3911 lines
		
	
	
		
			164 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3911 lines
		
	
	
		
			164 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2014 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "concurrent_copying.h"
 | |
| 
 | |
| #include "art_field-inl.h"
 | |
| #include "barrier.h"
 | |
| #include "base/enums.h"
 | |
| #include "base/file_utils.h"
 | |
| #include "base/histogram-inl.h"
 | |
| #include "base/quasi_atomic.h"
 | |
| #include "base/stl_util.h"
 | |
| #include "base/systrace.h"
 | |
| #include "class_root-inl.h"
 | |
| #include "debugger.h"
 | |
| #include "gc/accounting/atomic_stack.h"
 | |
| #include "gc/accounting/heap_bitmap-inl.h"
 | |
| #include "gc/accounting/mod_union_table-inl.h"
 | |
| #include "gc/accounting/read_barrier_table.h"
 | |
| #include "gc/accounting/space_bitmap-inl.h"
 | |
| #include "gc/gc_pause_listener.h"
 | |
| #include "gc/reference_processor.h"
 | |
| #include "gc/space/image_space.h"
 | |
| #include "gc/space/space-inl.h"
 | |
| #include "gc/verification.h"
 | |
| #include "image-inl.h"
 | |
| #include "intern_table.h"
 | |
| #include "mirror/class-inl.h"
 | |
| #include "mirror/object-inl.h"
 | |
| #include "mirror/object-refvisitor-inl.h"
 | |
| #include "mirror/object_reference.h"
 | |
| #include "scoped_thread_state_change-inl.h"
 | |
| #include "thread-inl.h"
 | |
| #include "thread_list.h"
 | |
| #include "well_known_classes.h"
 | |
| 
 | |
| namespace art {
 | |
| namespace gc {
 | |
| namespace collector {
 | |
| 
 | |
| static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
 | |
| // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
 | |
| // union table. Disabled since it does not seem to help the pause much.
 | |
| static constexpr bool kFilterModUnionCards = kIsDebugBuild;
 | |
| // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any read barrier that
 | |
| // occur during ConcurrentCopying::Scan in GC thread. May be used to diagnose possibly unnecessary
 | |
| // read barriers. Only enabled for kIsDebugBuild to avoid performance hit.
 | |
| static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
 | |
| // Slow path mark stack size, increase this if the stack is getting full and it is causing
 | |
| // performance problems.
 | |
| static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
 | |
| // Size (in the number of objects) of the sweep array free buffer.
 | |
| static constexpr size_t kSweepArrayChunkFreeSize = 1024;
 | |
| // Verify that there are no missing card marks.
 | |
| static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
 | |
| 
 | |
| ConcurrentCopying::ConcurrentCopying(Heap* heap,
 | |
|                                      bool young_gen,
 | |
|                                      bool use_generational_cc,
 | |
|                                      const std::string& name_prefix,
 | |
|                                      bool measure_read_barrier_slow_path)
 | |
|     : GarbageCollector(heap,
 | |
|                        name_prefix + (name_prefix.empty() ? "" : " ") +
 | |
|                        "concurrent copying"),
 | |
|       region_space_(nullptr),
 | |
|       gc_barrier_(new Barrier(0)),
 | |
|       gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
 | |
|                                                      kDefaultGcMarkStackSize,
 | |
|                                                      kDefaultGcMarkStackSize)),
 | |
|       use_generational_cc_(use_generational_cc),
 | |
|       young_gen_(young_gen),
 | |
|       rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
 | |
|                                                          kReadBarrierMarkStackSize,
 | |
|                                                          kReadBarrierMarkStackSize)),
 | |
|       rb_mark_bit_stack_full_(false),
 | |
|       mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
 | |
|       thread_running_gc_(nullptr),
 | |
|       is_marking_(false),
 | |
|       is_using_read_barrier_entrypoints_(false),
 | |
|       is_active_(false),
 | |
|       is_asserting_to_space_invariant_(false),
 | |
|       region_space_bitmap_(nullptr),
 | |
|       heap_mark_bitmap_(nullptr),
 | |
|       live_stack_freeze_size_(0),
 | |
|       from_space_num_objects_at_first_pause_(0),
 | |
|       from_space_num_bytes_at_first_pause_(0),
 | |
|       mark_stack_mode_(kMarkStackModeOff),
 | |
|       weak_ref_access_enabled_(true),
 | |
|       copied_live_bytes_ratio_sum_(0.f),
 | |
|       gc_count_(0),
 | |
|       reclaimed_bytes_ratio_sum_(0.f),
 | |
|       cumulative_bytes_moved_(0),
 | |
|       cumulative_objects_moved_(0),
 | |
|       skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
 | |
|       measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
 | |
|       mark_from_read_barrier_measurements_(false),
 | |
|       rb_slow_path_ns_(0),
 | |
|       rb_slow_path_count_(0),
 | |
|       rb_slow_path_count_gc_(0),
 | |
|       rb_slow_path_histogram_lock_("Read barrier histogram lock"),
 | |
|       rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
 | |
|       rb_slow_path_count_total_(0),
 | |
|       rb_slow_path_count_gc_total_(0),
 | |
|       rb_table_(heap_->GetReadBarrierTable()),
 | |
|       force_evacuate_all_(false),
 | |
|       gc_grays_immune_objects_(false),
 | |
|       immune_gray_stack_lock_("concurrent copying immune gray stack lock",
 | |
|                               kMarkSweepMarkStackLock),
 | |
|       num_bytes_allocated_before_gc_(0) {
 | |
|   static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
 | |
|                 "The region space size and the read barrier table region size must match");
 | |
|   CHECK(use_generational_cc_ || !young_gen_);
 | |
|   Thread* self = Thread::Current();
 | |
|   {
 | |
|     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|     // Cache this so that we won't have to lock heap_bitmap_lock_ in
 | |
|     // Mark() which could cause a nested lock on heap_bitmap_lock_
 | |
|     // when GC causes a RB while doing GC or a lock order violation
 | |
|     // (class_linker_lock_ and heap_bitmap_lock_).
 | |
|     heap_mark_bitmap_ = heap->GetMarkBitmap();
 | |
|   }
 | |
|   {
 | |
|     MutexLock mu(self, mark_stack_lock_);
 | |
|     for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
 | |
|       accounting::AtomicStack<mirror::Object>* mark_stack =
 | |
|           accounting::AtomicStack<mirror::Object>::Create(
 | |
|               "thread local mark stack", kMarkStackSize, kMarkStackSize);
 | |
|       pooled_mark_stacks_.push_back(mark_stack);
 | |
|     }
 | |
|   }
 | |
|   if (use_generational_cc_) {
 | |
|     // Allocate sweep array free buffer.
 | |
|     std::string error_msg;
 | |
|     sweep_array_free_buffer_mem_map_ = MemMap::MapAnonymous(
 | |
|         "concurrent copying sweep array free buffer",
 | |
|         RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
 | |
|         PROT_READ | PROT_WRITE,
 | |
|         /*low_4gb=*/ false,
 | |
|         &error_msg);
 | |
|     CHECK(sweep_array_free_buffer_mem_map_.IsValid())
 | |
|         << "Couldn't allocate sweep array free buffer: " << error_msg;
 | |
|   }
 | |
|   // Return type of these functions are different. And even though the base class
 | |
|   // is same, using ternary operator complains.
 | |
|   metrics::ArtMetrics* metrics = GetMetrics();
 | |
|   are_metrics_initialized_ = true;
 | |
|   if (young_gen_) {
 | |
|     gc_time_histogram_ = metrics->YoungGcCollectionTime();
 | |
|     metrics_gc_count_ = metrics->YoungGcCount();
 | |
|     gc_throughput_histogram_ = metrics->YoungGcThroughput();
 | |
|     gc_tracing_throughput_hist_ = metrics->YoungGcTracingThroughput();
 | |
|     gc_throughput_avg_ = metrics->YoungGcThroughputAvg();
 | |
|     gc_tracing_throughput_avg_ = metrics->YoungGcTracingThroughputAvg();
 | |
|   } else {
 | |
|     gc_time_histogram_ = metrics->FullGcCollectionTime();
 | |
|     metrics_gc_count_ = metrics->FullGcCount();
 | |
|     gc_throughput_histogram_ = metrics->FullGcThroughput();
 | |
|     gc_tracing_throughput_hist_ = metrics->FullGcTracingThroughput();
 | |
|     gc_throughput_avg_ = metrics->FullGcThroughputAvg();
 | |
|     gc_tracing_throughput_avg_ = metrics->FullGcTracingThroughputAvg();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
 | |
|                                           bool do_atomic_update) {
 | |
|   Thread* const self = Thread::Current();
 | |
|   if (UNLIKELY(do_atomic_update)) {
 | |
|     // Used to mark the referent in DelayReferenceReferent in transaction mode.
 | |
|     mirror::Object* from_ref = field->AsMirrorPtr();
 | |
|     if (from_ref == nullptr) {
 | |
|       return;
 | |
|     }
 | |
|     mirror::Object* to_ref = Mark(self, from_ref);
 | |
|     if (from_ref != to_ref) {
 | |
|       do {
 | |
|         if (field->AsMirrorPtr() != from_ref) {
 | |
|           // Concurrently overwritten by a mutator.
 | |
|           break;
 | |
|         }
 | |
|       } while (!field->CasWeakRelaxed(from_ref, to_ref));
 | |
|     }
 | |
|   } else {
 | |
|     // Used for preserving soft references, should be OK to not have a CAS here since there should be
 | |
|     // no other threads which can trigger read barriers on the same referent during reference
 | |
|     // processing.
 | |
|     field->Assign(Mark(self, field->AsMirrorPtr()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConcurrentCopying::~ConcurrentCopying() {
 | |
|   STLDeleteElements(&pooled_mark_stacks_);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::RunPhases() {
 | |
|   CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
 | |
|   CHECK(!is_active_);
 | |
|   is_active_ = true;
 | |
|   Thread* self = Thread::Current();
 | |
|   thread_running_gc_ = self;
 | |
|   Locks::mutator_lock_->AssertNotHeld(self);
 | |
|   {
 | |
|     ReaderMutexLock mu(self, *Locks::mutator_lock_);
 | |
|     InitializePhase();
 | |
|     // In case of forced evacuation, all regions are evacuated and hence no
 | |
|     // need to compute live_bytes.
 | |
|     if (use_generational_cc_ && !young_gen_ && !force_evacuate_all_) {
 | |
|       MarkingPhase();
 | |
|     }
 | |
|   }
 | |
|   if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
 | |
|     // Switch to read barrier mark entrypoints before we gray the objects. This is required in case
 | |
|     // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887).
 | |
|     ActivateReadBarrierEntrypoints();
 | |
|     // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in
 | |
|     // the pause.
 | |
|     ReaderMutexLock mu(self, *Locks::mutator_lock_);
 | |
|     GrayAllDirtyImmuneObjects();
 | |
|   }
 | |
|   FlipThreadRoots();
 | |
|   {
 | |
|     ReaderMutexLock mu(self, *Locks::mutator_lock_);
 | |
|     CopyingPhase();
 | |
|   }
 | |
|   // Verify no from space refs. This causes a pause.
 | |
|   if (kEnableNoFromSpaceRefsVerification) {
 | |
|     TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
 | |
|     ScopedPause pause(this, false);
 | |
|     CheckEmptyMarkStack();
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "Verifying no from-space refs";
 | |
|     }
 | |
|     VerifyNoFromSpaceReferences();
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "Done verifying no from-space refs";
 | |
|     }
 | |
|     CheckEmptyMarkStack();
 | |
|   }
 | |
|   {
 | |
|     ReaderMutexLock mu(self, *Locks::mutator_lock_);
 | |
|     ReclaimPhase();
 | |
|   }
 | |
|   FinishPhase();
 | |
|   CHECK(is_active_);
 | |
|   is_active_ = false;
 | |
|   thread_running_gc_ = nullptr;
 | |
| }
 | |
| 
 | |
| class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure {
 | |
|  public:
 | |
|   explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying)
 | |
|       : concurrent_copying_(concurrent_copying) {}
 | |
| 
 | |
|   void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
 | |
|     // Note: self is not necessarily equal to thread since thread may be suspended.
 | |
|     Thread* self = Thread::Current();
 | |
|     DCHECK(thread == self ||
 | |
|            thread->IsSuspended() ||
 | |
|            thread->GetState() == ThreadState::kWaitingPerformingGc)
 | |
|         << thread->GetState() << " thread " << thread << " self " << self;
 | |
|     // Switch to the read barrier entrypoints.
 | |
|     thread->SetReadBarrierEntrypoints();
 | |
|     // If thread is a running mutator, then act on behalf of the garbage collector.
 | |
|     // See the code in ThreadList::RunCheckpoint.
 | |
|     concurrent_copying_->GetBarrier().Pass(self);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const concurrent_copying_;
 | |
| };
 | |
| 
 | |
| class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure {
 | |
|  public:
 | |
|   explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying)
 | |
|       : concurrent_copying_(concurrent_copying) {}
 | |
| 
 | |
|   void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
 | |
|     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
 | |
|     // to avoid a race with ThreadList::Register().
 | |
|     CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
 | |
|     concurrent_copying_->is_using_read_barrier_entrypoints_ = true;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const concurrent_copying_;
 | |
| };
 | |
| 
 | |
| void ConcurrentCopying::ActivateReadBarrierEntrypoints() {
 | |
|   Thread* const self = Thread::Current();
 | |
|   ActivateReadBarrierEntrypointsCheckpoint checkpoint(this);
 | |
|   ThreadList* thread_list = Runtime::Current()->GetThreadList();
 | |
|   gc_barrier_->Init(self, 0);
 | |
|   ActivateReadBarrierEntrypointsCallback callback(this);
 | |
|   const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback);
 | |
|   // If there are no threads to wait which implies that all the checkpoint functions are finished,
 | |
|   // then no need to release the mutator lock.
 | |
|   if (barrier_count == 0) {
 | |
|     return;
 | |
|   }
 | |
|   ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
 | |
|   gc_barrier_->Increment(self, barrier_count);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::CreateInterRegionRefBitmaps() {
 | |
|   DCHECK(use_generational_cc_);
 | |
|   DCHECK(!region_space_inter_region_bitmap_.IsValid());
 | |
|   DCHECK(!non_moving_space_inter_region_bitmap_.IsValid());
 | |
|   DCHECK(region_space_ != nullptr);
 | |
|   DCHECK(heap_->non_moving_space_ != nullptr);
 | |
|   // Region-space
 | |
|   region_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
 | |
|       "region-space inter region ref bitmap",
 | |
|       reinterpret_cast<uint8_t*>(region_space_->Begin()),
 | |
|       region_space_->Limit() - region_space_->Begin());
 | |
|   CHECK(region_space_inter_region_bitmap_.IsValid())
 | |
|       << "Couldn't allocate region-space inter region ref bitmap";
 | |
| 
 | |
|   // non-moving-space
 | |
|   non_moving_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
 | |
|       "non-moving-space inter region ref bitmap",
 | |
|       reinterpret_cast<uint8_t*>(heap_->non_moving_space_->Begin()),
 | |
|       heap_->non_moving_space_->Limit() - heap_->non_moving_space_->Begin());
 | |
|   CHECK(non_moving_space_inter_region_bitmap_.IsValid())
 | |
|       << "Couldn't allocate non-moving-space inter region ref bitmap";
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::BindBitmaps() {
 | |
|   Thread* self = Thread::Current();
 | |
|   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|   // Mark all of the spaces we never collect as immune.
 | |
|   for (const auto& space : heap_->GetContinuousSpaces()) {
 | |
|     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
 | |
|         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
 | |
|       CHECK(space->IsZygoteSpace() || space->IsImageSpace());
 | |
|       immune_spaces_.AddSpace(space);
 | |
|     } else {
 | |
|       CHECK(!space->IsZygoteSpace());
 | |
|       CHECK(!space->IsImageSpace());
 | |
|       CHECK(space == region_space_ || space == heap_->non_moving_space_);
 | |
|       if (use_generational_cc_) {
 | |
|         if (space == region_space_) {
 | |
|           region_space_bitmap_ = region_space_->GetMarkBitmap();
 | |
|         } else if (young_gen_ && space->IsContinuousMemMapAllocSpace()) {
 | |
|           DCHECK_EQ(space->GetGcRetentionPolicy(), space::kGcRetentionPolicyAlwaysCollect);
 | |
|           space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
 | |
|         }
 | |
|         if (young_gen_) {
 | |
|           // Age all of the cards for the region space so that we know which evac regions to scan.
 | |
|           heap_->GetCardTable()->ModifyCardsAtomic(space->Begin(),
 | |
|                                                    space->End(),
 | |
|                                                    AgeCardVisitor(),
 | |
|                                                    VoidFunctor());
 | |
|         } else {
 | |
|           // In a full-heap GC cycle, the card-table corresponding to region-space and
 | |
|           // non-moving space can be cleared, because this cycle only needs to
 | |
|           // capture writes during the marking phase of this cycle to catch
 | |
|           // objects that skipped marking due to heap mutation. Furthermore,
 | |
|           // if the next GC is a young-gen cycle, then it only needs writes to
 | |
|           // be captured after the thread-flip of this GC cycle, as that is when
 | |
|           // the young-gen for the next GC cycle starts getting populated.
 | |
|           heap_->GetCardTable()->ClearCardRange(space->Begin(), space->Limit());
 | |
|         }
 | |
|       } else {
 | |
|         if (space == region_space_) {
 | |
|           // It is OK to clear the bitmap with mutators running since the only place it is read is
 | |
|           // VisitObjects which has exclusion with CC.
 | |
|           region_space_bitmap_ = region_space_->GetMarkBitmap();
 | |
|           region_space_bitmap_->Clear();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (use_generational_cc_ && young_gen_) {
 | |
|     for (const auto& space : GetHeap()->GetDiscontinuousSpaces()) {
 | |
|       CHECK(space->IsLargeObjectSpace());
 | |
|       space->AsLargeObjectSpace()->CopyLiveToMarked();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::InitializePhase() {
 | |
|   TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
 | |
|   num_bytes_allocated_before_gc_ = static_cast<int64_t>(heap_->GetBytesAllocated());
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "GC InitializePhase";
 | |
|     LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
 | |
|               << reinterpret_cast<void*>(region_space_->Limit());
 | |
|   }
 | |
|   CheckEmptyMarkStack();
 | |
|   rb_mark_bit_stack_full_ = false;
 | |
|   mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
 | |
|   if (measure_read_barrier_slow_path_) {
 | |
|     rb_slow_path_ns_.store(0, std::memory_order_relaxed);
 | |
|     rb_slow_path_count_.store(0, std::memory_order_relaxed);
 | |
|     rb_slow_path_count_gc_.store(0, std::memory_order_relaxed);
 | |
|   }
 | |
| 
 | |
|   immune_spaces_.Reset();
 | |
|   bytes_moved_.store(0, std::memory_order_relaxed);
 | |
|   objects_moved_.store(0, std::memory_order_relaxed);
 | |
|   bytes_moved_gc_thread_ = 0;
 | |
|   objects_moved_gc_thread_ = 0;
 | |
|   bytes_scanned_ = 0;
 | |
|   GcCause gc_cause = GetCurrentIteration()->GetGcCause();
 | |
| 
 | |
|   force_evacuate_all_ = false;
 | |
|   if (!use_generational_cc_ || !young_gen_) {
 | |
|     if (gc_cause == kGcCauseExplicit ||
 | |
|         gc_cause == kGcCauseCollectorTransition ||
 | |
|         GetCurrentIteration()->GetClearSoftReferences()) {
 | |
|       force_evacuate_all_ = true;
 | |
|     }
 | |
|   }
 | |
|   if (kUseBakerReadBarrier) {
 | |
|     updated_all_immune_objects_.store(false, std::memory_order_relaxed);
 | |
|     // GC may gray immune objects in the thread flip.
 | |
|     gc_grays_immune_objects_ = true;
 | |
|     if (kIsDebugBuild) {
 | |
|       MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
 | |
|       DCHECK(immune_gray_stack_.empty());
 | |
|     }
 | |
|   }
 | |
|   if (use_generational_cc_) {
 | |
|     done_scanning_.store(false, std::memory_order_release);
 | |
|   }
 | |
|   BindBitmaps();
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha;
 | |
|     LOG(INFO) << "force_evacuate_all=" << std::boolalpha << force_evacuate_all_ << std::noboolalpha;
 | |
|     LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
 | |
|               << "-" << immune_spaces_.GetLargestImmuneRegion().End();
 | |
|     for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
 | |
|       LOG(INFO) << "Immune space: " << *space;
 | |
|     }
 | |
|     LOG(INFO) << "GC end of InitializePhase";
 | |
|   }
 | |
|   if (use_generational_cc_ && !young_gen_) {
 | |
|     region_space_bitmap_->Clear();
 | |
|   }
 | |
|   mark_stack_mode_.store(ConcurrentCopying::kMarkStackModeThreadLocal, std::memory_order_relaxed);
 | |
|   // Mark all of the zygote large objects without graying them.
