173 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2020 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #ifndef ART_RUNTIME_BASE_MESSAGE_QUEUE_H_
 | |
| #define ART_RUNTIME_BASE_MESSAGE_QUEUE_H_
 | |
| 
 | |
| #include <deque>
 | |
| #include <optional>
 | |
| #include <variant>
 | |
| 
 | |
| #include "base/time_utils.h"
 | |
| #include "mutex.h"
 | |
| #include "thread.h"
 | |
| 
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic error "-Wconversion"
 | |
| 
 | |
| namespace art {
 | |
| 
 | |
| struct TimeoutExpiredMessage {};
 | |
| 
 | |
| // MessageQueue is an unbounded multiple producer, multiple consumer (MPMC) queue that can be
 | |
| // specialized to send messages between threads. The queue is parameterized by a set of types that
 | |
| // serve as the message types. Note that messages are passed by value, so smaller messages should be
 | |
| // used when possible.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //     struct IntMessage { int value; };
 | |
| //     struct DoubleMessage { double value; };
 | |
| //
 | |
| //     MessageQueue<IntMessage, DoubleMessage> queue;
 | |
| //
 | |
| //     queue.SendMessage(IntMessage{42});
 | |
| //     queue.SendMessage(DoubleMessage{42.0});
 | |
| //
 | |
| //     auto message = queue.ReceiveMessage();  // message is a std::variant of the different
 | |
| //                                             // message types.
 | |
| //
 | |
| //     if (std::holds_alternative<IntMessage>(message)) {
 | |
| //       cout << "Received int message with value " << std::get<IntMessage>(message) << "\n";
 | |
| //     }
 | |
| //
 | |
| // The message queue also supports a special timeout message. This is scheduled to be sent by the
 | |
| // SetTimeout method, which will cause the MessageQueue to deliver a TimeoutExpiredMessage after the
 | |
| // time period has elapsed. Note that only one timeout can be active can be active at a time, and
 | |
| // subsequent calls to SetTimeout will overwrite any existing timeout.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //     queue.SetTimeout(5000);  // request to send TimeoutExpiredMessage in 5000ms.
 | |
| //
 | |
| //     auto message = queue.ReceiveMessage();  // blocks for 5000ms and returns
 | |
| //                                             // TimeoutExpiredMessage
 | |
| //
 | |
| // Note additional messages can be sent in the meantime and a ReceiveMessage call will wake up to
 | |
| // return that message. The TimeoutExpiredMessage will still be sent at the right time.
 | |
| //
 | |
| // Finally, MessageQueue has a SwitchReceive method that can be used to run different code depending
 | |
| // on the type of message received. SwitchReceive takes a set of lambda expressions that take one
 | |
| // argument of one of the allowed message types. An additional lambda expression that takes a single
 | |
| // auto argument can be used to serve as a catch-all case.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //     queue.SwitchReceive(
 | |
| //       [&](IntMessage message) {
 | |
| //         cout << "Received int: " << message.value << "\n";
 | |
| //       },
 | |
| //       [&](DoubleMessage message) {
 | |
| //         cout << "Received double: " << message.value << "\n";
 | |
| //       },
 | |
| //       [&](auto other_message) {
 | |
| //         // Another message was received. In this case, it's TimeoutExpiredMessage.
 | |
| //       }
 | |
| //     )
 | |
| //
 | |
| // For additional examples, see message_queue_test.cc.
 | |
| template <typename... MessageTypes>
 | |
| class MessageQueue {
 | |
|  public:
 | |
|   using Message = std::variant<TimeoutExpiredMessage, MessageTypes...>;
 | |
| 
 | |
|   // Adds a message to the message queue, which can later be received with ReceiveMessage. See class
 | |
|   // comment for more details.
 | |
|   void SendMessage(Message message) {
 | |
|     // TimeoutExpiredMessage should not be sent manually.
 | |
|     DCHECK(!std::holds_alternative<TimeoutExpiredMessage>(message));
 | |
|     Thread* self = Thread::Current();
 | |
|     MutexLock lock{self, mutex_};
 | |
|     messages_.push_back(message);
 | |
|     cv_.Signal(self);
 | |
|   }
 | |
| 
 | |
|   // Schedule a TimeoutExpiredMessage to be delivered in timeout_milliseconds. See class comment for
 | |
|   // more details.
 | |
|   void SetTimeout(uint64_t timeout_milliseconds) {
 | |
|     Thread* self = Thread::Current();
 | |
|     MutexLock lock{self, mutex_};
 | |
|     deadline_milliseconds_ = timeout_milliseconds + MilliTime();
 | |
|     cv_.Signal(self);
 | |
|   }
 | |
| 
 | |
|   // Remove and return a message from the queue. If no message is available, ReceiveMessage will
 | |
|   // block until one becomes available. See class comment for more details.
 | |
|   Message ReceiveMessage() {
 | |
|     Thread* self = Thread::Current();
 | |
|     MutexLock lock{self, mutex_};
 | |
| 
 | |
|     // Loop until we receive a message
 | |
|     while (true) {
 | |
|       uint64_t const current_time = MilliTime();
 | |
|       // First check if the deadline has passed.
 | |
|       if (deadline_milliseconds_.has_value() && deadline_milliseconds_.value() < current_time) {
 | |
|         deadline_milliseconds_.reset();
 | |
|         return TimeoutExpiredMessage{};
 | |
|       }
 | |
| 
 | |
|       // Check if there is a message in the queue.
 | |
|       if (messages_.size() > 0) {
 | |
|         Message message = messages_.front();
 | |
|         messages_.pop_front();
 | |
|         return message;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, wait until we have a message or a timeout.
 | |
|       if (deadline_milliseconds_.has_value()) {
 | |
|         DCHECK_LE(current_time, deadline_milliseconds_.value());
 | |
|         int64_t timeout = static_cast<int64_t>(deadline_milliseconds_.value() - current_time);
 | |
|         cv_.TimedWait(self, timeout, /*ns=*/0);
 | |
|       } else {
 | |
|         cv_.Wait(self);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Waits for a message and applies the appropriate function argument to the received message. See
 | |
|   // class comment for more details.
 | |
|   template <typename ReturnType = void, typename... Fn>
 | |
|   ReturnType SwitchReceive(Fn... case_fn) {
 | |
|     struct Matcher : Fn... {
 | |
|       using Fn::operator()...;
 | |
|     } matcher{case_fn...};
 | |
|     return std::visit(matcher, ReceiveMessage());
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   Mutex mutex_{"MessageQueue Mutex"};
 | |
|   ConditionVariable cv_{"MessageQueue ConditionVariable", mutex_};
 | |
| 
 | |
|   std::deque<Message> messages_ GUARDED_BY(mutex_);
 | |
|   std::optional<uint64_t> deadline_milliseconds_ GUARDED_BY(mutex_);
 | |
| };
 | |
| 
 | |
| }  // namespace art
 | |
| 
 | |
| #pragma clang diagnostic pop  // -Wconversion
 | |
| 
 | |
| #endif  // ART_RUNTIME_BASE_MESSAGE_QUEUE_H_
 |