr;
 | |
|   VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp <<
 | |
|     ", fault_addr: " << fault_addr;
 | |
| 
 | |
| #if defined(__x86_64__)
 | |
|   uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86_64);
 | |
| #else
 | |
|   uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86);
 | |
| #endif
 | |
| 
 | |
|   // Check that the fault address is the value expected for a stack overflow.
 | |
|   if (fault_addr != overflow_addr) {
 | |
|     VLOG(signals) << "Not a stack overflow";
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   VLOG(signals) << "Stack overflow found";
 | |
| 
 | |
|   // Since the compiler puts the implicit overflow
 | |
|   // check before the callee save instructions, the SP is already pointing to
 | |
|   // the previous frame.
 | |
| 
 | |
|   // Now arrange for the signal handler to return to art_quick_throw_stack_overflow.
 | |
|   uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_quick_throw_stack_overflow);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| }       // namespace art
 |