 | |
|   MarkZygoteLargeObjects();
 | |
| }
 | |
| 
 | |
| // Used to switch the thread roots of a thread from from-space refs to to-space refs.
 | |
| class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
 | |
|  public:
 | |
|   ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
 | |
|       : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
 | |
|   }
 | |
| 
 | |
|   void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     // Note: self is not necessarily equal to thread since thread may be suspended.
 | |
|     Thread* self = Thread::Current();
 | |
|     CHECK(thread == self ||
 | |
|           thread->IsSuspended() ||
 | |
|           thread->GetState() == ThreadState::kWaitingPerformingGc)
 | |
|         << thread->GetState() << " thread " << thread << " self " << self;
 | |
|     thread->SetIsGcMarkingAndUpdateEntrypoints(true);
 | |
|     if (use_tlab_ && thread->HasTlab()) {
 | |
|       // We should not reuse the partially utilized TLABs revoked here as they
 | |
|       // are going to be part of from-space.
 | |
|       if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
 | |
|         // This must come before the revoke.
 | |
|         size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
 | |
|         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
 | |
|         reinterpret_cast<Atomic<size_t>*>(
 | |
|             &concurrent_copying_->from_space_num_objects_at_first_pause_)->
 | |
|                 fetch_add(thread_local_objects, std::memory_order_relaxed);
 | |
|       } else {
 | |
|         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
 | |
|       }
 | |
|     }
 | |
|     if (kUseThreadLocalAllocationStack) {
 | |
|       thread->RevokeThreadLocalAllocationStack();
 | |
|     }
 | |
|     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|     // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
 | |
|     // only.
 | |
|     thread->VisitRoots(this, kVisitRootFlagAllRoots);
 | |
|     concurrent_copying_->GetBarrier().Pass(self);
 | |
|   }
 | |
| 
 | |
|   void VisitRoots(mirror::Object*** roots,
 | |
|                   size_t count,
 | |
|                   const RootInfo& info ATTRIBUTE_UNUSED) override
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     Thread* self = Thread::Current();
 | |
|     for (size_t i = 0; i < count; ++i) {
 | |
|       mirror::Object** root = roots[i];
 | |
|       mirror::Object* ref = *root;
 | |
|       if (ref != nullptr) {
 | |
|         mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
 | |
|         if (to_ref != ref) {
 | |
|           *root = to_ref;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
 | |
|                   size_t count,
 | |
|                   const RootInfo& info ATTRIBUTE_UNUSED) override
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     Thread* self = Thread::Current();
 | |
|     for (size_t i = 0; i < count; ++i) {
 | |
|       mirror::CompressedReference<mirror::Object>* const root = roots[i];
 | |
|       if (!root->IsNull()) {
 | |
|         mirror::Object* ref = root->AsMirrorPtr();
 | |
|         mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
 | |
|         if (to_ref != ref) {
 | |
|           root->Assign(to_ref);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const concurrent_copying_;
 | |
|   const bool use_tlab_;
 | |
| };
 | |
| 
 | |
| // Called back from Runtime::FlipThreadRoots() during a pause.
 | |
| class ConcurrentCopying::FlipCallback : public Closure {
 | |
|  public:
 | |
|   explicit FlipCallback(ConcurrentCopying* concurrent_copying)
 | |
|       : concurrent_copying_(concurrent_copying) {
 | |
|   }
 | |
| 
 | |
|   void Run(Thread* thread) override REQUIRES(Locks::mutator_lock_) {
 | |
|     ConcurrentCopying* cc = concurrent_copying_;
 | |
|     TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
 | |
|     // Note: self is not necessarily equal to thread since thread may be suspended.
 | |
|     Thread* self = Thread::Current();
 | |
|     if (kVerifyNoMissingCardMarks && cc->young_gen_) {
 | |
|       cc->VerifyNoMissingCardMarks();
 | |
|     }
 | |
|     CHECK_EQ(thread, self);
 | |
|     Locks::mutator_lock_->AssertExclusiveHeld(self);
 | |
|     space::RegionSpace::EvacMode evac_mode = space::RegionSpace::kEvacModeLivePercentNewlyAllocated;
 | |
|     if (cc->young_gen_) {
 | |
|       CHECK(!cc->force_evacuate_all_);
 | |
|       evac_mode = space::RegionSpace::kEvacModeNewlyAllocated;
 | |
|     } else if (cc->force_evacuate_all_) {
 | |
|       evac_mode = space::RegionSpace::kEvacModeForceAll;
 | |
|     }
 | |
|     {
 | |
|       TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings());
 | |
|       // Only change live bytes for 1-phase full heap CC, that is if we are either not running in
 | |
|       // generational-mode, or it's an 'evacuate-all' mode GC.
 | |
|       cc->region_space_->SetFromSpace(
 | |
|           cc->rb_table_,
 | |
|           evac_mode,
 | |
|           /*clear_live_bytes=*/ !cc->use_generational_cc_ || cc->force_evacuate_all_);
 | |
|     }
 | |
|     cc->SwapStacks();
 | |
|     if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
 | |
|       cc->RecordLiveStackFreezeSize(self);
 | |
|       cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
 | |
|       cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
 | |
|     }
 | |
|     cc->is_marking_ = true;
 | |
|     if (kIsDebugBuild && !cc->use_generational_cc_) {
 | |
|       cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
 | |
|     }
 | |
|     if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
 | |
|       CHECK(Runtime::Current()->IsAotCompiler());
 | |
|       TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings());
 | |
|       Runtime::Current()->VisitTransactionRoots(cc);
 | |
|     }
 | |
|     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
 | |
|       cc->GrayAllNewlyDirtyImmuneObjects();
 | |
|       if (kIsDebugBuild) {
 | |
|         // Check that all non-gray immune objects only reference immune objects.
 | |
|         cc->VerifyGrayImmuneObjects();
 | |
|       }
 | |
|     }
 | |
|     // May be null during runtime creation, in this case leave java_lang_Object null.
 | |
|     // This is safe since single threaded behavior should mean FillWithFakeObject does not
 | |
|     // happen when java_lang_Object_ is null.
 | |
|     if (WellKnownClasses::java_lang_Object != nullptr) {
 | |
|       cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(thread,
 | |
|           WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr()));
 | |
|     } else {
 | |
|       cc->java_lang_Object_ = nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const concurrent_copying_;
 | |
| };
 | |
| 
 | |
| class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
 | |
|  public:
 | |
|   explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
 | |
|       : collector_(collector) {}
 | |
| 
 | |
|   void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
 | |
|       const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
 | |
|       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
 | |
|     CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
 | |
|                    obj, offset);
 | |
|   }
 | |
| 
 | |
|   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
 | |
|     CHECK(klass->IsTypeOfReferenceClass());
 | |
|     CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
 | |
|                    ref,
 | |
|                    mirror::Reference::ReferentOffset());
 | |
|   }
 | |
| 
 | |
|   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       ALWAYS_INLINE
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (!root->IsNull()) {
 | |
|       VisitRoot(root);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       ALWAYS_INLINE
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const collector_;
 | |
| 
 | |
|   void CheckReference(ObjPtr<mirror::Object> ref,
 | |
|                       ObjPtr<mirror::Object> holder,
 | |
|                       MemberOffset offset) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (ref != nullptr) {
 | |
|       if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
 | |
|         // Not immune, must be a zygote large object.
 | |
|         space::LargeObjectSpace* large_object_space =
 | |
|             Runtime::Current()->GetHeap()->GetLargeObjectsSpace();
 | |
|         CHECK(large_object_space->Contains(ref.Ptr()) &&
 | |
|               large_object_space->IsZygoteLargeObject(Thread::Current(), ref.Ptr()))
 | |
|             << "Non gray object references non immune, non zygote large object "<< ref << " "
 | |
|             << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
 | |
|             << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
 | |
|       } else {
 | |
|         // Make sure the large object class is immune since we will never scan the large object.
 | |
|         CHECK(collector_->immune_spaces_.ContainsObject(
 | |
|             ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| void ConcurrentCopying::VerifyGrayImmuneObjects() {
 | |
|   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
 | |
|   for (auto& space : immune_spaces_.GetSpaces()) {
 | |
|     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
 | |
|     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
 | |
|     VerifyGrayImmuneObjectsVisitor visitor(this);
 | |
|     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
 | |
|                                   reinterpret_cast<uintptr_t>(space->Limit()),
 | |
|                                   [&visitor](mirror::Object* obj)
 | |
|         REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|       // If an object is not gray, it should only have references to things in the immune spaces.
 | |
|       if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
 | |
|         obj->VisitReferences</*kVisitNativeRoots=*/true,
 | |
|                              kDefaultVerifyFlags,
 | |
|                              kWithoutReadBarrier>(visitor, visitor);
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| }
 | |
| 
 | |
| class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
 | |
|  public:
 | |
|   VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
 | |
|     : cc_(cc),
 | |
|       holder_(holder) {}
 | |
| 
 | |
|   void operator()(ObjPtr<mirror::Object> obj,
 | |
|                   MemberOffset offset,
 | |
|                   bool is_static ATTRIBUTE_UNUSED) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
 | |
|     if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
 | |
|      CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
 | |
|          offset), offset.Uint32Value());
 | |
|     }
 | |
|   }
 | |
|   void operator()(ObjPtr<mirror::Class> klass,
 | |
|                   ObjPtr<mirror::Reference> ref) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
 | |
|     CHECK(klass->IsTypeOfReferenceClass());
 | |
|     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
 | |
|   }
 | |
| 
 | |
|   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (!root->IsNull()) {
 | |
|       VisitRoot(root);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     CheckReference(root->AsMirrorPtr());
 | |
|   }
 | |
| 
 | |
|   void CheckReference(mirror::Object* ref, int32_t offset = -1) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (ref != nullptr && cc_->region_space_->IsInNewlyAllocatedRegion(ref)) {
 | |
|       LOG(FATAL_WITHOUT_ABORT)
 | |
|         << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
 | |
|         << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
 | |
|       LOG(FATAL_WITHOUT_ABORT) << "time=" << cc_->region_space_->Time();
 | |
|       constexpr const char* kIndent = "  ";
 | |
|       LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(holder_.Ptr(), "holder_", kIndent);
 | |
|       LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(ref, "ref", kIndent);
 | |
|       LOG(FATAL) << "Unexpected reference to newly allocated region.";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const cc_;
 | |
|   const ObjPtr<mirror::Object> holder_;
 | |
| };
 | |
| 
 | |
| void ConcurrentCopying::VerifyNoMissingCardMarks() {
 | |
|   auto visitor = [&](mirror::Object* obj)
 | |
|       REQUIRES(Locks::mutator_lock_)
 | |
|       REQUIRES(!mark_stack_lock_) {
 | |
|     // Objects on clean cards should never have references to newly allocated regions. Note
 | |
|     // that aged cards are also not clean.
 | |
|     if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) {
 | |
|       VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder=*/ obj);
 | |
|       obj->VisitReferences</*kVisitNativeRoots=*/true, kVerifyNone, kWithoutReadBarrier>(
 | |
|           internal_visitor, internal_visitor);
 | |
|     }
 | |
|   };
 | |
|   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
 | |
|   region_space_->Walk(visitor);
 | |
|   {
 | |
|     ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
 | |
|     heap_->GetLiveBitmap()->Visit(visitor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
 | |
| void ConcurrentCopying::FlipThreadRoots() {
 | |
|   TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
 | |
|   if (kVerboseMode || heap_->dump_region_info_before_gc_) {
 | |
|     LOG(INFO) << "time=" << region_space_->Time();
 | |
|     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
 | |
|   }
 | |
|   Thread* self = Thread::Current();
 | |
|   Locks::mutator_lock_->AssertNotHeld(self);
 | |
|   gc_barrier_->Init(self, 0);
 | |
|   ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
 | |
|   FlipCallback flip_callback(this);
 | |
| 
 | |
|   size_t barrier_count = Runtime::Current()->GetThreadList()->FlipThreadRoots(
 | |
|       &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener());
 | |
| 
 | |
|   {
 | |
|     ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
 | |
|     gc_barrier_->Increment(self, barrier_count);
 | |
|   }
 | |
|   is_asserting_to_space_invariant_ = true;
 | |
|   QuasiAtomic::ThreadFenceForConstructor();
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "time=" << region_space_->Time();
 | |
|     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
 | |
|     LOG(INFO) << "GC end of FlipThreadRoots";
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <bool kConcurrent>
 | |
| class ConcurrentCopying::GrayImmuneObjectVisitor {
 | |
|  public:
 | |
|   explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {}
 | |
| 
 | |
|   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::NonGrayState()) {
 | |
|       if (kConcurrent) {
 | |
|         Locks::mutator_lock_->AssertSharedHeld(self_);
 | |
|         obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
 | |
|         // Mod union table VisitObjects may visit the same object multiple times so we can't check
 | |
|         // the result of the atomic set.
 | |
|       } else {
 | |
|         Locks::mutator_lock_->AssertExclusiveHeld(self_);
 | |
|         obj->SetReadBarrierState(ReadBarrier::GrayState());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   Thread* const self_;
 | |
| };
 | |
| 
 | |
| void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
 | |
|   TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings());
 | |
|   accounting::CardTable* const card_table = heap_->GetCardTable();
 | |
|   Thread* const self = Thread::Current();
 | |
|   using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ true>;
 | |
|   VisitorType visitor(self);
 | |
|   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|   for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
 | |
|     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
 | |
|     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
 | |
|     // Mark all the objects on dirty cards since these may point to objects in other space.
 | |
|     // Once these are marked, the GC will eventually clear them later.
 | |
|     // Table is non null for boot image and zygote spaces. It is only null for application image
 | |
|     // spaces.
 | |
|     if (table != nullptr) {
 | |
|       table->ProcessCards();
 | |
|       table->VisitObjects(&VisitorType::Callback, &visitor);
 | |
|       // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here,
 | |
|       // there would be races with the mutator marking new cards.
 | |
|     } else {
 | |
|       // Keep cards aged if we don't have a mod-union table since we may need to scan them in future
 | |
|       // GCs. This case is for app images.
 | |
|       card_table->ModifyCardsAtomic(
 | |
|           space->Begin(),
 | |
|           space->End(),
 | |
|           [](uint8_t card) {
 | |
|             return (card != gc::accounting::CardTable::kCardClean)
 | |
|                 ? gc::accounting::CardTable::kCardAged
 | |
|                 : card;
 | |
|           },
 | |
|           /* card modified visitor */ VoidFunctor());
 | |
|       card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
 | |
|                                               space->Begin(),
 | |
|                                               space->End(),
 | |
|                                               visitor,
 | |
|                                               gc::accounting::CardTable::kCardAged);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() {
 | |
|   TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings());
 | |
|   accounting::CardTable* const card_table = heap_->GetCardTable();
 | |
|   using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ false>;
 | |
|   Thread* const self = Thread::Current();
 | |
|   VisitorType visitor(self);
 | |
|   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
 | |
|   for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
 | |
|     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
 | |
|     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
 | |
| 
 | |
|     // Don't need to scan aged cards since we did these before the pause. Note that scanning cards
 | |
|     // also handles the mod-union table cards.
 | |
|     card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
 | |
|                                             space->Begin(),
 | |
|                                             space->End(),
 | |
|                                             visitor,
 | |
|                                             gc::accounting::CardTable::kCardDirty);
 | |
|     if (table != nullptr) {
 | |
|       // Add the cards to the mod-union table so that we can clear cards to save RAM.
 | |
|       table->ProcessCards();
 | |
|       TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
 | |
|       card_table->ClearCardRange(space->Begin(),
 | |
|                                  AlignDown(space->End(), accounting::CardTable::kCardSize));
 | |
|     }
 | |
|   }
 | |
|   // Since all of the objects that may point to other spaces are gray, we can avoid all the read
 | |
|   // barriers in the immune spaces.
 | |
|   updated_all_immune_objects_.store(true, std::memory_order_relaxed);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::SwapStacks() {
 | |
|   heap_->SwapStacks();
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
 | |
|   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|   live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
 | |
| }
 | |
| 
 | |
| // Used to visit objects in the immune spaces.
 | |
| inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
 | |
|   DCHECK(obj != nullptr);
 | |
|   DCHECK(immune_spaces_.ContainsObject(obj));
 | |
|   // Update the fields without graying it or pushing it onto the mark stack.
 | |
|   if (use_generational_cc_ && young_gen_) {
 | |
|     // Young GC does not care about references to unevac space. It is safe to not gray these as
 | |
|     // long as scan immune objects happens after scanning the dirty cards.
 | |
|     Scan<true>(obj);
 | |
|   } else {
 | |
|     Scan<false>(obj);
 | |
|   }
 | |
| }
 | |
| 
 | |
| class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
 | |
|  public:
 | |
|   explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
 | |
|       : collector_(cc) {}
 | |
| 
 | |
|   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
 | |
|       // Only need to scan gray objects.
 | |
|       if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
 | |
|         collector_->ScanImmuneObject(obj);
 | |
|         // Done scanning the object, go back to black (non-gray).
 | |
|         bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
 | |
|                                                       ReadBarrier::NonGrayState());
 | |
|         CHECK(success)
 | |
|             << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS");
 | |
|       }
 | |
|     } else {
 | |
|       collector_->ScanImmuneObject(obj);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const collector_;
 | |
| };
 | |
| 
 | |
| template <bool kAtomicTestAndSet>
 | |
| class ConcurrentCopying::CaptureRootsForMarkingVisitor : public RootVisitor {
 | |
|  public:
 | |
|   explicit CaptureRootsForMarkingVisitor(ConcurrentCopying* cc, Thread* self)
 | |
|       : collector_(cc), self_(self) {}
 | |
| 
 | |
|   void VisitRoots(mirror::Object*** roots,
 | |
|                   size_t count,
 | |
|                   const RootInfo& info ATTRIBUTE_UNUSED) override
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     for (size_t i = 0; i < count; ++i) {
 | |
|       mirror::Object** root = roots[i];
 | |
|       mirror::Object* ref = *root;
 | |
|       if (ref != nullptr && !collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
 | |
|         collector_->PushOntoMarkStack(self_, ref);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
 | |
|                   size_t count,
 | |
|                   const RootInfo& info ATTRIBUTE_UNUSED) override
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     for (size_t i = 0; i < count; ++i) {
 | |
|       mirror::CompressedReference<mirror::Object>* const root = roots[i];
 | |
|       if (!root->IsNull()) {
 | |
|         mirror::Object* ref = root->AsMirrorPtr();
 | |
|         if (!collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
 | |
|           collector_->PushOntoMarkStack(self_, ref);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const collector_;
 | |
|   Thread* const self_;
 | |
| };
 | |
| 
 | |
| class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
 | |
|  public:
 | |
|   RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
 | |
|                                        bool disable_weak_ref_access)
 | |
|       : concurrent_copying_(concurrent_copying),
 | |
|         disable_weak_ref_access_(disable_weak_ref_access) {
 | |
|   }
 | |
| 
 | |
|   void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
 | |
|     // Note: self is not necessarily equal to thread since thread may be suspended.
 | |
|     Thread* const self = Thread::Current();
 | |
|     CHECK(thread == self ||
 | |
|           thread->IsSuspended() ||
 | |
|           thread->GetState() == ThreadState::kWaitingPerformingGc)
 | |
|         << thread->GetState() << " thread " << thread << " self " << self;
 | |
|     // Revoke thread local mark stacks.
 | |
|     {
 | |
|       MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
 | |
|       accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
 | |
|       if (tl_mark_stack != nullptr) {
 | |
|         concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
 | |
|         thread->SetThreadLocalMarkStack(nullptr);
 | |
|       }
 | |
|     }
 | |
|     // Disable weak ref access.
 | |
|     if (disable_weak_ref_access_) {
 | |
|       thread->SetWeakRefAccessEnabled(false);
 | |
|     }
 | |
|     // If thread is a running mutator, then act on behalf of the garbage collector.
 | |
|     // See the code in ThreadList::RunCheckpoint.
 | |
|     concurrent_copying_->GetBarrier().Pass(self);
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   ConcurrentCopying* const concurrent_copying_;
 | |
| 
 | |
|  private:
 | |
|   const bool disable_weak_ref_access_;
 | |
| };
 | |
| 
 | |
| class ConcurrentCopying::CaptureThreadRootsForMarkingAndCheckpoint :
 | |
|   public RevokeThreadLocalMarkStackCheckpoint {
 | |
|  public:
 | |
|   explicit CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying* cc) :
 | |
|     RevokeThreadLocalMarkStackCheckpoint(cc, /* disable_weak_ref_access */ false) {}
 | |
| 
 | |
|   void Run(Thread* thread) override
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     Thread* const self = Thread::Current();
 | |
|     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|     // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
 | |
|     // only.
 | |
|     CaptureRootsForMarkingVisitor</*kAtomicTestAndSet*/ true> visitor(concurrent_copying_, self);
 | |
|     thread->VisitRoots(&visitor, kVisitRootFlagAllRoots);
 | |
|     // If thread_running_gc_ performed the root visit then its thread-local
 | |
|     // mark-stack should be null as we directly push to gc_mark_stack_.
 | |
|     CHECK(self == thread || self->GetThreadLocalMarkStack() == nullptr);
 | |
|     // Barrier handling is done in the base class' Run() below.
 | |
|     RevokeThreadLocalMarkStackCheckpoint::Run(thread);
 | |
|   }
 | |
| };
 | |
| 
 | |
| void ConcurrentCopying::CaptureThreadRootsForMarking() {
 | |
|   TimingLogger::ScopedTiming split("CaptureThreadRootsForMarking", GetTimings());
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "time=" << region_space_->Time();
 | |
|     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
 | |
|   }
 | |
|   Thread* const self = Thread::Current();
 | |
|   CaptureThreadRootsForMarkingAndCheckpoint check_point(this);
 | |
|   ThreadList* thread_list = Runtime::Current()->GetThreadList();
 | |
|   gc_barrier_->Init(self, 0);
 | |
|   size_t barrier_count = thread_list->RunCheckpoint(&check_point, /* callback */ nullptr);
 | |
|   // If there are no threads to wait which implys that all the checkpoint functions are finished,
 | |
|   // then no need to release the mutator lock.
 | |
|   if (barrier_count == 0) {
 | |
|     return;
 | |
|   }
 | |
|   Locks::mutator_lock_->SharedUnlock(self);
 | |
|   {
 | |
|     ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
 | |
|     gc_barrier_->Increment(self, barrier_count);
 | |
|   }
 | |
|   Locks::mutator_lock_->SharedLock(self);
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "time=" << region_space_->Time();
 | |
|     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
 | |
|     LOG(INFO) << "GC end of CaptureThreadRootsForMarking";
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Used to scan ref fields of an object.
 | |
| template <bool kHandleInterRegionRefs>
 | |
| class ConcurrentCopying::ComputeLiveBytesAndMarkRefFieldsVisitor {
 | |
|  public:
 | |
|   explicit ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying* collector,
 | |
|                                                    size_t obj_region_idx)
 | |
|       : collector_(collector),
 | |
|       obj_region_idx_(obj_region_idx),
 | |
|       contains_inter_region_idx_(false) {}
 | |
| 
 | |
|   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
 | |
|       ALWAYS_INLINE
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_)
 | |
|       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
 | |
|     DCHECK_EQ(collector_->RegionSpace()->RegionIdxForRef(obj), obj_region_idx_);
 | |
|     DCHECK(kHandleInterRegionRefs || collector_->immune_spaces_.ContainsObject(obj));
 | |
|     mirror::Object* ref =
 | |
|             obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
 | |
|     // TODO(lokeshgidra): Remove the following condition once b/173676071 is fixed.
 | |
|     if (UNLIKELY(ref == nullptr && offset == mirror::Object::ClassOffset())) {
 | |
|       // It has been verified as a race condition (see b/173676071)! After a small
 | |
|       // wait when we reload the class pointer, it turns out to be a valid class
 | |
|       // object. So as a workaround, we can continue execution and log an error
 | |
|       // that this happened.
 | |
|       for (size_t i = 0; i < 1000; i++) {
 | |
|         // Wait for 1ms at a time. Don't wait for more than 1 second in total.
 | |
|         usleep(1000);
 | |
|         ref = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
 | |
|         if (ref != nullptr) {
 | |
|           LOG(ERROR) << "klass pointer for obj: "
 | |
|                      << obj << " (" << mirror::Object::PrettyTypeOf(obj)
 | |
|                      << ") found to be null first. Reloading after a small wait fetched klass: "
 | |
|                      << ref << " (" << mirror::Object::PrettyTypeOf(ref) << ")";
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (UNLIKELY(ref == nullptr)) {
 | |
|         // It must be heap corruption. Remove memory protection and dump data.
 | |
|         collector_->region_space_->Unprotect();
 | |
|         LOG(FATAL_WITHOUT_ABORT) << "klass pointer for ref: " << obj << " found to be null.";
 | |
|         collector_->heap_->GetVerification()->LogHeapCorruption(obj, offset, ref, /* fatal */ true);
 | |
|       }
 | |
|     }
 | |
|     CheckReference(ref);
 | |
|   }
 | |
| 
 | |
|   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
 | |
|     DCHECK(klass->IsTypeOfReferenceClass());
 | |
|     // If the referent is not null, then we must re-visit the object during
 | |
|     // copying phase to enqueue it for delayed processing and setting
 | |
|     // read-barrier state to gray to ensure that call to GetReferent() triggers
 | |
|     // the read-barrier. We use same data structure that is used to remember
 | |
|     // objects with inter-region refs for this purpose too.
 | |
|     if (kHandleInterRegionRefs
 | |
|         && !contains_inter_region_idx_
 | |
|         && ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr) {
 | |
|       contains_inter_region_idx_ = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       ALWAYS_INLINE
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (!root->IsNull()) {
 | |
|       VisitRoot(root);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       ALWAYS_INLINE
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     CheckReference(root->AsMirrorPtr());
 | |
|   }
 | |
| 
 | |
|   bool ContainsInterRegionRefs() const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     return contains_inter_region_idx_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   void CheckReference(mirror::Object* ref) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (ref == nullptr) {
 | |
|       // Nothing to do.
 | |
|       return;
 | |
|     }
 | |
|     if (!collector_->TestAndSetMarkBitForRef(ref)) {
 | |
|       collector_->PushOntoLocalMarkStack(ref);
 | |
|     }
 | |
|     if (kHandleInterRegionRefs && !contains_inter_region_idx_) {
 | |
|       size_t ref_region_idx = collector_->RegionSpace()->RegionIdxForRef(ref);
 | |
|       // If a region-space object refers to an outside object, we will have a
 | |
|       // mismatch of region idx, but the object need not be re-visited in
 | |
|       // copying phase.
 | |
|       if (ref_region_idx != static_cast<size_t>(-1) && obj_region_idx_ != ref_region_idx) {
 | |
|         contains_inter_region_idx_ = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ConcurrentCopying* const collector_;
 | |
|   const size_t obj_region_idx_;
 | |
|   mutable bool contains_inter_region_idx_;
 | |
| };
 | |
| 
 | |
| void ConcurrentCopying::AddLiveBytesAndScanRef(mirror::Object* ref) {
 | |
|   DCHECK(ref != nullptr);
 | |
|   DCHECK(!immune_spaces_.ContainsObject(ref));
 | |
|   DCHECK(TestMarkBitmapForRef(ref));
 | |
|   size_t obj_region_idx = static_cast<size_t>(-1);
 | |
|   if (LIKELY(region_space_->HasAddress(ref))) {
 | |
|     obj_region_idx = region_space_->RegionIdxForRefUnchecked(ref);
 | |
|     // Add live bytes to the corresponding region
 | |
|     if (!region_space_->IsRegionNewlyAllocated(obj_region_idx)) {
 | |
|       // Newly Allocated regions are always chosen for evacuation. So no need
 | |
|       // to update live_bytes_.
 | |
|       size_t obj_size = ref->SizeOf<kDefaultVerifyFlags>();
 | |
|       size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
 | |
|       region_space_->AddLiveBytes(ref, alloc_size);
 | |
|     }
 | |
|   }
 | |
|   ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ true>
 | |
|       visitor(this, obj_region_idx);
 | |
|   ref->VisitReferences</*kVisitNativeRoots=*/ true, kDefaultVerifyFlags, kWithoutReadBarrier>(
 | |
|       visitor, visitor);
 | |
|   // Mark the corresponding card dirty if the object contains any
 | |
|   // inter-region reference.
 | |
|   if (visitor.ContainsInterRegionRefs()) {
 | |
|     if (obj_region_idx == static_cast<size_t>(-1)) {
 | |
|       // If an inter-region ref has been found in a non-region-space, then it
 | |
|       // must be non-moving-space. This is because this function cannot be
 | |
|       // called on a immune-space object, and a large-object-space object has
 | |
|       // only class object reference, which is either in some immune-space, or
 | |
|       // in non-moving-space.
 | |
|       DCHECK(heap_->non_moving_space_->HasAddress(ref));
 | |
|       non_moving_space_inter_region_bitmap_.Set(ref);
 | |
|     } else {
 | |
|       region_space_inter_region_bitmap_.Set(ref);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <bool kAtomic>
 | |
| bool ConcurrentCopying::TestAndSetMarkBitForRef(mirror::Object* ref) {
 | |
|   accounting::ContinuousSpaceBitmap* bitmap = nullptr;
 | |
|   accounting::LargeObjectBitmap* los_bitmap = nullptr;
 | |
|   if (LIKELY(region_space_->HasAddress(ref))) {
 | |
|     bitmap = region_space_bitmap_;
 | |
|   } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
 | |
|     bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
 | |
|   } else if (immune_spaces_.ContainsObject(ref)) {
 | |
|     // References to immune space objects are always live.
 | |
|     DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
 | |
|     return true;
 | |
|   } else {
 | |
|     // Should be a large object. Must be page aligned and the LOS must exist.
 | |
|     if (kIsDebugBuild
 | |
|         && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
 | |
|       // It must be heap corruption. Remove memory protection and dump data.
 | |
|       region_space_->Unprotect();
 | |
|       heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
 | |
|                                                   MemberOffset(0),
 | |
|                                                   ref,
 | |
|                                                   /* fatal */ true);
 | |
|     }
 | |
|     los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
 | |
|   }
 | |
|   if (kAtomic) {
 | |
|     return (bitmap != nullptr) ? bitmap->AtomicTestAndSet(ref) : los_bitmap->AtomicTestAndSet(ref);
 | |
|   } else {
 | |
|     return (bitmap != nullptr) ? bitmap->Set(ref) : los_bitmap->Set(ref);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ConcurrentCopying::TestMarkBitmapForRef(mirror::Object* ref) {
 | |
|   if (LIKELY(region_space_->HasAddress(ref))) {
 | |
|     return region_space_bitmap_->Test(ref);
 | |
|   } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
 | |
|     return heap_->GetNonMovingSpace()->GetMarkBitmap()->Test(ref);
 | |
|   } else if (immune_spaces_.ContainsObject(ref)) {
 | |
|     // References to immune space objects are always live.
 | |
|     DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
 | |
|     return true;
 | |
|   } else {
 | |
|     // Should be a large object. Must be page aligned and the LOS must exist.
 | |
|     if (kIsDebugBuild
 | |
|         && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
 | |
|       // It must be heap corruption. Remove memory protection and dump data.
 | |
|       region_space_->Unprotect();
 | |
|       heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
 | |
|                                                   MemberOffset(0),
 | |
|                                                   ref,
 | |
|                                                   /* fatal */ true);
 | |
|     }
 | |
|     return heap_->GetLargeObjectsSpace()->GetMarkBitmap()->Test(ref);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::PushOntoLocalMarkStack(mirror::Object* ref) {
 | |
|   if (kIsDebugBuild) {
 | |
|     Thread *self = Thread::Current();
 | |
|     DCHECK_EQ(thread_running_gc_, self);
 | |
|     DCHECK(self->GetThreadLocalMarkStack() == nullptr);
 | |
|   }
 | |
|   DCHECK_EQ(mark_stack_mode_.load(std::memory_order_relaxed), kMarkStackModeThreadLocal);
 | |
|   if (UNLIKELY(gc_mark_stack_->IsFull())) {
 | |
|     ExpandGcMarkStack();
 | |
|   }
 | |
|   gc_mark_stack_->PushBack(ref);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::ProcessMarkStackForMarkingAndComputeLiveBytes() {
 | |
|   // Process thread-local mark stack containing thread roots
 | |
|   ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false,
 | |
|                                /* checkpoint_callback */ nullptr,
 | |
|                                [this] (mirror::Object* ref)
 | |
|                                    REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|                                  AddLiveBytesAndScanRef(ref);
 | |
|                                });
 | |
|   {
 | |
|     MutexLock mu(thread_running_gc_, mark_stack_lock_);
 | |
|     CHECK(revoked_mark_stacks_.empty());
 | |
|     CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
 | |
|   }
 | |
| 
 | |
|   while (!gc_mark_stack_->IsEmpty()) {
 | |
|     mirror::Object* ref = gc_mark_stack_->PopBack();
 | |
|     AddLiveBytesAndScanRef(ref);
 | |
|   }
 | |
| }
 | |
| 
 | |
| class ConcurrentCopying::ImmuneSpaceCaptureRefsVisitor {
 | |
|  public:
 | |
|   explicit ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
 | |
| 
 | |
|   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ false>
 | |
|         visitor(collector_, /*obj_region_idx*/ static_cast<size_t>(-1));
 | |
|     obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
 | |
|         visitor, visitor);
 | |
|   }
 | |
| 
 | |
|   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     reinterpret_cast<ImmuneSpaceCaptureRefsVisitor*>(arg)->operator()(obj);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const collector_;
 | |
| };
 | |
| 
 | |
| /* Invariants for two-phase CC
 | |
|  * ===========================
 | |
|  * A) Definitions
 | |
|  * ---------------
 | |
|  * 1) Black: marked in bitmap, rb_state is non-gray, and not in mark stack
 | |
|  * 2) Black-clean: marked in bitmap, and corresponding card is clean/aged
 | |
|  * 3) Black-dirty: marked in bitmap, and corresponding card is dirty
 | |
|  * 4) Gray: marked in bitmap, and exists in mark stack
 | |
|  * 5) Gray-dirty: marked in bitmap, rb_state is gray, corresponding card is
 | |
|  *    dirty, and exists in mark stack
 | |
|  * 6) White: unmarked in bitmap, rb_state is non-gray, and not in mark stack
 | |
|  *
 | |
|  * B) Before marking phase
 | |
|  * -----------------------
 | |
|  * 1) All objects are white
 | |
|  * 2) Cards are either clean or aged (cannot be asserted without a STW pause)
 | |
|  * 3) Mark bitmap is cleared
 | |
|  * 4) Mark stack is empty
 | |
|  *
 | |
|  * C) During marking phase
 | |
|  * ------------------------
 | |
|  * 1) If a black object holds an inter-region or white reference, then its
 | |
|  *    corresponding card is dirty. In other words, it changes from being
 | |
|  *    black-clean to black-dirty
 | |
|  * 2) No black-clean object points to a white object
 | |
|  *
 | |
|  * D) After marking phase
 | |
|  * -----------------------
 | |
|  * 1) There are no gray objects
 | |
|  * 2) All newly allocated objects are in from space
 | |
|  * 3) No white object can be reachable, directly or otherwise, from a
 | |
|  *    black-clean object
 | |
|  *
 | |
|  * E) During copying phase
 | |
|  * ------------------------
 | |
|  * 1) Mutators cannot observe white and black-dirty objects
 | |
|  * 2) New allocations are in to-space (newly allocated regions are part of to-space)
 | |
|  * 3) An object in mark stack must have its rb_state = Gray
 | |
|  *
 | |
|  * F) During card table scan
 | |
|  * --------------------------
 | |
|  * 1) Referents corresponding to root references are gray or in to-space
 | |
|  * 2) Every path from an object that is read or written by a mutator during
 | |
|  *    this period to a dirty black object goes through some gray object.
 | |
|  *    Mutators preserve this by graying black objects as needed during this
 | |
|  *    period. Ensures that a mutator never encounters a black dirty object.
 | |
|  *
 | |
|  * G) After card table scan
 | |
|  * ------------------------
 | |
|  * 1) There are no black-dirty objects
 | |
|  * 2) Referents corresponding to root references are gray, black-clean or in
 | |
|  *    to-space
 | |
|  *
 | |
|  * H) After copying phase
 | |
|  * -----------------------
 | |
|  * 1) Mark stack is empty
 | |
|  * 2) No references into evacuated from-space
 | |
|  * 3) No reference to an object which is unmarked and is also not in newly
 | |
|  *    allocated region. In other words, no reference to white objects.
 | |
| */
 | |
| 
 | |
| void ConcurrentCopying::MarkingPhase() {
 | |
|   TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "GC MarkingPhase";
 | |
|   }
 | |
|   accounting::CardTable* const card_table = heap_->GetCardTable();
 | |
|   Thread* const self = Thread::Current();
 | |
|   CHECK_EQ(self, thread_running_gc_);
 | |
|   // Clear live_bytes_ of every non-free region, except the ones that are newly
 | |
|   // allocated.
 | |
|   region_space_->SetAllRegionLiveBytesZero();
 | |
|   if (kIsDebugBuild) {
 | |
|     region_space_->AssertAllRegionLiveBytesZeroOrCleared();
 | |
|   }
 | |
|   // Scan immune spaces
 | |
|   {
 | |
|     TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
 | |
|     for (auto& space : immune_spaces_.GetSpaces()) {
 | |
|       DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
 | |
|       accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
 | |
|       accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
 | |
|       ImmuneSpaceCaptureRefsVisitor visitor(this);
 | |
|       if (table != nullptr) {
 | |
|         table->VisitObjects(ImmuneSpaceCaptureRefsVisitor::Callback, &visitor);
 | |
|       } else {
 | |
|         WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
 | |
|         card_table->Scan<false>(
 | |
|             live_bitmap,
 | |
|             space->Begin(),
 | |
|             space->Limit(),
 | |
|             visitor,
 | |
|             accounting::CardTable::kCardDirty - 1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Scan runtime roots
 | |
|   {
 | |
|     TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
 | |
|     CaptureRootsForMarkingVisitor visitor(this, self);
 | |
|     Runtime::Current()->VisitConcurrentRoots(&visitor, kVisitRootFlagAllRoots);
 | |
|   }
 | |
|   {
 | |
|     // TODO: don't visit the transaction roots if it's not active.
 | |
|     TimingLogger::ScopedTiming split2("VisitNonThreadRoots", GetTimings());
 | |
|     CaptureRootsForMarkingVisitor visitor(this, self);
 | |
|     Runtime::Current()->VisitNonThreadRoots(&visitor);
 | |
|   }
 | |
|   // Capture thread roots
 | |
|   CaptureThreadRootsForMarking();
 | |
|   // Process mark stack
 | |
|   ProcessMarkStackForMarkingAndComputeLiveBytes();
 | |
| 
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "GC end of MarkingPhase";
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <bool kNoUnEvac>
 | |
| void ConcurrentCopying::ScanDirtyObject(mirror::Object* obj) {
 | |
|   Scan<kNoUnEvac>(obj);
 | |
|   // Set the read-barrier state of a reference-type object to gray if its
 | |
|   // referent is not marked yet. This is to ensure that if GetReferent() is
 | |
|   // called, it triggers the read-barrier to process the referent before use.
 | |
|   if (UNLIKELY((obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass()))) {
 | |
|     mirror::Object* referent =
 | |
|         obj->AsReference<kVerifyNone, kWithoutReadBarrier>()->GetReferent<kWithoutReadBarrier>();
 | |
|     if (referent != nullptr && !IsInToSpace(referent)) {
 | |
|       obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Concurrently mark roots that are guarded by read barriers and process the mark stack.
 | |
| void ConcurrentCopying::CopyingPhase() {
 | |
|   TimingLogger::ScopedTiming split("CopyingPhase", GetTimings());
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "GC CopyingPhase";
 | |
|   }
 | |
|   Thread* self = Thread::Current();
 | |
|   accounting::CardTable* const card_table = heap_->GetCardTable();
 | |
|   if (kIsDebugBuild) {
 | |
|     MutexLock mu(self, *Locks::thread_list_lock_);
 | |
|     CHECK(weak_ref_access_enabled_);
 | |
|   }
 | |
| 
 | |
|   // Scan immune spaces.
 | |
|   // Update all the fields in the immune spaces first without graying the objects so that we
 | |
|   // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
 | |
|   // of the objects.
 | |
|   if (kUseBakerReadBarrier) {
 | |
|     gc_grays_immune_objects_ = false;
 | |
|   }
 | |
|   if (use_generational_cc_) {
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "GC ScanCardsForSpace";
 | |
|     }
 | |
|     TimingLogger::ScopedTiming split2("ScanCardsForSpace", GetTimings());
 | |
|     WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
 | |
|     CHECK(!done_scanning_.load(std::memory_order_relaxed));
 | |
|     if (kIsDebugBuild) {
 | |
|       // Leave some time for mutators to race ahead to try and find races between the GC card
 | |
|       // scanning and mutators reading references.
 | |
|       usleep(10 * 1000);
 | |
|     }
 | |
|     for (space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) {
 | |
|       if (space->IsImageSpace() || space->IsZygoteSpace()) {
 | |
|         // Image and zygote spaces are already handled since we gray the objects in the pause.
 | |
|         continue;
 | |
|       }
 | |
|       // Scan all of the objects on dirty cards in unevac from space, and non moving space. These
 | |
|       // are from previous GCs (or from marking phase of 2-phase full GC) and may reference things
 | |
|       // in the from space.
 | |
|       //
 | |
|       // Note that we do not need to process the large-object space (the only discontinuous space)
 | |
|       // as it contains only large string objects and large primitive array objects, that have no
 | |
|       // reference to other objects, except their class. There is no need to scan these large
 | |
|       // objects, as the String class and the primitive array classes are expected to never move
 | |
|       // during a collection:
 | |
|       // - In the case where we run with a boot image, these classes are part of the image space,
 | |
|       //   which is an immune space.
 | |
|       // - In the case where we run without a boot image, these classes are allocated in the
 | |
|       //   non-moving space (see art::ClassLinker::InitWithoutImage).
 | |
|       card_table->Scan<false>(
 | |
|           space->GetMarkBitmap(),
 | |
|           space->Begin(),
 | |
|           space->End(),
 | |
|           [this, space](mirror::Object* obj)
 | |
|               REQUIRES(Locks::heap_bitmap_lock_)
 | |
|               REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|             // TODO: This code may be refactored to avoid scanning object while
 | |
|             // done_scanning_ is false by setting rb_state to gray, and pushing the
 | |
|             // object on mark stack. However, it will also require clearing the
 | |
|             // corresponding mark-bit and, for region space objects,
 | |
|             // decrementing the object's size from the corresponding region's
 | |
|             // live_bytes.
 | |
|             if (young_gen_) {
 | |
|               // Don't push or gray unevac refs.
 | |
|               if (kIsDebugBuild && space == region_space_) {
 | |
|                 // We may get unevac large objects.
 | |
|                 if (!region_space_->IsInUnevacFromSpace(obj)) {
 | |
|                   CHECK(region_space_bitmap_->Test(obj));
 | |
|                   region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
 | |
|                   LOG(FATAL) << "Scanning " << obj << " not in unevac space";
 | |
|                 }
 | |
|               }
 | |
|               ScanDirtyObject</*kNoUnEvac*/ true>(obj);
 | |
|             } else if (space != region_space_) {
 | |
|               DCHECK(space == heap_->non_moving_space_);
 | |
|               // We need to process un-evac references as they may be unprocessed,
 | |
|               // if they skipped the marking phase due to heap mutation.
 | |
|               ScanDirtyObject</*kNoUnEvac*/ false>(obj);
 | |
|               non_moving_space_inter_region_bitmap_.Clear(obj);
 | |
|             } else if (region_space_->IsInUnevacFromSpace(obj)) {
 | |
|               ScanDirtyObject</*kNoUnEvac*/ false>(obj);
 | |
|               region_space_inter_region_bitmap_.Clear(obj);
 | |
|             }
 | |
|           },
 | |
|           accounting::CardTable::kCardAged);
 | |
| 
 | |
|       if (!young_gen_) {
 | |
|         auto visitor = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|                          // We don't need to process un-evac references as any unprocessed
 | |
|                          // ones will be taken care of in the card-table scan above.
 | |
|                          ScanDirtyObject</*kNoUnEvac*/ true>(obj);
 | |
|                        };
 | |
|         if (space == region_space_) {
 | |
|           region_space_->ScanUnevacFromSpace(®ion_space_inter_region_bitmap_, visitor);
 | |
|         } else {
 | |
|           DCHECK(space == heap_->non_moving_space_);
 | |
|           non_moving_space_inter_region_bitmap_.VisitMarkedRange(
 | |
|               reinterpret_cast<uintptr_t>(space->Begin()),
 | |
|               reinterpret_cast<uintptr_t>(space->End()),
 | |
|               visitor);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // Done scanning unevac space.
 | |
|     done_scanning_.store(true, std::memory_order_release);
 | |
|     // NOTE: inter-region-ref bitmaps can be cleared here to release memory, if needed.
 | |
|     // Currently we do it in ReclaimPhase().
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "GC end of ScanCardsForSpace";
 | |
|     }
 | |
|   }
 | |
|   {
 | |
|     // For a sticky-bit collection, this phase needs to be after the card scanning since the
 | |
|     // mutator may read an unevac space object out of an image object. If the image object is no
 | |
|     // longer gray it will trigger a read barrier for the unevac space object.
 | |
|     TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
 | |
|     for (auto& space : immune_spaces_.GetSpaces()) {
 | |
|       DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
 | |
|       accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
 | |
|       accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
 | |
|       ImmuneSpaceScanObjVisitor visitor(this);
 | |
|       if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
 | |
|         table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
 | |
|       } else {
 | |
|         WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
 | |
|         card_table->Scan<false>(
 | |
|             live_bitmap,
 | |
|             space->Begin(),
 | |
|             space->Limit(),
 | |
|             visitor,
 | |
|             accounting::CardTable::kCardDirty - 1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (kUseBakerReadBarrier) {
 | |
|     // This release fence makes the field updates in the above loop visible before allowing mutator
 | |
|     // getting access to immune objects without graying it first.
 | |
|     updated_all_immune_objects_.store(true, std::memory_order_release);
 | |
|     // Now "un-gray" (conceptually blacken) immune objects concurrently accessed and grayed by
 | |
|     // mutators. We can't do this in the above loop because we would incorrectly disable the read
 | |
|     // barrier by un-graying (conceptually blackening) an object which may point to an unscanned,
 | |
|     // white object, breaking the to-space invariant (a mutator shall never observe a from-space
 | |
|     // (white) object).
 | |
|     //
 | |
|     // Make sure no mutators are in the middle of marking an immune object before un-graying
 | |
|     // (blackening) immune objects.
 | |
|     IssueEmptyCheckpoint();
 | |
|     MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
 | |
|     }
 | |
|     for (mirror::Object* obj : immune_gray_stack_) {
 | |
|       DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::GrayState());
 | |
|       bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
 | |
|                                                     ReadBarrier::NonGrayState());
 | |
|       DCHECK(success);
 | |
|     }
 | |
|     immune_gray_stack_.clear();
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
 | |
|     Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
 | |
|   }
 | |
|   {
 | |
|     // TODO: don't visit the transaction roots if it's not active.
 | |
|     TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
 | |
|     Runtime::Current()->VisitNonThreadRoots(this);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     TimingLogger::ScopedTiming split7("Process mark stacks and References", GetTimings());
 | |
| 
 | |
|     // Process the mark stack once in the thread local stack mode. This marks most of the live
 | |
|     // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and
 | |
|     // system weaks) that may happen concurrently while we are processing the mark stack and newly
 | |
|     // mark/gray objects and push refs on the mark stack.
 | |
|     ProcessMarkStack();
 | |
| 
 | |
|     ReferenceProcessor* rp = GetHeap()->GetReferenceProcessor();
 | |
|     bool clear_soft_references = GetCurrentIteration()->GetClearSoftReferences();
 | |
|     rp->Setup(self, this, /*concurrent=*/ true, clear_soft_references);
 | |
|     if (!clear_soft_references) {
 | |
|       // Forward as many SoftReferences as possible before inhibiting reference access.
 | |
|       rp->ForwardSoftReferences(GetTimings());
 | |
|     }
 | |
| 
 | |
|     // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
 | |
|     // primary reasons are that we need to use a checkpoint to process thread-local mark
 | |
|     // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
 | |
|     // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
 | |
|     // reach the point where we process weak references, we can avoid using a lock when accessing
 | |
|     // the GC mark stack, which makes mark stack processing more efficient.
 | |
| 
 | |
|     // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
 | |
|     // for the last time before transitioning to the shared mark stack mode, which would process new
 | |
|     // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
 | |
|     // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
 | |
|     // important to do these together so that we can ensure that mutators won't
 | |
|     // newly gray objects and push new refs onto the mark stack due to weak ref accesses and
 | |
|     // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
 | |
|     // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
 | |
|     // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
 | |
|     // We must use a stop-the-world pause to disable weak ref access. A checkpoint may lead to a
 | |
|     // deadlock if one mutator acquires a low-level mutex and then gets blocked while accessing
 | |
|     // a weak-ref (after participating in the checkpoint), and another mutator indefinitely waits
 | |
|     // for the mutex before it participates in the checkpoint. Consequently, the gc-thread blocks
 | |
|     // forever as the checkpoint never finishes (See runtime/mutator_gc_coord.md).
 | |
|     SwitchToSharedMarkStackMode();
 | |
|     CHECK(!self->GetWeakRefAccessEnabled());
 | |
| 
 | |
|     // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
 | |
|     // (which may be non-empty if there were refs found on thread-local mark stacks during the above
 | |
|     // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
 | |
|     // (via read barriers) have no way to produce any more refs to process. Marking converges once
 | |
|     // before we process weak refs below.
 | |
|     ProcessMarkStack();
 | |
|     CheckEmptyMarkStack();
 | |
| 
 | |
|     // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
 | |
|     // lock from this point on.
 | |
|     SwitchToGcExclusiveMarkStackMode();
 | |
|     CheckEmptyMarkStack();
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "ProcessReferences";
 | |
|     }
 | |
|     // Process weak references. This also marks through finalizers. Although
 | |
|     // reference processing is "disabled", some accesses will proceed once we've ensured that
 | |
|     // objects directly reachable by the mutator are marked, i.e. before we mark through
 | |
|     // finalizers.
 | |
|     ProcessReferences(self);
 | |
|     CheckEmptyMarkStack();
 | |
|     // JNI WeakGlobalRefs and most other system weaks cannot be processed until we're done marking
 | |
|     // through finalizers, since such references to finalizer-reachable objects must be preserved.
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "SweepSystemWeaks";
 | |
|     }
 | |
|     SweepSystemWeaks(self);
 | |
|     CheckEmptyMarkStack();
 | |
|     ReenableWeakRefAccess(self);
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "SweepSystemWeaks done";
 | |
|     }
 | |
|     // Free data for class loaders that we unloaded.
 | |
|     Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
 | |
|     // Marking is done. Disable marking.
 | |
|     DisableMarking();
 | |
|     CheckEmptyMarkStack();
 | |
|   }
 | |
| 
 | |
|   if (kIsDebugBuild) {
 | |
|     MutexLock mu(self, *Locks::thread_list_lock_);
 | |
|     CHECK(weak_ref_access_enabled_);
 | |
|   }
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "GC end of CopyingPhase";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "ReenableWeakRefAccess";
 | |
|   }
 | |
|   // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
 | |
|   {
 | |
|     MutexLock mu(self, *Locks::thread_list_lock_);
 | |
|     weak_ref_access_enabled_ = true;  // This is for new threads.
 | |
|     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
 | |
|     for (Thread* thread : thread_list) {
 | |
|       thread->SetWeakRefAccessEnabled(true);
 | |
|     }
 | |
|   }
 | |
|   // Unblock blocking threads.
 | |
|   GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
 | |
|   Runtime::Current()->BroadcastForNewSystemWeaks();
 | |
| }
 | |
| 
 | |
| class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
 | |
|  public:
 | |
|   explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
 | |
|       : concurrent_copying_(concurrent_copying) {
 | |
|   }
 | |
| 
 | |
|   void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
 | |
|     // Note: self is not necessarily equal to thread since thread may be suspended.
 | |
|     Thread* self = Thread::Current();
 | |
|     DCHECK(thread == self ||
 | |
|            thread->IsSuspended() ||
 | |
|            thread->GetState() == ThreadState::kWaitingPerformingGc)
 | |
|         << thread->GetState() << " thread " << thread << " self " << self;
 | |
|     // Disable the thread-local is_gc_marking flag.
 | |
|     // Note a thread that has just started right before this checkpoint may have already this flag
 | |
|     // set to false, which is ok.
 | |
|     thread->SetIsGcMarkingAndUpdateEntrypoints(false);
 | |
|     // If thread is a running mutator, then act on behalf of the garbage collector.
 | |
|     // See the code in ThreadList::RunCheckpoint.
 | |
|     concurrent_copying_->GetBarrier().Pass(self);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const concurrent_copying_;
 | |
| };
 | |
| 
 | |
| class ConcurrentCopying::DisableMarkingCallback : public Closure {
 | |
|  public:
 | |
|   explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
 | |
|       : concurrent_copying_(concurrent_copying) {
 | |
|   }
 | |
| 
 | |
|   void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
 | |
|     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
 | |
|     // to avoid a race with ThreadList::Register().
 | |
|     CHECK(concurrent_copying_->is_marking_);
 | |
|     concurrent_copying_->is_marking_ = false;
 | |
|     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
 | |
|       CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_);
 | |
|       concurrent_copying_->is_using_read_barrier_entrypoints_ = false;
 | |
|     } else {
 | |
|       CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const concurrent_copying_;
 | |
| };
 | |
| 
 | |
| void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
 | |
|   Thread* self = Thread::Current();
 | |
|   DisableMarkingCheckpoint check_point(this);
 | |
|   ThreadList* thread_list = Runtime::Current()->GetThreadList();
 | |
|   gc_barrier_->Init(self, 0);
 | |
|   DisableMarkingCallback dmc(this);
 | |
|   size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
 | |
|   // If there are no threads to wait which implies that all the checkpoint functions are finished,
 | |
|   // then no need to release the mutator lock.
 | |
|   if (barrier_count == 0) {
 | |
|     return;
 | |
|   }
 | |
|   // Release locks then wait for all mutator threads to pass the barrier.
 | |
|   Locks::mutator_lock_->SharedUnlock(self);
 | |
|   {
 | |
|     ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
 | |
|     gc_barrier_->Increment(self, barrier_count);
 | |
|   }
 | |
|   Locks::mutator_lock_->SharedLock(self);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::DisableMarking() {
 | |
|   // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
 | |
|   // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
 | |
|   // cached in a local variable.
 | |
|   IssueDisableMarkingCheckpoint();
 | |
|   if (kUseTableLookupReadBarrier) {
 | |
|     heap_->rb_table_->ClearAll();
 | |
|     DCHECK(heap_->rb_table_->IsAllCleared());
 | |
|   }
 | |
|   is_mark_stack_push_disallowed_.store(1, std::memory_order_seq_cst);
 | |
|   mark_stack_mode_.store(kMarkStackModeOff, std::memory_order_seq_cst);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::IssueEmptyCheckpoint() {
 | |
|   Thread* self = Thread::Current();
 | |
|   ThreadList* thread_list = Runtime::Current()->GetThreadList();
 | |
|   // Release locks then wait for all mutator threads to pass the barrier.
 | |
|   Locks::mutator_lock_->SharedUnlock(self);
 | |
|   thread_list->RunEmptyCheckpoint();
 | |
|   Locks::mutator_lock_->SharedLock(self);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::ExpandGcMarkStack() {
 | |
|   DCHECK(gc_mark_stack_->IsFull());
 | |
|   const size_t new_size = gc_mark_stack_->Capacity() * 2;
 | |
|   std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
 | |
|                                                    gc_mark_stack_->End());
 | |
|   gc_mark_stack_->Resize(new_size);
 | |
|   for (auto& ref : temp) {
 | |
|     gc_mark_stack_->PushBack(ref.AsMirrorPtr());
 | |
|   }
 | |
|   DCHECK(!gc_mark_stack_->IsFull());
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::PushOntoMarkStack(Thread* const self, mirror::Object* to_ref) {
 | |
|   CHECK_EQ(is_mark_stack_push_disallowed_.load(std::memory_order_relaxed), 0)
 | |
|       << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
 | |
|   CHECK(thread_running_gc_ != nullptr);
 | |
|   MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
 | |
|   if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
 | |
|     if (LIKELY(self == thread_running_gc_)) {
 | |
|       // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
 | |
|       CHECK(self->GetThreadLocalMarkStack() == nullptr);
 | |
|       if (UNLIKELY(gc_mark_stack_->IsFull())) {
 | |
|         ExpandGcMarkStack();
 | |
|       }
 | |
|       gc_mark_stack_->PushBack(to_ref);
 | |
|     } else {
 | |
|       // Otherwise, use a thread-local mark stack.
 | |
|       accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
 | |
|       if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
 | |
|         MutexLock mu(self, mark_stack_lock_);
 | |
|         // Get a new thread local mark stack.
 | |
|         accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
 | |
|         if (!pooled_mark_stacks_.empty()) {
 | |
|           // Use a pooled mark stack.
 | |
|           new_tl_mark_stack = pooled_mark_stacks_.back();
 | |
|           pooled_mark_stacks_.pop_back();
 | |
|         } else {
 | |
|           // None pooled. Create a new one.
 | |
|           new_tl_mark_stack =
 | |
|               accounting::AtomicStack<mirror::Object>::Create(
 | |
|                   "thread local mark stack", 4 * KB, 4 * KB);
 | |
|         }
 | |
|         DCHECK(new_tl_mark_stack != nullptr);
 | |
|         DCHECK(new_tl_mark_stack->IsEmpty());
 | |
|         new_tl_mark_stack->PushBack(to_ref);
 | |
|         self->SetThreadLocalMarkStack(new_tl_mark_stack);
 | |
|         if (tl_mark_stack != nullptr) {
 | |
|           // Store the old full stack into a vector.
 | |
|           revoked_mark_stacks_.push_back(tl_mark_stack);
 | |
|         }
 | |
|       } else {
 | |
|         tl_mark_stack->PushBack(to_ref);
 | |
|       }
 | |
|     }
 | |
|   } else if (mark_stack_mode == kMarkStackModeShared) {
 | |
|     // Access the shared GC mark stack with a lock.
 | |
|     MutexLock mu(self, mark_stack_lock_);
 | |
|     if (UNLIKELY(gc_mark_stack_->IsFull())) {
 | |
|       ExpandGcMarkStack();
 | |
|     }
 | |
|     gc_mark_stack_->PushBack(to_ref);
 | |
|   } else {
 | |
|     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
 | |
|              static_cast<uint32_t>(kMarkStackModeGcExclusive))
 | |
|         << "ref=" << to_ref
 | |
|         << " self->gc_marking=" << self->GetIsGcMarking()
 | |
|         << " cc->is_marking=" << is_marking_;
 | |
|     CHECK(self == thread_running_gc_)
 | |
|         << "Only GC-running thread should access the mark stack "
 | |
|         << "in the GC exclusive mark stack mode";
 | |
|     // Access the GC mark stack without a lock.
 | |
|     if (UNLIKELY(gc_mark_stack_->IsFull())) {
 | |
|       ExpandGcMarkStack();
 | |
|     }
 | |
|     gc_mark_stack_->PushBack(to_ref);
 | |
|   }
 | |
| }
 | |
| 
 | |
| accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
 | |
|   return heap_->allocation_stack_.get();
 | |
| }
 | |
| 
 | |
| accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
 | |
|   return heap_->live_stack_.get();
 | |
| }
 | |
| 
 | |
| // The following visitors are used to verify that there's no references to the from-space left after
 | |
| // marking.
 | |
| class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
 | |
|  public:
 | |
|   explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
 | |
|       : collector_(collector) {}
 | |
| 
 | |
|   void operator()(mirror::Object* ref,
 | |
|                   MemberOffset offset = MemberOffset(0),
 | |
|                   mirror::Object* holder = nullptr) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
 | |
|     if (ref == nullptr) {
 | |
|       // OK.
 | |
|       return;
 | |
|     }
 | |
|     collector_->AssertToSpaceInvariant(holder, offset, ref);
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState())
 | |
|           << "Ref " << ref << " " << ref->PrettyTypeOf() << " has gray rb_state";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
 | |
|       override REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     DCHECK(root != nullptr);
 | |
|     operator()(root);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const collector_;
 | |
| };
 | |
| 
 | |
| class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
 | |
|  public:
 | |
|   explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
 | |
|       : collector_(collector) {}
 | |
| 
 | |
|   void operator()(ObjPtr<mirror::Object> obj,
 | |
|                   MemberOffset offset,
 | |
|                   bool is_static ATTRIBUTE_UNUSED) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
 | |
|     mirror::Object* ref =
 | |
|         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
 | |
|     VerifyNoFromSpaceRefsVisitor visitor(collector_);
 | |
|     visitor(ref, offset, obj.Ptr());
 | |
|   }
 | |
|   void operator()(ObjPtr<mirror::Class> klass,
 | |
|                   ObjPtr<mirror::Reference> ref) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
 | |
|     CHECK(klass->IsTypeOfReferenceClass());
 | |
|     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
 | |
|   }
 | |
| 
 | |
|   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (!root->IsNull()) {
 | |
|       VisitRoot(root);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     VerifyNoFromSpaceRefsVisitor visitor(collector_);
 | |
|     visitor(root->AsMirrorPtr());
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const collector_;
 | |
| };
 | |
| 
 | |
| // Verify there's no from-space references left after the marking phase.
 | |
| void ConcurrentCopying::VerifyNoFromSpaceReferences() {
 | |
|   Thread* self = Thread::Current();
 | |
|   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
 | |
|   // Verify all threads have is_gc_marking to be false
 | |
|   {
 | |
|     MutexLock mu(self, *Locks::thread_list_lock_);
 | |
|     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
 | |
|     for (Thread* thread : thread_list) {
 | |
|       CHECK(!thread->GetIsGcMarking());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj)
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     CHECK(obj != nullptr);
 | |
|     space::RegionSpace* region_space = RegionSpace();
 | |
|     CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
 | |
|     VerifyNoFromSpaceRefsFieldVisitor visitor(this);
 | |
|     obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
 | |
|         visitor,
 | |
|         visitor);
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState())
 | |
|           << "obj=" << obj << " has gray rb_state " << obj->GetReadBarrierState();
 | |
|     }
 | |
|   };
 | |
|   // Roots.
 | |
|   {
 | |
|     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
 | |
|     Runtime::Current()->VisitRoots(&ref_visitor);
 | |
|   }
 | |
|   // The to-space.
 | |
|   region_space_->WalkToSpace(verify_no_from_space_refs_visitor);
 | |
|   // Non-moving spaces.
 | |
|   {
 | |
|     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|     heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor);
 | |
|   }
 | |
|   // The alloc stack.
 | |
|   {
 | |
|     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
 | |
|     for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
 | |
|         it < end; ++it) {
 | |
|       mirror::Object* const obj = it->AsMirrorPtr();
 | |
|       if (obj != nullptr && obj->GetClass() != nullptr) {
 | |
|         // TODO: need to call this only if obj is alive?
 | |
|         ref_visitor(obj);
 | |
|         verify_no_from_space_refs_visitor(obj);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // TODO: LOS. But only refs in LOS are classes.
 | |
| }
 | |
| 
 | |
| // The following visitors are used to assert the to-space invariant.
 | |
| class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
 | |
|  public:
 | |
|   explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
 | |
|       : collector_(collector) {}
 | |
| 
 | |
|   void operator()(ObjPtr<mirror::Object> obj,
 | |
|                   MemberOffset offset,
 | |
|                   bool is_static ATTRIBUTE_UNUSED) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
 | |
|     mirror::Object* ref =
 | |
|         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
 | |
|     collector_->AssertToSpaceInvariant(obj.Ptr(), offset, ref);
 | |
|   }
 | |
|   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
 | |
|     CHECK(klass->IsTypeOfReferenceClass());
 | |
|   }
 | |
| 
 | |
|   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (!root->IsNull()) {
 | |
|       VisitRoot(root);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     mirror::Object* ref = root->AsMirrorPtr();
 | |
|     collector_->AssertToSpaceInvariant(/* obj */ nullptr, MemberOffset(0), ref);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const collector_;
 | |
| };
 | |
| 
 | |
| void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
 | |
|                                                     Closure* checkpoint_callback) {
 | |
|   Thread* self = Thread::Current();
 | |
|   Locks::mutator_lock_->AssertSharedHeld(self);
 | |
|   ThreadList* thread_list = Runtime::Current()->GetThreadList();
 | |
|   RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
 | |
|   if (disable_weak_ref_access) {
 | |
|     // We're the only thread that could possibly ask for exclusive access here.
 | |
|     Locks::mutator_lock_->SharedUnlock(self);
 | |
|     {
 | |
|       ScopedPause pause(this);
 | |
|       MutexLock mu(self, *Locks::thread_list_lock_);
 | |
|       checkpoint_callback->Run(self);
 | |
|       for (Thread* thread : thread_list->GetList()) {
 | |
|         check_point.Run(thread);
 | |
|       }
 | |
|     }
 | |
|     Locks::mutator_lock_->SharedLock(self);
 | |
|   } else {
 | |
|     gc_barrier_->Init(self, 0);
 | |
|     size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
 | |
|     // If there are no threads to wait which implys that all the checkpoint functions are finished,
 | |
|     // then no need to release the mutator lock.
 | |
|     if (barrier_count == 0) {
 | |
|       return;
 | |
|     }
 | |
|     Locks::mutator_lock_->SharedUnlock(self);
 | |
|     {
 | |
|       ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
 | |
|       gc_barrier_->Increment(self, barrier_count);
 | |
|     }
 | |
|     Locks::mutator_lock_->SharedLock(self);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
 | |
|   Thread* self = Thread::Current();
 | |
|   CHECK_EQ(self, thread);
 | |
|   MutexLock mu(self, mark_stack_lock_);
 | |
|   accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
 | |
|   if (tl_mark_stack != nullptr) {
 | |
|     CHECK(is_marking_);
 | |
|     revoked_mark_stacks_.push_back(tl_mark_stack);
 | |
|     thread->SetThreadLocalMarkStack(nullptr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::ProcessMarkStack() {
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "ProcessMarkStack. ";
 | |
|   }
 | |
|   bool empty_prev = false;
 | |
|   while (true) {
 | |
|     bool empty = ProcessMarkStackOnce();
 | |
|     if (empty_prev && empty) {
 | |
|       // Saw empty mark stack for a second time, done.
 | |
|       break;
 | |
|     }
 | |
|     empty_prev = empty;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ConcurrentCopying::ProcessMarkStackOnce() {
 | |
|   DCHECK(thread_running_gc_ != nullptr);
 | |
|   Thread* const self = Thread::Current();
 | |
|   DCHECK(self == thread_running_gc_);
 | |
|   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
 | |
|   size_t count = 0;
 | |
|   MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
 | |
|   if (mark_stack_mode == kMarkStackModeThreadLocal) {
 | |
|     // Process the thread-local mark stacks and the GC mark stack.
 | |
|     count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ false,
 | |
|                                           /* checkpoint_callback= */ nullptr,
 | |
|                                           [this] (mirror::Object* ref)
 | |
|                                               REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|                                             ProcessMarkStackRef(ref);
 | |
|                                           });
 | |
|     while (!gc_mark_stack_->IsEmpty()) {
 | |
|       mirror::Object* to_ref = gc_mark_stack_->PopBack();
 | |
|       ProcessMarkStackRef(to_ref);
 | |
|       ++count;
 | |
|     }
 | |
|     gc_mark_stack_->Reset();
 | |
|   } else if (mark_stack_mode == kMarkStackModeShared) {
 | |
|     // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
 | |
|     // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
 | |
|     // disabled at this point.
 | |
|     IssueEmptyCheckpoint();
 | |
|     // Process the shared GC mark stack with a lock.
 | |
|     {
 | |
|       MutexLock mu(thread_running_gc_, mark_stack_lock_);
 | |
|       CHECK(revoked_mark_stacks_.empty());
 | |
|       CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
 | |
|     }
 | |
|     while (true) {
 | |
|       std::vector<mirror::Object*> refs;
 | |
|       {
 | |
|         // Copy refs with lock. Note the number of refs should be small.
 | |
|         MutexLock mu(thread_running_gc_, mark_stack_lock_);
 | |
|         if (gc_mark_stack_->IsEmpty()) {
 | |
|           break;
 | |
|         }
 | |
|         for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
 | |
|              p != gc_mark_stack_->End(); ++p) {
 | |
|           refs.push_back(p->AsMirrorPtr());
 | |
|         }
 | |
|         gc_mark_stack_->Reset();
 | |
|       }
 | |
|       for (mirror::Object* ref : refs) {
 | |
|         ProcessMarkStackRef(ref);
 | |
|         ++count;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
 | |
|              static_cast<uint32_t>(kMarkStackModeGcExclusive));
 | |
|     {
 | |
|       MutexLock mu(thread_running_gc_, mark_stack_lock_);
 | |
|       CHECK(revoked_mark_stacks_.empty());
 | |
|       CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
 | |
|     }
 | |
|     // Process the GC mark stack in the exclusive mode. No need to take the lock.
 | |
|     while (!gc_mark_stack_->IsEmpty()) {
 | |
|       mirror::Object* to_ref = gc_mark_stack_->PopBack();
 | |
|       ProcessMarkStackRef(to_ref);
 | |
|       ++count;
 | |
|     }
 | |
|     gc_mark_stack_->Reset();
 | |
|   }
 | |
| 
 | |
|   // Return true if the stack was empty.
 | |
|   return count == 0;
 | |
| }
 | |
| 
 | |
| template <typename Processor>
 | |
| size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
 | |
|                                                        Closure* checkpoint_callback,
 | |
|                                                        const Processor& processor) {
 | |
|   // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
 | |
|   RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
 | |
|   if (disable_weak_ref_access) {
 | |
|     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
 | |
|              static_cast<uint32_t>(kMarkStackModeShared));
 | |
|   }
 | |
|   size_t count = 0;
 | |
|   std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
 | |
|   {
 | |
|     MutexLock mu(thread_running_gc_, mark_stack_lock_);
 | |
|     // Make a copy of the mark stack vector.
 | |
|     mark_stacks = revoked_mark_stacks_;
 | |
|     revoked_mark_stacks_.clear();
 | |
|   }
 | |
|   for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
 | |
|     for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
 | |
|       mirror::Object* to_ref = p->AsMirrorPtr();
 | |
|       processor(to_ref);
 | |
|       ++count;
 | |
|     }
 | |
|     {
 | |
|       MutexLock mu(thread_running_gc_, mark_stack_lock_);
 | |
|       if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
 | |
|         // The pool has enough. Delete it.
 | |
|         delete mark_stack;
 | |
|       } else {
 | |
|         // Otherwise, put it into the pool for later reuse.
 | |
|         mark_stack->Reset();
 | |
|         pooled_mark_stacks_.push_back(mark_stack);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (disable_weak_ref_access) {
 | |
|     MutexLock mu(thread_running_gc_, mark_stack_lock_);
 | |
|     CHECK(revoked_mark_stacks_.empty());
 | |
|     CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
 | |
|   }
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
 | |
|   DCHECK(!region_space_->IsInFromSpace(to_ref));
 | |
|   size_t obj_size = 0;
 | |
|   space::RegionSpace::RegionType rtype = region_space_->GetRegionType(to_ref);
 | |
|   if (kUseBakerReadBarrier) {
 | |
|     DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
 | |
|         << " to_ref=" << to_ref
 | |
|         << " rb_state=" << to_ref->GetReadBarrierState()
 | |
|         << " is_marked=" << IsMarked(to_ref)
 | |
|         << " type=" << to_ref->PrettyTypeOf()
 | |
|         << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
 | |
|         << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
 | |
|         << " region_type=" << rtype;
 | |
|   }
 | |
|   bool add_to_live_bytes = false;
 | |
|   // Invariant: There should be no object from a newly-allocated
 | |
|   // region (either large or non-large) on the mark stack.
 | |
|   DCHECK(!region_space_->IsInNewlyAllocatedRegion(to_ref)) << to_ref;
 | |
|   bool perform_scan = false;
 | |
|   switch (rtype) {
 | |
|     case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace:
 | |
|       // Mark the bitmap only in the GC thread here so that we don't need a CAS.
 | |
|       if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
 | |
|         // It may be already marked if we accidentally pushed the same object twice due to the racy
 | |
|         // bitmap read in MarkUnevacFromSpaceRegion.
 | |
|         if (use_generational_cc_ && young_gen_) {
 | |
|           CHECK(region_space_->IsLargeObject(to_ref));
 | |
|           region_space_->ZeroLiveBytesForLargeObject(to_ref);
 | |
|         }
 | |
|         perform_scan = true;
 | |
|         // Only add to the live bytes if the object was not already marked and we are not the young
 | |
|         // GC.
 | |
|         // Why add live bytes even after 2-phase GC?
 | |
|         // We need to ensure that if there is a unevac region with any live
 | |
|         // objects, then its live_bytes must be non-zero. Otherwise,
 | |
|         // ClearFromSpace() will clear the region. Considering, that we may skip
 | |
|         // live objects during marking phase of 2-phase GC, we have to take care
 | |
|         // of such objects here.
 | |
|         add_to_live_bytes = true;
 | |
|       }
 | |
|       break;
 | |
|     case space::RegionSpace::RegionType::kRegionTypeToSpace:
 | |
|       if (use_generational_cc_) {
 | |
|         // Copied to to-space, set the bit so that the next GC can scan objects.
 | |
|         region_space_bitmap_->Set(to_ref);
 | |
|       }
 | |
|       perform_scan = true;
 | |
|       break;
 | |
|     default:
 | |
|       DCHECK(!region_space_->HasAddress(to_ref)) << to_ref;
 | |
|       DCHECK(!immune_spaces_.ContainsObject(to_ref));
 | |
|       // Non-moving or large-object space.
 | |
|       if (kUseBakerReadBarrier) {
 | |
|         accounting::ContinuousSpaceBitmap* mark_bitmap =
 | |
|             heap_->GetNonMovingSpace()->GetMarkBitmap();
 | |
|         const bool is_los = !mark_bitmap->HasAddress(to_ref);
 | |
|         if (is_los) {
 | |
|           if (!IsAligned<kPageSize>(to_ref)) {
 | |
|             // Ref is a large object that is not aligned, it must be heap
 | |
|             // corruption. Remove memory protection and dump data before
 | |
|             // AtomicSetReadBarrierState since it will fault if the address is not
 | |
|             // valid.
 | |
|             region_space_->Unprotect();
 | |
|             heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
 | |
|                                                         MemberOffset(0),
 | |
|                                                         to_ref,
 | |
|                                                         /* fatal */ true);
 | |
|           }
 | |
|           DCHECK(heap_->GetLargeObjectsSpace())
 | |
|               << "ref=" << to_ref
 | |
|               << " doesn't belong to non-moving space and large object space doesn't exist";
 | |
|           accounting::LargeObjectBitmap* los_bitmap =
 | |
|               heap_->GetLargeObjectsSpace()->GetMarkBitmap();
 | |
|           DCHECK(los_bitmap->HasAddress(to_ref));
 | |
|           // Only the GC thread could be setting the LOS bit map hence doesn't
 | |
|           // need to be atomically done.
 | |
|           perform_scan = !los_bitmap->Set(to_ref);
 | |
|         } else {
 | |
|           // Only the GC thread could be setting the non-moving space bit map
 | |
|           // hence doesn't need to be atomically done.
 | |
|           perform_scan = !mark_bitmap->Set(to_ref);
 | |
|         }
 | |
|       } else {
 | |
|         perform_scan = true;
 | |
|       }
 | |
|   }
 | |
|   if (perform_scan) {
 | |
|     obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
 | |
|     if (use_generational_cc_ && young_gen_) {
 | |
|       Scan<true>(to_ref, obj_size);
 | |
|     } else {
 | |
|       Scan<false>(to_ref, obj_size);
 | |
|     }
 | |
|   }
 | |
|   if (kUseBakerReadBarrier) {
 | |
|     DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
 | |
|         << " to_ref=" << to_ref
 | |
|         << " rb_state=" << to_ref->GetReadBarrierState()
 | |
|         << " is_marked=" << IsMarked(to_ref)
 | |
|         << " type=" << to_ref->PrettyTypeOf()
 | |
|         << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
 | |
|         << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
 | |
|         << " region_type=" << rtype
 | |
|         // TODO: Temporary; remove this when this is no longer needed (b/116087961).
 | |
|         << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
 | |
|   }
 | |
| #ifdef USE_BAKER_READ_BARRIER
 | |
|   mirror::Object* referent = nullptr;
 | |
|   if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
 | |
|                 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
 | |
|                 !IsInToSpace(referent)))) {
 | |
|     // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
 | |
|     // will change it to non-gray later in ReferenceQueue::DisableReadBarrierForReference.
 | |
|     DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr)
 | |
|         << "Left unenqueued ref gray " << to_ref;
 | |
|   } else {
 | |
|     // We may occasionally leave a reference non-gray in the queue if its referent happens to be
 | |
|     // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
 | |
|     // above IsInToSpace() evaluates to true and we change the color from gray to non-gray here in
 | |
|     // this else block.
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       bool success = to_ref->AtomicSetReadBarrierState<std::memory_order_release>(
 | |
|           ReadBarrier::GrayState(),
 | |
|           ReadBarrier::NonGrayState());
 | |
|       DCHECK(success) << "Must succeed as we won the race.";
 | |
|     }
 | |
|   }
 | |
| #else
 | |
|   DCHECK(!kUseBakerReadBarrier);
 | |
| #endif
 | |
| 
 | |
|   if (add_to_live_bytes) {
 | |
|     // Add to the live bytes per unevacuated from-space. Note this code is always run by the
 | |
|     // GC-running thread (no synchronization required).
 | |
|     DCHECK(region_space_bitmap_->Test(to_ref));
 | |
|     if (obj_size == 0) {
 | |
|       obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
 | |
|     }
 | |
|     region_space_->AddLiveBytes(to_ref, RoundUp(obj_size, space::RegionSpace::kAlignment));
 | |
|   }
 | |
|   if (ReadBarrier::kEnableToSpaceInvariantChecks) {
 | |
|     CHECK(to_ref != nullptr);
 | |
|     space::RegionSpace* region_space = RegionSpace();
 | |
|     CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space";
 | |
|     AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref);
 | |
|     AssertToSpaceInvariantFieldVisitor visitor(this);
 | |
|     to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
 | |
|         visitor,
 | |
|         visitor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
 | |
|  public:
 | |
|   explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
 | |
|       : concurrent_copying_(concurrent_copying) {
 | |
|   }
 | |
| 
 | |
|   void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
 | |
|     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
 | |
|     // to avoid a deadlock b/31500969.
 | |
|     CHECK(concurrent_copying_->weak_ref_access_enabled_);
 | |
|     concurrent_copying_->weak_ref_access_enabled_ = false;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const concurrent_copying_;
 | |
| };
 | |
| 
 | |
| void ConcurrentCopying::SwitchToSharedMarkStackMode() {
 | |
|   Thread* self = Thread::Current();
 | |
|   DCHECK(thread_running_gc_ != nullptr);
 | |
|   DCHECK(self == thread_running_gc_);
 | |
|   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
 | |
|   MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
 | |
|   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
 | |
|            static_cast<uint32_t>(kMarkStackModeThreadLocal));
 | |
|   mark_stack_mode_.store(kMarkStackModeShared, std::memory_order_relaxed);
 | |
|   DisableWeakRefAccessCallback dwrac(this);
 | |
|   // Process the thread local mark stacks one last time after switching to the shared mark stack
 | |
|   // mode and disable weak ref accesses.
 | |
|   ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ true,
 | |
|                                &dwrac,
 | |
|                                [this] (mirror::Object* ref)
 | |
|                                    REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|                                  ProcessMarkStackRef(ref);
 | |
|                                });
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
 | |
|   Thread* self = Thread::Current();
 | |
|   DCHECK(thread_running_gc_ != nullptr);
 | |
|   DCHECK(self == thread_running_gc_);
 | |
|   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
 | |
|   MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
 | |
|   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
 | |
|            static_cast<uint32_t>(kMarkStackModeShared));
 | |
|   mark_stack_mode_.store(kMarkStackModeGcExclusive, std::memory_order_relaxed);
 | |
|   QuasiAtomic::ThreadFenceForConstructor();
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "Switched to GC exclusive mark stack mode";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::CheckEmptyMarkStack() {
 | |
|   Thread* self = Thread::Current();
 | |
|   DCHECK(thread_running_gc_ != nullptr);
 | |
|   DCHECK(self == thread_running_gc_);
 | |
|   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
 | |
|   MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
 | |
|   if (mark_stack_mode == kMarkStackModeThreadLocal) {
 | |
|     // Thread-local mark stack mode.
 | |
|     RevokeThreadLocalMarkStacks(false, nullptr);
 | |
|     MutexLock mu(thread_running_gc_, mark_stack_lock_);
 | |
|     if (!revoked_mark_stacks_.empty()) {
 | |
|       for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
 | |
|         while (!mark_stack->IsEmpty()) {
 | |
|           mirror::Object* obj = mark_stack->PopBack();
 | |
|           if (kUseBakerReadBarrier) {
 | |
|             uint32_t rb_state = obj->GetReadBarrierState();
 | |
|             LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
 | |
|                       << rb_state << " is_marked=" << IsMarked(obj);
 | |
|           } else {
 | |
|             LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
 | |
|                       << " is_marked=" << IsMarked(obj);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       LOG(FATAL) << "mark stack is not empty";
 | |
|     }
 | |
|   } else {
 | |
|     // Shared, GC-exclusive, or off.
 | |
|     MutexLock mu(thread_running_gc_, mark_stack_lock_);
 | |
|     CHECK(gc_mark_stack_->IsEmpty());
 | |
|     CHECK(revoked_mark_stacks_.empty());
 | |
|     CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
 | |
|   TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
 | |
|   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|   Runtime::Current()->SweepSystemWeaks(this);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::Sweep(bool swap_bitmaps) {
 | |
|   if (use_generational_cc_ && young_gen_) {
 | |
|     // Only sweep objects on the live stack.
 | |
|     SweepArray(heap_->GetLiveStack(), /* swap_bitmaps= */ false);
 | |
|   } else {
 | |
|     {
 | |
|       TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
 | |
|       accounting::ObjectStack* live_stack = heap_->GetLiveStack();
 | |
|       if (kEnableFromSpaceAccountingCheck) {
 | |
|         // Ensure that nobody inserted items in the live stack after we swapped the stacks.
 | |
|         CHECK_GE(live_stack_freeze_size_, live_stack->Size());
 | |
|       }
 | |
|       heap_->MarkAllocStackAsLive(live_stack);
 | |
|       live_stack->Reset();
 | |
|     }
 | |
|     CheckEmptyMarkStack();
 | |
|     TimingLogger::ScopedTiming split("Sweep", GetTimings());
 | |
|     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
 | |
|       if (space->IsContinuousMemMapAllocSpace() && space != region_space_
 | |
|           && !immune_spaces_.ContainsSpace(space)) {
 | |
|         space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
 | |
|         TimingLogger::ScopedTiming split2(
 | |
|             alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
 | |
|         RecordFree(alloc_space->Sweep(swap_bitmaps));
 | |
|       }
 | |
|     }
 | |
|     SweepLargeObjects(swap_bitmaps);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Copied and adapted from MarkSweep::SweepArray.
 | |
| void ConcurrentCopying::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
 | |
|   // This method is only used when Generational CC collection is enabled.
 | |
|   DCHECK(use_generational_cc_);
 | |
|   CheckEmptyMarkStack();
 | |
|   TimingLogger::ScopedTiming t("SweepArray", GetTimings());
 | |
|   Thread* self = Thread::Current();
 | |
|   mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
 | |
|       sweep_array_free_buffer_mem_map_.BaseBegin());
 | |
|   size_t chunk_free_pos = 0;
 | |
|   ObjectBytePair freed;
 | |
|   ObjectBytePair freed_los;
 | |
|   // How many objects are left in the array, modified after each space is swept.
 | |
|   StackReference<mirror::Object>* objects = allocations->Begin();
 | |
|   size_t count = allocations->Size();
 | |
|   // Start by sweeping the continuous spaces.
 | |
|   for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
 | |
|     if (!space->IsAllocSpace() ||
 | |
|         space == region_space_ ||
 | |
|         immune_spaces_.ContainsSpace(space) ||
 | |
|         space->GetLiveBitmap() == nullptr) {
 | |
|       continue;
 | |
|     }
 | |
|     space::AllocSpace* alloc_space = space->AsAllocSpace();
 | |
|     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
 | |
|     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
 | |
|     if (swap_bitmaps) {
 | |
|       std::swap(live_bitmap, mark_bitmap);
 | |
|     }
 | |
|     StackReference<mirror::Object>* out = objects;
 | |
|     for (size_t i = 0; i < count; ++i) {
 | |
|       mirror::Object* const obj = objects[i].AsMirrorPtr();
 | |
|       if (kUseThreadLocalAllocationStack && obj == nullptr) {
 | |
|         continue;
 | |
|       }
 | |
|       if (space->HasAddress(obj)) {
 | |
|         // This object is in the space, remove it from the array and add it to the sweep buffer
 | |
|         // if needed.
 | |
|         if (!mark_bitmap->Test(obj)) {
 | |
|           if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
 | |
|             TimingLogger::ScopedTiming t2("FreeList", GetTimings());
 | |
|             freed.objects += chunk_free_pos;
 | |
|             freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
 | |
|             chunk_free_pos = 0;
 | |
|           }
 | |
|           chunk_free_buffer[chunk_free_pos++] = obj;
 | |
|         }
 | |
|       } else {
 | |
|         (out++)->Assign(obj);
 | |
|       }
 | |
|     }
 | |
|     if (chunk_free_pos > 0) {
 | |
|       TimingLogger::ScopedTiming t2("FreeList", GetTimings());
 | |
|       freed.objects += chunk_free_pos;
 | |
|       freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
 | |
|       chunk_free_pos = 0;
 | |
|     }
 | |
|     // All of the references which space contained are no longer in the allocation stack, update
 | |
|     // the count.
 | |
|     count = out - objects;
 | |
|   }
 | |
|   // Handle the large object space.
 | |
|   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
 | |
|   if (large_object_space != nullptr) {
 | |
|     accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
 | |
|     accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
 | |
|     if (swap_bitmaps) {
 | |
|       std::swap(large_live_objects, large_mark_objects);
 | |
|     }
 | |
|     for (size_t i = 0; i < count; ++i) {
 | |
|       mirror::Object* const obj = objects[i].AsMirrorPtr();
 | |
|       // Handle large objects.
 | |
|       if (kUseThreadLocalAllocationStack && obj == nullptr) {
 | |
|         continue;
 | |
|       }
 | |
|       if (!large_mark_objects->Test(obj)) {
 | |
|         ++freed_los.objects;
 | |
|         freed_los.bytes += large_object_space->Free(self, obj);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   {
 | |
|     TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
 | |
|     RecordFree(freed);
 | |
|     RecordFreeLOS(freed_los);
 | |
|     t2.NewTiming("ResetStack");
 | |
|     allocations->Reset();
 | |
|   }
 | |
|   sweep_array_free_buffer_mem_map_.MadviseDontNeedAndZero();
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::MarkZygoteLargeObjects() {
 | |
|   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
 | |
|   Thread* const self = Thread::Current();
 | |
|   WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
 | |
|   space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
 | |
|   if (los != nullptr) {
 | |
|     // Pick the current live bitmap (mark bitmap if swapped).
 | |
|     accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
 | |
|     accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
 | |
|     // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
 | |
|     std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
 | |
|     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
 | |
|                                   reinterpret_cast<uintptr_t>(range.second),
 | |
|                                   [mark_bitmap, los, self](mirror::Object* obj)
 | |
|         REQUIRES(Locks::heap_bitmap_lock_)
 | |
|         REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|       if (los->IsZygoteLargeObject(self, obj)) {
 | |
|         mark_bitmap->Set(obj);
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
 | |
|   TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
 | |
|   if (heap_->GetLargeObjectsSpace() != nullptr) {
 | |
|     RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::CaptureRssAtPeak() {
 | |
|   using range_t = std::pair<void*, void*>;
 | |
|   // This operation is expensive as several calls to mincore() are performed.
 | |
|   // Also, this must be called before clearing regions in ReclaimPhase().
 | |
|   // Therefore, we make it conditional on the flag that enables dumping GC
 | |
|   // performance info on shutdown.
 | |
|   if (Runtime::Current()->GetDumpGCPerformanceOnShutdown()) {
 | |
|     std::list<range_t> gc_ranges;
 | |
|     auto add_gc_range = [&gc_ranges](void* start, size_t size) {
 | |
|       void* end = static_cast<char*>(start) + RoundUp(size, kPageSize);
 | |
|       gc_ranges.emplace_back(range_t(start, end));
 | |
|     };
 | |
| 
 | |
|     // region space
 | |
|     DCHECK(IsAligned<kPageSize>(region_space_->Limit()));
 | |
|     gc_ranges.emplace_back(range_t(region_space_->Begin(), region_space_->Limit()));
 | |
|     // mark bitmap
 | |
|     add_gc_range(region_space_bitmap_->Begin(), region_space_bitmap_->Size());
 | |
| 
 | |
|     // non-moving space
 | |
|     {
 | |
|       DCHECK(IsAligned<kPageSize>(heap_->non_moving_space_->Limit()));
 | |
|       gc_ranges.emplace_back(range_t(heap_->non_moving_space_->Begin(),
 | |
|                                      heap_->non_moving_space_->Limit()));
 | |
|       // mark bitmap
 | |
|       accounting::ContinuousSpaceBitmap *bitmap = heap_->non_moving_space_->GetMarkBitmap();
 | |
|       add_gc_range(bitmap->Begin(), bitmap->Size());
 | |
|       // live bitmap. Deal with bound bitmaps.
 | |
|       ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
 | |
|       if (heap_->non_moving_space_->HasBoundBitmaps()) {
 | |
|         DCHECK_EQ(bitmap, heap_->non_moving_space_->GetLiveBitmap());
 | |
|         bitmap = heap_->non_moving_space_->GetTempBitmap();
 | |
|       } else {
 | |
|         bitmap = heap_->non_moving_space_->GetLiveBitmap();
 | |
|       }
 | |
|       add_gc_range(bitmap->Begin(), bitmap->Size());
 | |
|     }
 | |
|     // large-object space
 | |
|     if (heap_->GetLargeObjectsSpace()) {
 | |
|       heap_->GetLargeObjectsSpace()->ForEachMemMap([&add_gc_range](const MemMap& map) {
 | |
|         DCHECK(IsAligned<kPageSize>(map.BaseSize()));
 | |
|         add_gc_range(map.BaseBegin(), map.BaseSize());
 | |
|       });
 | |
|       // mark bitmap
 | |
|       accounting::LargeObjectBitmap* bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
 | |
|       add_gc_range(bitmap->Begin(), bitmap->Size());
 | |
|       // live bitmap
 | |
|       bitmap = heap_->GetLargeObjectsSpace()->GetLiveBitmap();
 | |
|       add_gc_range(bitmap->Begin(), bitmap->Size());
 | |
|     }
 | |
|     // card table
 | |
|     add_gc_range(heap_->GetCardTable()->MemMapBegin(), heap_->GetCardTable()->MemMapSize());
 | |
|     // inter-region refs
 | |
|     if (use_generational_cc_ && !young_gen_) {
 | |
|       // region space
 | |
|       add_gc_range(region_space_inter_region_bitmap_.Begin(),
 | |
|                    region_space_inter_region_bitmap_.Size());
 | |
|       // non-moving space
 | |
|       add_gc_range(non_moving_space_inter_region_bitmap_.Begin(),
 | |
|                    non_moving_space_inter_region_bitmap_.Size());
 | |
|     }
 | |
|     // Extract RSS using mincore(). Updates the cummulative RSS counter.
 | |
|     ExtractRssFromMincore(&gc_ranges);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::ReclaimPhase() {
 | |
|   TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "GC ReclaimPhase";
 | |
|   }
 | |
|   Thread* self = Thread::Current();
 | |
| 
 | |
|   {
 | |
|     // Double-check that the mark stack is empty.
 | |
|     // Note: need to set this after VerifyNoFromSpaceRef().
 | |
|     is_asserting_to_space_invariant_ = false;
 | |
|     QuasiAtomic::ThreadFenceForConstructor();
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "Issue an empty check point. ";
 | |
|     }
 | |
|     IssueEmptyCheckpoint();
 | |
|     // Disable the check.
 | |
|     is_mark_stack_push_disallowed_.store(0, std::memory_order_seq_cst);
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       updated_all_immune_objects_.store(false, std::memory_order_seq_cst);
 | |
|     }
 | |
|     CheckEmptyMarkStack();
 | |
|   }
 | |
| 
 | |
|   // Capture RSS at the time when memory usage is at its peak. All GC related
 | |
|   // memory ranges like java heap, card table, bitmap etc. are taken into
 | |
|   // account.
 | |
|   // TODO: We can fetch resident memory for region space directly by going
 | |
|   // through list of allocated regions. This way we can avoid calling mincore on
 | |
|   // the biggest memory range, thereby reducing the cost of this function.
 | |
|   CaptureRssAtPeak();
 | |
| 
 | |
|   // Sweep the malloc spaces before clearing the from space since the memory tool mode might
 | |
|   // access the object classes in the from space for dead objects.
 | |
|   {
 | |
|     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|     Sweep(/* swap_bitmaps= */ false);
 | |
|     SwapBitmaps();
 | |
|     heap_->UnBindBitmaps();
 | |
| 
 | |
|     // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
 | |
|     DCHECK(region_space_bitmap_ != nullptr);
 | |
|     region_space_bitmap_ = nullptr;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   {
 | |
|     // Record freed objects.
 | |
|     TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
 | |
|     // Don't include thread-locals that are in the to-space.
 | |
|     const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
 | |
|     const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
 | |
|     const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
 | |
|     const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
 | |
|     uint64_t to_bytes = bytes_moved_.load(std::memory_order_relaxed) + bytes_moved_gc_thread_;
 | |
|     cumulative_bytes_moved_ += to_bytes;
 | |
|     uint64_t to_objects = objects_moved_.load(std::memory_order_relaxed) + objects_moved_gc_thread_;
 | |
|     cumulative_objects_moved_ += to_objects;
 | |
|     if (kEnableFromSpaceAccountingCheck) {
 | |
|       CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
 | |
|       CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
 | |
|     }
 | |
|     CHECK_LE(to_objects, from_objects);
 | |
|     // to_bytes <= from_bytes is only approximately true, because objects expand a little when
 | |
|     // copying to non-moving space in near-OOM situations.
 | |
|     if (from_bytes > 0) {
 | |
|       copied_live_bytes_ratio_sum_ += static_cast<float>(to_bytes) / from_bytes;
 | |
|       gc_count_++;
 | |
|     }
 | |
| 
 | |
|     // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below.
 | |
|     uint64_t cleared_bytes;
 | |
|     uint64_t cleared_objects;
 | |
|     {
 | |
|       TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
 | |
|       region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects, /*clear_bitmap*/ !young_gen_);
 | |
|       // `cleared_bytes` and `cleared_objects` may be greater than the from space equivalents since
 | |
|       // RegionSpace::ClearFromSpace may clear empty unevac regions.
 | |
|       CHECK_GE(cleared_bytes, from_bytes);
 | |
|       CHECK_GE(cleared_objects, from_objects);
 | |
|     }
 | |
|     // freed_bytes could conceivably be negative if we fall back to nonmoving space and have to
 | |
|     // pad to a larger size.
 | |
|     int64_t freed_bytes = (int64_t)cleared_bytes - (int64_t)to_bytes;
 | |
|     uint64_t freed_objects = cleared_objects - to_objects;
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "RecordFree:"
 | |
|                 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
 | |
|                 << " unevac_from_bytes=" << unevac_from_bytes
 | |
|                 << " unevac_from_objects=" << unevac_from_objects
 | |
|                 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
 | |
|                 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
 | |
|                 << " from_space size=" << region_space_->FromSpaceSize()
 | |
|                 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
 | |
|                 << " to_space size=" << region_space_->ToSpaceSize();
 | |
|       LOG(INFO) << "(before) num_bytes_allocated="
 | |
|                 << heap_->num_bytes_allocated_.load();
 | |
|     }
 | |
|     RecordFree(ObjectBytePair(freed_objects, freed_bytes));
 | |
|     GetCurrentIteration()->SetScannedBytes(bytes_scanned_);
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "(after) num_bytes_allocated="
 | |
|                 << heap_->num_bytes_allocated_.load();
 | |
|     }
 | |
| 
 | |
|     float reclaimed_bytes_ratio = static_cast<float>(freed_bytes) / num_bytes_allocated_before_gc_;
 | |
|     reclaimed_bytes_ratio_sum_ += reclaimed_bytes_ratio;
 | |
|   }
 | |
| 
 | |
|   CheckEmptyMarkStack();
 | |
| 
 | |
|   if (heap_->dump_region_info_after_gc_) {
 | |
|     LOG(INFO) << "time=" << region_space_->Time();
 | |
|     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
 | |
|   }
 | |
| 
 | |
|   if (kVerboseMode) {
 | |
|     LOG(INFO) << "GC end of ReclaimPhase";
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref,
 | |
|                                                  const char* ref_name,
 | |
|                                                  const char* indent) {
 | |
|   std::ostringstream oss;
 | |
|   oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n';
 | |
|   if (ref != nullptr) {
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n';
 | |
|       oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n';
 | |
|     }
 | |
|   }
 | |
|   if (region_space_->HasAddress(ref)) {
 | |
|     oss << indent << "Region containing " << ref_name << ":" << '\n';
 | |
|     region_space_->DumpRegionForObject(oss, ref);
 | |
|     if (region_space_bitmap_ != nullptr) {
 | |
|       oss << indent << "region_space_bitmap_->Test(" << ref_name << ")="
 | |
|           << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha;
 | |
|     }
 | |
|   }
 | |
|   return oss.str();
 | |
| }
 | |
| 
 | |
| std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj,
 | |
|                                                  MemberOffset offset,
 | |
|                                                  mirror::Object* ref) {
 | |
|   std::ostringstream oss;
 | |
|   constexpr const char* kIndent = "  ";
 | |
|   oss << kIndent << "Invalid reference: ref=" << ref
 | |
|       << " referenced from: object=" << obj << " offset= " << offset << '\n';
 | |
|   // Information about `obj`.
 | |
|   oss << DumpReferenceInfo(obj, "obj", kIndent) << '\n';
 | |
|   // Information about `ref`.
 | |
|   oss << DumpReferenceInfo(ref, "ref", kIndent);
 | |
|   return oss.str();
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
 | |
|                                                MemberOffset offset,
 | |
|                                                mirror::Object* ref) {
 | |
|   CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
 | |
|   if (is_asserting_to_space_invariant_) {
 | |
|     if (ref == nullptr) {
 | |
|       // OK.
 | |
|       return;
 | |
|     } else if (region_space_->HasAddress(ref)) {
 | |
|       // Check to-space invariant in region space (moving space).
 | |
|       using RegionType = space::RegionSpace::RegionType;
 | |
|       space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
 | |
|       if (type == RegionType::kRegionTypeToSpace) {
 | |
|         // OK.
 | |
|         return;
 | |
|       } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
 | |
|         if (!IsMarkedInUnevacFromSpace(ref)) {
 | |
|           LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
 | |
|           // Remove memory protection from the region space and log debugging information.
 | |
|           region_space_->Unprotect();
 | |
|           LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
 | |
|           Thread::Current()->DumpJavaStack(LOG_STREAM(FATAL_WITHOUT_ABORT));
 | |
|         }
 | |
|         CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
 | |
|      } else {
 | |
|         // Not OK: either a from-space ref or a reference in an unused region.
 | |
|         if (type == RegionType::kRegionTypeFromSpace) {
 | |
|           LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
 | |
|         } else {
 | |
|           LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
 | |
|         }
 | |
|         // Remove memory protection from the region space and log debugging information.
 | |
|         region_space_->Unprotect();
 | |
|         LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
 | |
|         if (obj != nullptr) {
 | |
|           LogFromSpaceRefHolder(obj, offset);
 | |
|           LOG(FATAL_WITHOUT_ABORT) << "UNEVAC " << region_space_->IsInUnevacFromSpace(obj) << " "
 | |
|                                    << obj << " " << obj->GetMarkBit();
 | |
|           if (region_space_->HasAddress(obj)) {
 | |
|             region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
 | |
|           }
 | |
|           LOG(FATAL_WITHOUT_ABORT) << "CARD " << static_cast<size_t>(
 | |
|               *Runtime::Current()->GetHeap()->GetCardTable()->CardFromAddr(
 | |
|                   reinterpret_cast<uint8_t*>(obj)));
 | |
|           if (region_space_->HasAddress(obj)) {
 | |
|             LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << region_space_bitmap_->Test(obj);
 | |
|           } else {
 | |
|             accounting::ContinuousSpaceBitmap* mark_bitmap =
 | |
|                 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
 | |
|             if (mark_bitmap != nullptr) {
 | |
|               LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << mark_bitmap->Test(obj);
 | |
|             } else {
 | |
|               accounting::LargeObjectBitmap* los_bitmap =
 | |
|                   heap_mark_bitmap_->GetLargeObjectBitmap(obj);
 | |
|               LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << los_bitmap->Test(obj);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
 | |
|         LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
 | |
|         region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
 | |
|         PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
 | |
|         MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
 | |
|         LOG(FATAL) << "Invalid reference " << ref
 | |
|                    << " referenced from object " << obj << " at offset " << offset;
 | |
|       }
 | |
|     } else {
 | |
|       // Check to-space invariant in non-moving space.
 | |
|       AssertToSpaceInvariantInNonMovingSpace(obj, ref);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| class RootPrinter {
 | |
|  public:
 | |
|   RootPrinter() { }
 | |
| 
 | |
|   template <class MirrorType>
 | |
|   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (!root->IsNull()) {
 | |
|       VisitRoot(root);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <class MirrorType>
 | |
|   void VisitRoot(mirror::Object** root)
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
 | |
|   }
 | |
| 
 | |
|   template <class MirrorType>
 | |
|   void VisitRoot(mirror::CompressedReference<MirrorType>* root)
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
 | |
|   }
 | |
| };
 | |
| 
 | |
| std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) {
 | |
|   std::ostringstream oss;
 | |
|   constexpr const char* kIndent = "  ";
 | |
|   oss << kIndent << "Invalid GC root: ref=" << ref << '\n';
 | |
|   // Information about `ref`.
 | |
|   oss << DumpReferenceInfo(ref, "ref", kIndent);
 | |
|   return oss.str();
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
 | |
|                                                mirror::Object* ref) {
 | |
|   CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
 | |
|   if (is_asserting_to_space_invariant_) {
 | |
|     if (ref == nullptr) {
 | |
|       // OK.
 | |
|       return;
 | |
|     } else if (region_space_->HasAddress(ref)) {
 | |
|       // Check to-space invariant in region space (moving space).
 | |
|       using RegionType = space::RegionSpace::RegionType;
 | |
|       space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
 | |
|       if (type == RegionType::kRegionTypeToSpace) {
 | |
|         // OK.
 | |
|         return;
 | |
|       } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
 | |
|         if (!IsMarkedInUnevacFromSpace(ref)) {
 | |
|           LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
 | |
|           // Remove memory protection from the region space and log debugging information.
 | |
|           region_space_->Unprotect();
 | |
|           LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
 | |
|         }
 | |
|         CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
 | |
|       } else {
 | |
|         // Not OK: either a from-space ref or a reference in an unused region.
 | |
|         if (type == RegionType::kRegionTypeFromSpace) {
 | |
|           LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
 | |
|         } else {
 | |
|           LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
 | |
|         }
 | |
|         // Remove memory protection from the region space and log debugging information.
 | |
|         region_space_->Unprotect();
 | |
|         LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
 | |
|         if (gc_root_source == nullptr) {
 | |
|           // No info.
 | |
|         } else if (gc_root_source->HasArtField()) {
 | |
|           ArtField* field = gc_root_source->GetArtField();
 | |
|           LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
 | |
|                                    << ArtField::PrettyField(field);
 | |
|           RootPrinter root_printer;
 | |
|           field->VisitRoots(root_printer);
 | |
|         } else if (gc_root_source->HasArtMethod()) {
 | |
|           ArtMethod* method = gc_root_source->GetArtMethod();
 | |
|           LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
 | |
|                                    << ArtMethod::PrettyMethod(method);
 | |
|           RootPrinter root_printer;
 | |
|           method->VisitRoots(root_printer, kRuntimePointerSize);
 | |
|         }
 | |
|         ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
 | |
|         LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
 | |
|         region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
 | |
|         PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
 | |
|         MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
 | |
|         LOG(FATAL) << "Invalid reference " << ref;
 | |
|       }
 | |
|     } else {
 | |
|       // Check to-space invariant in non-moving space.
 | |
|       AssertToSpaceInvariantInNonMovingSpace(/* obj= */ nullptr, ref);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
 | |
|   if (kUseBakerReadBarrier) {
 | |
|     LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
 | |
|               << " holder rb_state=" << obj->GetReadBarrierState();
 | |
|   } else {
 | |
|     LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
 | |
|   }
 | |
|   if (region_space_->IsInFromSpace(obj)) {
 | |
|     LOG(INFO) << "holder is in the from-space.";
 | |
|   } else if (region_space_->IsInToSpace(obj)) {
 | |
|     LOG(INFO) << "holder is in the to-space.";
 | |
|   } else if (region_space_->IsInUnevacFromSpace(obj)) {
 | |
|     LOG(INFO) << "holder is in the unevac from-space.";
 | |
|     if (IsMarkedInUnevacFromSpace(obj)) {
 | |
|       LOG(INFO) << "holder is marked in the region space bitmap.";
 | |
|     } else {
 | |
|       LOG(INFO) << "holder is not marked in the region space bitmap.";
 | |
|     }
 | |
|   } else {
 | |
|     // In a non-moving space.
 | |
|     if (immune_spaces_.ContainsObject(obj)) {
 | |
|       LOG(INFO) << "holder is in an immune image or the zygote space.";
 | |
|     } else {
 | |
|       LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
 | |
|       accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
 | |
|       accounting::LargeObjectBitmap* los_bitmap = nullptr;
 | |
|       const bool is_los = !mark_bitmap->HasAddress(obj);
 | |
|       if (is_los) {
 | |
|         DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(obj))
 | |
|             << "obj=" << obj
 | |
|             << " LOS bit map covers the entire lower 4GB address range";
 | |
|         los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
 | |
|       }
 | |
|       if (!is_los && mark_bitmap->Test(obj)) {
 | |
|         LOG(INFO) << "holder is marked in the non-moving space mark bit map.";
 | |
|       } else if (is_los && los_bitmap->Test(obj)) {
 | |
|         LOG(INFO) << "holder is marked in the los bit map.";
 | |
|       } else {
 | |
|         // If ref is on the allocation stack, then it is considered
 | |
|         // mark/alive (but not necessarily on the live stack.)
 | |
|         if (IsOnAllocStack(obj)) {
 | |
|           LOG(INFO) << "holder is on the alloc stack.";
 | |
|         } else {
 | |
|           LOG(INFO) << "holder is not marked or on the alloc stack.";
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   LOG(INFO) << "offset=" << offset.SizeValue();
 | |
| }
 | |
| 
 | |
| bool ConcurrentCopying::IsMarkedInNonMovingSpace(mirror::Object* from_ref) {
 | |
|   DCHECK(!region_space_->HasAddress(from_ref)) << "ref=" << from_ref;
 | |
|   DCHECK(!immune_spaces_.ContainsObject(from_ref)) << "ref=" << from_ref;
 | |
|   if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) {
 | |
|     return true;
 | |
|   } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) {
 | |
|     // Read the comment in IsMarkedInUnevacFromSpace()
 | |
|     accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
 | |
|     accounting::LargeObjectBitmap* los_bitmap = nullptr;
 | |
|     const bool is_los = !mark_bitmap->HasAddress(from_ref);
 | |
|     if (is_los) {
 | |
|       DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(from_ref))
 | |
|           << "ref=" << from_ref
 | |
|           << " doesn't belong to non-moving space and large object space doesn't exist";
 | |
|       los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
 | |
|     }
 | |
|     if (is_los ? los_bitmap->Test(from_ref) : mark_bitmap->Test(from_ref)) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return IsOnAllocStack(from_ref);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
 | |
|                                                                mirror::Object* ref) {
 | |
|   CHECK(ref != nullptr);
 | |
|   CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref;
 | |
|   // In a non-moving space. Check that the ref is marked.
 | |
|   if (immune_spaces_.ContainsObject(ref)) {
 | |
|     // Immune space case.
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       // Immune object may not be gray if called from the GC.
 | |
|       if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
 | |
|         return;
 | |
|       }
 | |
|       bool updated_all_immune_objects = updated_all_immune_objects_.load(std::memory_order_seq_cst);
 | |
|       CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
 | |
|           << "Unmarked immune space ref. obj=" << obj << " rb_state="
 | |
|           << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
 | |
|           << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
 | |
|           << " updated_all_immune_objects=" << updated_all_immune_objects;
 | |
|     }
 | |
|   } else {
 | |
|     // Non-moving space and large-object space (LOS) cases.
 | |
|     // If `ref` is on the allocation stack, then it may not be
 | |
|     // marked live, but considered marked/alive (but not
 | |
|     // necessarily on the live stack).
 | |
|     CHECK(IsMarkedInNonMovingSpace(ref))
 | |
|         << "Unmarked ref that's not on the allocation stack."
 | |
|         << " obj=" << obj
 | |
|         << " ref=" << ref
 | |
|         << " rb_state=" << ref->GetReadBarrierState()
 | |
|         << " is_marking=" << std::boolalpha << is_marking_ << std::noboolalpha
 | |
|         << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
 | |
|         << " done_scanning="
 | |
|         << std::boolalpha << done_scanning_.load(std::memory_order_acquire) << std::noboolalpha
 | |
|         << " self=" << Thread::Current();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Used to scan ref fields of an object.
 | |
| template <bool kNoUnEvac>
 | |
| class ConcurrentCopying::RefFieldsVisitor {
 | |
|  public:
 | |
|   explicit RefFieldsVisitor(ConcurrentCopying* collector, Thread* const thread)
 | |
|       : collector_(collector), thread_(thread) {
 | |
|     // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
 | |
|     DCHECK_IMPLIES(kNoUnEvac, collector_->use_generational_cc_);
 | |
|   }
 | |
| 
 | |
|   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
 | |
|       const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
 | |
|       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
 | |
|     collector_->Process<kNoUnEvac>(obj, offset);
 | |
|   }
 | |
| 
 | |
|   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
 | |
|     CHECK(klass->IsTypeOfReferenceClass());
 | |
|     collector_->DelayReferenceReferent(klass, ref);
 | |
|   }
 | |
| 
 | |
|   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       ALWAYS_INLINE
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (!root->IsNull()) {
 | |
|       VisitRoot(root);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
 | |
|       ALWAYS_INLINE
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     collector_->MarkRoot</*kGrayImmuneObject=*/false>(thread_, root);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const collector_;
 | |
|   Thread* const thread_;
 | |
| };
 | |
| 
 | |
| template <bool kNoUnEvac>
 | |
| inline void ConcurrentCopying::Scan(mirror::Object* to_ref, size_t obj_size) {
 | |
|   // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
 | |
|   DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
 | |
|   if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
 | |
|     // Avoid all read barriers during visit references to help performance.
 | |
|     // Don't do this in transaction mode because we may read the old value of an field which may
 | |
|     // trigger read barriers.
 | |
|     Thread::Current()->ModifyDebugDisallowReadBarrier(1);
 | |
|   }
 | |
|   if (obj_size == 0) {
 | |
|     obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
 | |
|   }
 | |
|   bytes_scanned_ += obj_size;
 | |
| 
 | |
|   DCHECK(!region_space_->IsInFromSpace(to_ref));
 | |
|   DCHECK_EQ(Thread::Current(), thread_running_gc_);
 | |
|   RefFieldsVisitor<kNoUnEvac> visitor(this, thread_running_gc_);
 | |
|   // Disable the read barrier for a performance reason.
 | |
|   to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
 | |
|       visitor, visitor);
 | |
|   if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
 | |
|     thread_running_gc_->ModifyDebugDisallowReadBarrier(-1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <bool kNoUnEvac>
 | |
| inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
 | |
|   // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
 | |
|   DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
 | |
|   DCHECK_EQ(Thread::Current(), thread_running_gc_);
 | |
|   mirror::Object* ref = obj->GetFieldObject<
 | |
|       mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
 | |
|   mirror::Object* to_ref = Mark</*kGrayImmuneObject=*/false, kNoUnEvac, /*kFromGCThread=*/true>(
 | |
|       thread_running_gc_,
 | |
|       ref,
 | |
|       /*holder=*/ obj,
 | |
|       offset);
 | |
|   if (to_ref == ref) {
 | |
|     return;
 | |
|   }
 | |
|   // This may fail if the mutator writes to the field at the same time. But it's ok.
 | |
|   mirror::Object* expected_ref = ref;
 | |
|   mirror::Object* new_ref = to_ref;
 | |
|   do {
 | |
|     if (expected_ref !=
 | |
|         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
 | |
|       // It was updated by the mutator.
 | |
|       break;
 | |
|     }
 | |
|     // Use release CAS to make sure threads reading the reference see contents of copied objects.
 | |
|   } while (!obj->CasFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(
 | |
|       offset,
 | |
|       expected_ref,
 | |
|       new_ref,
 | |
|       CASMode::kWeak,
 | |
|       std::memory_order_release));
 | |
| }
 | |
| 
 | |
| // Process some roots.
 | |
| inline void ConcurrentCopying::VisitRoots(
 | |
|     mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
 | |
|   Thread* const self = Thread::Current();
 | |
|   for (size_t i = 0; i < count; ++i) {
 | |
|     mirror::Object** root = roots[i];
 | |
|     mirror::Object* ref = *root;
 | |
|     mirror::Object* to_ref = Mark(self, ref);
 | |
|     if (to_ref == ref) {
 | |
|       continue;
 | |
|     }
 | |
|     Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
 | |
|     mirror::Object* expected_ref = ref;
 | |
|     mirror::Object* new_ref = to_ref;
 | |
|     do {
 | |
|       if (expected_ref != addr->load(std::memory_order_relaxed)) {
 | |
|         // It was updated by the mutator.
 | |
|         break;
 | |
|       }
 | |
|     } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template<bool kGrayImmuneObject>
 | |
| inline void ConcurrentCopying::MarkRoot(Thread* const self,
 | |
|                                         mirror::CompressedReference<mirror::Object>* root) {
 | |
|   DCHECK(!root->IsNull());
 | |
|   mirror::Object* const ref = root->AsMirrorPtr();
 | |
|   mirror::Object* to_ref = Mark<kGrayImmuneObject>(self, ref);
 | |
|   if (to_ref != ref) {
 | |
|     auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
 | |
|     auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
 | |
|     auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
 | |
|     // If the cas fails, then it was updated by the mutator.
 | |
|     do {
 | |
|       if (ref != addr->load(std::memory_order_relaxed).AsMirrorPtr()) {
 | |
|         // It was updated by the mutator.
 | |
|         break;
 | |
|       }
 | |
|     } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline void ConcurrentCopying::VisitRoots(
 | |
|     mirror::CompressedReference<mirror::Object>** roots, size_t count,
 | |
|     const RootInfo& info ATTRIBUTE_UNUSED) {
 | |
|   Thread* const self = Thread::Current();
 | |
|   for (size_t i = 0; i < count; ++i) {
 | |
|     mirror::CompressedReference<mirror::Object>* const root = roots[i];
 | |
|     if (!root->IsNull()) {
 | |
|       // kGrayImmuneObject is true because this is used for the thread flip.
 | |
|       MarkRoot</*kGrayImmuneObject=*/true>(self, root);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
 | |
| class ConcurrentCopying::ScopedGcGraysImmuneObjects {
 | |
|  public:
 | |
|   explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
 | |
|       : collector_(collector), enabled_(false) {
 | |
|     if (kUseBakerReadBarrier &&
 | |
|         collector_->thread_running_gc_ == Thread::Current() &&
 | |
|         !collector_->gc_grays_immune_objects_) {
 | |
|       collector_->gc_grays_immune_objects_ = true;
 | |
|       enabled_ = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ~ScopedGcGraysImmuneObjects() {
 | |
|     if (kUseBakerReadBarrier &&
 | |
|         collector_->thread_running_gc_ == Thread::Current() &&
 | |
|         enabled_) {
 | |
|       DCHECK(collector_->gc_grays_immune_objects_);
 | |
|       collector_->gc_grays_immune_objects_ = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ConcurrentCopying* const collector_;
 | |
|   bool enabled_;
 | |
| };
 | |
| 
 | |
| // Fill the given memory block with a fake object. Used to fill in a
 | |
| // copy of objects that was lost in race.
 | |
| void ConcurrentCopying::FillWithFakeObject(Thread* const self,
 | |
|                                            mirror::Object* fake_obj,
 | |
|                                            size_t byte_size) {
 | |
|   // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
 | |
|   // barriers here because we need the updated reference to the int array class, etc. Temporary set
 | |
|   // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
 | |
|   ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
 | |
|   CHECK_ALIGNED(byte_size, kObjectAlignment);
 | |
|   memset(fake_obj, 0, byte_size);
 | |
|   // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
 | |
|   // Explicitly mark to make sure to get an object in the to-space.
 | |
|   mirror::Class* int_array_class = down_cast<mirror::Class*>(
 | |
|       Mark(self, GetClassRoot<mirror::IntArray, kWithoutReadBarrier>().Ptr()));
 | |
|   CHECK(int_array_class != nullptr);
 | |
|   if (ReadBarrier::kEnableToSpaceInvariantChecks) {
 | |
|     AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
 | |
|   }
 | |
|   size_t component_size = int_array_class->GetComponentSize();
 | |
|   CHECK_EQ(component_size, sizeof(int32_t));
 | |
|   size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
 | |
|   if (data_offset > byte_size) {
 | |
|     // An int array is too big. Use java.lang.Object.
 | |
|     CHECK(java_lang_Object_ != nullptr);
 | |
|     if (ReadBarrier::kEnableToSpaceInvariantChecks) {
 | |
|       AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
 | |
|     }
 | |
|     CHECK_EQ(byte_size, java_lang_Object_->GetObjectSize<kVerifyNone>());
 | |
|     fake_obj->SetClass(java_lang_Object_);
 | |
|     CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()));
 | |
|   } else {
 | |
|     // Use an int array.
 | |
|     fake_obj->SetClass(int_array_class);
 | |
|     CHECK(fake_obj->IsArrayInstance<kVerifyNone>());
 | |
|     int32_t length = (byte_size - data_offset) / component_size;
 | |
|     ObjPtr<mirror::Array> fake_arr = fake_obj->AsArray<kVerifyNone>();
 | |
|     fake_arr->SetLength(length);
 | |
|     CHECK_EQ(fake_arr->GetLength(), length)
 | |
|         << "byte_size=" << byte_size << " length=" << length
 | |
|         << " component_size=" << component_size << " data_offset=" << data_offset;
 | |
|     CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()))
 | |
|         << "byte_size=" << byte_size << " length=" << length
 | |
|         << " component_size=" << component_size << " data_offset=" << data_offset;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Reuse the memory blocks that were copy of objects that were lost in race.
 | |
| mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(Thread* const self, size_t alloc_size) {
 | |
|   // Try to reuse the blocks that were unused due to CAS failures.
 | |
|   CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
 | |
|   size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
 | |
|   size_t byte_size;
 | |
|   uint8_t* addr;
 | |
|   {
 | |
|     MutexLock mu(self, skipped_blocks_lock_);
 | |
|     auto it = skipped_blocks_map_.lower_bound(alloc_size);
 | |
|     if (it == skipped_blocks_map_.end()) {
 | |
|       // Not found.
 | |
|       return nullptr;
 | |
|     }
 | |
|     byte_size = it->first;
 | |
|     CHECK_GE(byte_size, alloc_size);
 | |
|     if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
 | |
|       // If remainder would be too small for a fake object, retry with a larger request size.
 | |
|       it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
 | |
|       if (it == skipped_blocks_map_.end()) {
 | |
|         // Not found.
 | |
|         return nullptr;
 | |
|       }
 | |
|       CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
 | |
|       CHECK_GE(it->first - alloc_size, min_object_size)
 | |
|           << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
 | |
|     }
 | |
|     // Found a block.
 | |
|     CHECK(it != skipped_blocks_map_.end());
 | |
|     byte_size = it->first;
 | |
|     addr = it->second;
 | |
|     CHECK_GE(byte_size, alloc_size);
 | |
|     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
 | |
|     CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
 | |
|     if (kVerboseMode) {
 | |
|       LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
 | |
|     }
 | |
|     skipped_blocks_map_.erase(it);
 | |
|   }
 | |
|   memset(addr, 0, byte_size);
 | |
|   if (byte_size > alloc_size) {
 | |
|     // Return the remainder to the map.
 | |
|     CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
 | |
|     CHECK_GE(byte_size - alloc_size, min_object_size);
 | |
|     // FillWithFakeObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
 | |
|     // violation and possible deadlock. The deadlock case is a recursive case:
 | |
|     // FillWithFakeObject -> Mark(IntArray.class) -> Copy -> AllocateInSkippedBlock.
 | |
|     FillWithFakeObject(self,
 | |
|                        reinterpret_cast<mirror::Object*>(addr + alloc_size),
 | |
|                        byte_size - alloc_size);
 | |
|     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
 | |
|     {
 | |
|       MutexLock mu(self, skipped_blocks_lock_);
 | |
|       skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
 | |
|     }
 | |
|   }
 | |
|   return reinterpret_cast<mirror::Object*>(addr);
 | |
| }
 | |
| 
 | |
| mirror::Object* ConcurrentCopying::Copy(Thread* const self,
 | |
|                                         mirror::Object* from_ref,
 | |
|                                         mirror::Object* holder,
 | |
|                                         MemberOffset offset) {
 | |
|   DCHECK(region_space_->IsInFromSpace(from_ref));
 | |
|   // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
 | |
|   // from a previous GC that is either inside or outside the allocated region.
 | |
|   mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
 | |
|   if (UNLIKELY(klass == nullptr)) {
 | |
|     // Remove memory protection from the region space and log debugging information.
 | |
|     region_space_->Unprotect();
 | |
|     heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true);
 | |
|   }
 | |
|   // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
 | |
|   // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
 | |
|   // objects, but it's ok and necessary.
 | |
|   size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
 | |
|   size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
 | |
|   // Large objects are never evacuated.
 | |
|   CHECK_LE(region_space_alloc_size, space::RegionSpace::kRegionSize);
 | |
|   size_t region_space_bytes_allocated = 0U;
 | |
|   size_t non_moving_space_bytes_allocated = 0U;
 | |
|   size_t bytes_allocated = 0U;
 | |
|   size_t unused_size;
 | |
|   bool fall_back_to_non_moving = false;
 | |
|   mirror::Object* to_ref = region_space_->AllocNonvirtual</*kForEvac=*/ true>(
 | |
|       region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &unused_size);
 | |
|   bytes_allocated = region_space_bytes_allocated;
 | |
|   if (LIKELY(to_ref != nullptr)) {
 | |
|     DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
 | |
|   } else {
 | |
|     // Failed to allocate in the region space. Try the skipped blocks.
 | |
|     to_ref = AllocateInSkippedBlock(self, region_space_alloc_size);
 | |
|     if (to_ref != nullptr) {
 | |
|       // Succeeded to allocate in a skipped block.
 | |
|       if (heap_->use_tlab_) {
 | |
|         // This is necessary for the tlab case as it's not accounted in the space.
 | |
|         region_space_->RecordAlloc(to_ref);
 | |
|       }
 | |
|       bytes_allocated = region_space_alloc_size;
 | |
|       heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
 | |
|       to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
 | |
|       to_space_objects_skipped_.fetch_sub(1, std::memory_order_relaxed);
 | |
|     } else {
 | |
|       // Fall back to the non-moving space.
 | |
|       fall_back_to_non_moving = true;
 | |
|       if (kVerboseMode) {
 | |
|         LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
 | |
|                   << to_space_bytes_skipped_.load(std::memory_order_relaxed)
 | |
|                   << " skipped_objects="
 | |
|                   << to_space_objects_skipped_.load(std::memory_order_relaxed);
 | |
|       }
 | |
|       to_ref = heap_->non_moving_space_->Alloc(
 | |
|           self, obj_size, &non_moving_space_bytes_allocated, nullptr, &unused_size);
 | |
|       if (UNLIKELY(to_ref == nullptr)) {
 | |
|         LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
 | |
|                                  << obj_size << " byte object in region type "
 | |
|                                  << region_space_->GetRegionType(from_ref);
 | |
|         LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
 | |
|       }
 | |
|       bytes_allocated = non_moving_space_bytes_allocated;
 | |
|     }
 | |
|   }
 | |
|   DCHECK(to_ref != nullptr);
 | |
| 
 | |
|   // Copy the object excluding the lock word since that is handled in the loop.
 | |
|   to_ref->SetClass(klass);
 | |
|   const size_t kObjectHeaderSize = sizeof(mirror::Object);
 | |
|   DCHECK_GE(obj_size, kObjectHeaderSize);
 | |
|   static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
 | |
|                     sizeof(LockWord),
 | |
|                 "Object header size does not match");
 | |
|   // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
 | |
|   // object in the from space is immutable other than the lock word. b/31423258
 | |
|   memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
 | |
|          reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
 | |
|          obj_size - kObjectHeaderSize);
 | |
| 
 | |
|   // Attempt to install the forward pointer. This is in a loop as the
 | |
|   // lock word atomic write can fail.
 | |
|   while (true) {
 | |
|     LockWord old_lock_word = from_ref->GetLockWord(false);
 | |
| 
 | |
|     if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
 | |
|       // Lost the race. Another thread (either GC or mutator) stored
 | |
|       // the forwarding pointer first. Make the lost copy (to_ref)
 | |
|       // look like a valid but dead (fake) object and keep it for
 | |
|       // future reuse.
 | |
|       FillWithFakeObject(self, to_ref, bytes_allocated);
 | |
|       if (!fall_back_to_non_moving) {
 | |
|         DCHECK(region_space_->IsInToSpace(to_ref));
 | |
|         // Record the lost copy for later reuse.
 | |
|         heap_->num_bytes_allocated_.fetch_add(bytes_allocated, std::memory_order_relaxed);
 | |
|         to_space_bytes_skipped_.fetch_add(bytes_allocated, std::memory_order_relaxed);
 | |
|         to_space_objects_skipped_.fetch_add(1, std::memory_order_relaxed);
 | |
|         MutexLock mu(self, skipped_blocks_lock_);
 | |
|         skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
 | |
|                                                   reinterpret_cast<uint8_t*>(to_ref)));
 | |
|       } else {
 | |
|         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
 | |
|         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
 | |
|         // Free the non-moving-space chunk.
 | |
|         heap_->non_moving_space_->Free(self, to_ref);
 | |
|       }
 | |
| 
 | |
|       // Get the winner's forward ptr.
 | |
|       mirror::Object* lost_fwd_ptr = to_ref;
 | |
|       to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
 | |
|       CHECK(to_ref != nullptr);
 | |
|       CHECK_NE(to_ref, lost_fwd_ptr);
 | |
|       CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
 | |
|           << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
 | |
|       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
 | |
|       return to_ref;
 | |
|     }
 | |
| 
 | |
|     // Copy the old lock word over since we did not copy it yet.
 | |
|     to_ref->SetLockWord(old_lock_word, false);
 | |
|     // Set the gray ptr.
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       to_ref->SetReadBarrierState(ReadBarrier::GrayState());
 | |
|     }
 | |
| 
 | |
|     LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
 | |
| 
 | |
|     // Try to atomically write the fwd ptr. Make sure that the copied object is visible to any
 | |
|     // readers of the fwd pointer.
 | |
|     bool success = from_ref->CasLockWord(old_lock_word,
 | |
|                                          new_lock_word,
 | |
|                                          CASMode::kWeak,
 | |
|                                          std::memory_order_release);
 | |
|     if (LIKELY(success)) {
 | |
|       // The CAS succeeded.
 | |
|       DCHECK(thread_running_gc_ != nullptr);
 | |
|       if (LIKELY(self == thread_running_gc_)) {
 | |
|         objects_moved_gc_thread_ += 1;
 | |
|         bytes_moved_gc_thread_ += bytes_allocated;
 | |
|       } else {
 | |
|         objects_moved_.fetch_add(1, std::memory_order_relaxed);
 | |
|         bytes_moved_.fetch_add(bytes_allocated, std::memory_order_relaxed);
 | |
|       }
 | |
| 
 | |
|       if (LIKELY(!fall_back_to_non_moving)) {
 | |
|         DCHECK(region_space_->IsInToSpace(to_ref));
 | |
|       } else {
 | |
|         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
 | |
|         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
 | |
|         if (!use_generational_cc_ || !young_gen_) {
 | |
|           // Mark it in the live bitmap.
 | |
|           CHECK(!heap_->non_moving_space_->GetLiveBitmap()->AtomicTestAndSet(to_ref));
 | |
|         }
 | |
|         if (!kUseBakerReadBarrier) {
 | |
|           // Mark it in the mark bitmap.
 | |
|           CHECK(!heap_->non_moving_space_->GetMarkBitmap()->AtomicTestAndSet(to_ref));
 | |
|         }
 | |
|       }
 | |
|       if (kUseBakerReadBarrier) {
 | |
|         DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
 | |
|       }
 | |
|       DCHECK(GetFwdPtr(from_ref) == to_ref);
 | |
|       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
 | |
|       // Make sure that anyone who sees to_ref also sees both the object contents and the
 | |
|       // fwd pointer.
 | |
|       QuasiAtomic::ThreadFenceForConstructor();
 | |
|       PushOntoMarkStack(self, to_ref);
 | |
|       return to_ref;
 | |
|     } else {
 | |
|       // The CAS failed. It may have lost the race or may have failed
 | |
|       // due to monitor/hashcode ops. Either way, retry.
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
 | |
|   DCHECK(from_ref != nullptr);
 | |
|   space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
 | |
|   if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
 | |
|     // It's already marked.
 | |
|     return from_ref;
 | |
|   }
 | |
|   mirror::Object* to_ref;
 | |
|   if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
 | |
|     to_ref = GetFwdPtr(from_ref);
 | |
|     DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
 | |
|            heap_->non_moving_space_->HasAddress(to_ref))
 | |
|         << "from_ref=" << from_ref << " to_ref=" << to_ref;
 | |
|   } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
 | |
|     if (IsMarkedInUnevacFromSpace(from_ref)) {
 | |
|       to_ref = from_ref;
 | |
|     } else {
 | |
|       to_ref = nullptr;
 | |
|     }
 | |
|   } else {
 | |
|     // At this point, `from_ref` should not be in the region space
 | |
|     // (i.e. within an "unused" region).
 | |
|     DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
 | |
|     // from_ref is in a non-moving space.
 | |
|     if (immune_spaces_.ContainsObject(from_ref)) {
 | |
|       // An immune object is alive.
 | |
|       to_ref = from_ref;
 | |
|     } else {
 | |
|       // Non-immune non-moving space. Use the mark bitmap.
 | |
|       if (IsMarkedInNonMovingSpace(from_ref)) {
 | |
|         // Already marked.
 | |
|         to_ref = from_ref;
 | |
|       } else {
 | |
|         to_ref = nullptr;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return to_ref;
 | |
| }
 | |
| 
 | |
| bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
 | |
|   // TODO: Explain why this is here. What release operation does it pair with?
 | |
|   std::atomic_thread_fence(std::memory_order_acquire);
 | |
|   accounting::ObjectStack* alloc_stack = GetAllocationStack();
 | |
|   return alloc_stack->Contains(ref);
 | |
| }
 | |
| 
 | |
| mirror::Object* ConcurrentCopying::MarkNonMoving(Thread* const self,
 | |
|                                                  mirror::Object* ref,
 | |
|                                                  mirror::Object* holder,
 | |
|                                                  MemberOffset offset) {
 | |
|   // ref is in a non-moving space (from_ref == to_ref).
 | |
|   DCHECK(!region_space_->HasAddress(ref)) << ref;
 | |
|   DCHECK(!immune_spaces_.ContainsObject(ref));
 | |
|   // Use the mark bitmap.
 | |
|   accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
 | |
|   accounting::LargeObjectBitmap* los_bitmap = nullptr;
 | |
|   const bool is_los = !mark_bitmap->HasAddress(ref);
 | |
|   if (is_los) {
 | |
|     if (!IsAligned<kPageSize>(ref)) {
 | |
|       // Ref is a large object that is not aligned, it must be heap
 | |
|       // corruption. Remove memory protection and dump data before
 | |
|       // AtomicSetReadBarrierState since it will fault if the address is not
 | |
|       // valid.
 | |
|       region_space_->Unprotect();
 | |
|       heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal= */ true);
 | |
|     }
 | |
|     DCHECK(heap_->GetLargeObjectsSpace())
 | |
|         << "ref=" << ref
 | |
|         << " doesn't belong to non-moving space and large object space doesn't exist";
 | |
|     los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
 | |
|     DCHECK(los_bitmap->HasAddress(ref));
 | |
|   }
 | |
|   if (use_generational_cc_) {
 | |
|     // The sticky-bit CC collector is only compatible with Baker-style read barriers.
 | |
|     DCHECK(kUseBakerReadBarrier);
 | |
|     // Not done scanning, use AtomicSetReadBarrierPointer.
 | |
|     if (!done_scanning_.load(std::memory_order_acquire)) {
 | |
|       // Since the mark bitmap is still filled in from last GC, we can not use that or else the
 | |
|       // mutator may see references to the from space. Instead, use the Baker pointer itself as
 | |
|       // the mark bit.
 | |
|       //
 | |
|       // We need to avoid marking objects that are on allocation stack as that will lead to a
 | |
|       // situation (after this GC cycle is finished) where some object(s) are on both allocation
 | |
|       // stack and live bitmap. This leads to visiting the same object(s) twice during a heapdump
 | |
|       // (b/117426281).
 | |
|       if (!IsOnAllocStack(ref) &&
 | |
|           ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) {
 | |
|         // TODO: We don't actually need to scan this object later, we just need to clear the gray
 | |
|         // bit.
 | |
|         // We don't need to mark newly allocated objects (those in allocation stack) as they can
 | |
|         // only point to to-space objects. Also, they are considered live till the next GC cycle.
 | |
|         PushOntoMarkStack(self, ref);
 | |
|       }
 | |
|       return ref;
 | |
|     }
 | |
|   }
 | |
|   if (!is_los && mark_bitmap->Test(ref)) {
 | |
|     // Already marked.
 | |
|   } else if (is_los && los_bitmap->Test(ref)) {
 | |
|     // Already marked in LOS.
 | |
|   } else if (IsOnAllocStack(ref)) {
 | |
|     // If it's on the allocation stack, it's considered marked. Keep it white (non-gray).
 | |
|     // Objects on the allocation stack need not be marked.
 | |
|     if (!is_los) {
 | |
|       DCHECK(!mark_bitmap->Test(ref));
 | |
|     } else {
 | |
|       DCHECK(!los_bitmap->Test(ref));
 | |
|     }
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState());
 | |
|     }
 | |
|   } else {
 | |
|     // Not marked nor on the allocation stack. Try to mark it.
 | |
|     // This may or may not succeed, which is ok.
 | |
|     bool success = false;
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       success = ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(),
 | |
|                                                ReadBarrier::GrayState());
 | |
|     } else {
 | |
|       success = is_los ?
 | |
|           !los_bitmap->AtomicTestAndSet(ref) :
 | |
|           !mark_bitmap->AtomicTestAndSet(ref);
 | |
|     }
 | |
|     if (success) {
 | |
|       if (kUseBakerReadBarrier) {
 | |
|         DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
 | |
|       }
 | |
|       PushOntoMarkStack(self, ref);
 | |
|     }
 | |
|   }
 | |
|   return ref;
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::FinishPhase() {
 | |
|   Thread* const self = Thread::Current();
 | |
|   {
 | |
|     MutexLock mu(self, mark_stack_lock_);
 | |
|     CHECK(revoked_mark_stacks_.empty());
 | |
|     CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
 | |
|   }
 | |
|   // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
 | |
|   // positives.
 | |
|   if (!kVerifyNoMissingCardMarks && !use_generational_cc_) {
 | |
|     TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
 | |
|     // We do not currently use the region space cards at all, madvise them away to save ram.
 | |
|     heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
 | |
|   } else if (use_generational_cc_ && !young_gen_) {
 | |
|     region_space_inter_region_bitmap_.Clear();
 | |
|     non_moving_space_inter_region_bitmap_.Clear();
 | |
|   }
 | |
|   {
 | |
|     MutexLock mu(self, skipped_blocks_lock_);
 | |
|     skipped_blocks_map_.clear();
 | |
|   }
 | |
|   {
 | |
|     ReaderMutexLock mu(self, *Locks::mutator_lock_);
 | |
|     {
 | |
|       WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
 | |
|       heap_->ClearMarkedObjects();
 | |
|     }
 | |
|     if (kUseBakerReadBarrier && kFilterModUnionCards) {
 | |
|       TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
 | |
|       ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
 | |
|       for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
 | |
|         DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
 | |
|         accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
 | |
|         // Filter out cards that don't need to be set.
 | |
|         if (table != nullptr) {
 | |
|           table->FilterCards();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
 | |
|       DCHECK(rb_mark_bit_stack_ != nullptr);
 | |
|       const auto* limit = rb_mark_bit_stack_->End();
 | |
|       for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
 | |
|         CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0))
 | |
|             << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n'
 | |
|             << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n'
 | |
|             << "rb_mark_bit_stack_->IsFull()"
 | |
|             << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n'
 | |
|             << DumpReferenceInfo(it->AsMirrorPtr(), "*it");
 | |
|       }
 | |
|       rb_mark_bit_stack_->Reset();
 | |
|     }
 | |
|   }
 | |
|   if (measure_read_barrier_slow_path_) {
 | |
|     MutexLock mu(self, rb_slow_path_histogram_lock_);
 | |
|     rb_slow_path_time_histogram_.AdjustAndAddValue(
 | |
|         rb_slow_path_ns_.load(std::memory_order_relaxed));
 | |
|     rb_slow_path_count_total_ += rb_slow_path_count_.load(std::memory_order_relaxed);
 | |
|     rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.load(std::memory_order_relaxed);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
 | |
|                                                     bool do_atomic_update) {
 | |
|   mirror::Object* from_ref = field->AsMirrorPtr();
 | |
|   if (from_ref == nullptr) {
 | |
|     return true;
 | |
|   }
 | |
|   mirror::Object* to_ref = IsMarked(from_ref);
 | |
|   if (to_ref == nullptr) {
 | |
|     return false;
 | |
|   }
 | |
|   if (from_ref != to_ref) {
 | |
|     if (do_atomic_update) {
 | |
|       do {
 | |
|         if (field->AsMirrorPtr() != from_ref) {
 | |
|           // Concurrently overwritten by a mutator.
 | |
|           break;
 | |
|         }
 | |
|       } while (!field->CasWeakRelaxed(from_ref, to_ref));
 | |
|     } else {
 | |
|       field->Assign(to_ref);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
 | |
|   return Mark(Thread::Current(), from_ref);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
 | |
|                                                ObjPtr<mirror::Reference> reference) {
 | |
|   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::ProcessReferences(Thread* self) {
 | |
|   // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
 | |
|   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
 | |
|   GetHeap()->GetReferenceProcessor()->ProcessReferences(self, GetTimings());
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
 | |
|   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
 | |
|   region_space_->RevokeAllThreadLocalBuffers();
 | |
| }
 | |
| 
 | |
| mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(Thread* const self,
 | |
|                                                                        mirror::Object* from_ref) {
 | |
|   if (self != thread_running_gc_) {
 | |
|     rb_slow_path_count_.fetch_add(1u, std::memory_order_relaxed);
 | |
|   } else {
 | |
|     rb_slow_path_count_gc_.fetch_add(1u, std::memory_order_relaxed);
 | |
|   }
 | |
|   ScopedTrace tr(__FUNCTION__);
 | |
|   const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
 | |
|   mirror::Object* ret =
 | |
|       Mark</*kGrayImmuneObject=*/true, /*kNoUnEvac=*/false, /*kFromGCThread=*/false>(self,
 | |
|                                                                                      from_ref);
 | |
|   if (measure_read_barrier_slow_path_) {
 | |
|     rb_slow_path_ns_.fetch_add(NanoTime() - start_time, std::memory_order_relaxed);
 | |
|   }
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
 | |
|   GarbageCollector::DumpPerformanceInfo(os);
 | |
|   size_t num_gc_cycles = GetCumulativeTimings().GetIterations();
 | |
|   MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
 | |
|   if (rb_slow_path_time_histogram_.SampleSize() > 0) {
 | |
|     Histogram<uint64_t>::CumulativeData cumulative_data;
 | |
|     rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
 | |
|     rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
 | |
|   }
 | |
|   if (rb_slow_path_count_total_ > 0) {
 | |
|     os << "Slow path count " << rb_slow_path_count_total_ << "\n";
 | |
|   }
 | |
|   if (rb_slow_path_count_gc_total_ > 0) {
 | |
|     os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
 | |
|   }
 | |
| 
 | |
|   os << "Average " << (young_gen_ ? "minor" : "major") << " GC reclaim bytes ratio "
 | |
|      << (reclaimed_bytes_ratio_sum_ / num_gc_cycles) << " over " << num_gc_cycles
 | |
|      << " GC cycles\n";
 | |
| 
 | |
|   os << "Average " << (young_gen_ ? "minor" : "major") << " GC copied live bytes ratio "
 | |
|      << (copied_live_bytes_ratio_sum_ / gc_count_) << " over " << gc_count_
 | |
|      << " " << (young_gen_ ? "minor" : "major") << " GCs\n";
 | |
| 
 | |
|   os << "Cumulative bytes moved " << cumulative_bytes_moved_ << "\n";
 | |
|   os << "Cumulative objects moved " << cumulative_objects_moved_ << "\n";
 | |
| 
 | |
|   os << "Peak regions allocated "
 | |
|      << region_space_->GetMaxPeakNumNonFreeRegions() << " ("
 | |
|      << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize)
 | |
|      << ") / " << region_space_->GetNumRegions() / 2 << " ("
 | |
|      << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2)
 | |
|      << ")\n";
 | |
|   if (!young_gen_) {
 | |
|     os << "Total madvise time " << PrettyDuration(region_space_->GetMadviseTime()) << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace collector
 | |
| }  // namespace gc
 | |
| }  // namespace art
 |