452 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			452 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2014 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "reference_processor.h"
 | |
| 
 | |
| #include "art_field-inl.h"
 | |
| #include "base/mutex.h"
 | |
| #include "base/time_utils.h"
 | |
| #include "base/utils.h"
 | |
| #include "base/systrace.h"
 | |
| #include "class_root-inl.h"
 | |
| #include "collector/garbage_collector.h"
 | |
| #include "jni/java_vm_ext.h"
 | |
| #include "mirror/class-inl.h"
 | |
| #include "mirror/object-inl.h"
 | |
| #include "mirror/reference-inl.h"
 | |
| #include "nativehelper/scoped_local_ref.h"
 | |
| #include "object_callbacks.h"
 | |
| #include "reflection.h"
 | |
| #include "scoped_thread_state_change-inl.h"
 | |
| #include "task_processor.h"
 | |
| #include "thread-inl.h"
 | |
| #include "thread_pool.h"
 | |
| #include "well_known_classes.h"
 | |
| 
 | |
| namespace art {
 | |
| namespace gc {
 | |
| 
 | |
| static constexpr bool kAsyncReferenceQueueAdd = false;
 | |
| 
 | |
| ReferenceProcessor::ReferenceProcessor()
 | |
|     : collector_(nullptr),
 | |
|       condition_("reference processor condition", *Locks::reference_processor_lock_) ,
 | |
|       soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
 | |
|       weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
 | |
|       finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
 | |
|       phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
 | |
|       cleared_references_(Locks::reference_queue_cleared_references_lock_) {
 | |
| }
 | |
| 
 | |
| static inline MemberOffset GetSlowPathFlagOffset(ObjPtr<mirror::Class> reference_class)
 | |
|     REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|   DCHECK(reference_class == GetClassRoot<mirror::Reference>());
 | |
|   // Second static field
 | |
|   ArtField* field = reference_class->GetStaticField(1);
 | |
|   DCHECK_STREQ(field->GetName(), "slowPathEnabled");
 | |
|   return field->GetOffset();
 | |
| }
 | |
| 
 | |
| static inline void SetSlowPathFlag(bool enabled) REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|   ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>();
 | |
|   MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class);
 | |
|   reference_class->SetFieldBoolean</* kTransactionActive= */ false, /* kCheckTransaction= */ false>(
 | |
|       slow_path_offset, enabled ? 1 : 0);
 | |
| }
 | |
| 
 | |
| void ReferenceProcessor::EnableSlowPath() {
 | |
|   SetSlowPathFlag(/* enabled= */ true);
 | |
| }
 | |
| 
 | |
| void ReferenceProcessor::DisableSlowPath(Thread* self) {
 | |
|   SetSlowPathFlag(/* enabled= */ false);
 | |
|   condition_.Broadcast(self);
 | |
| }
 | |
| 
 | |
| bool ReferenceProcessor::SlowPathEnabled() {
 | |
|   ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>();
 | |
|   MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class);
 | |
|   return reference_class->GetFieldBoolean(slow_path_offset);
 | |
| }
 | |
| 
 | |
| void ReferenceProcessor::BroadcastForSlowPath(Thread* self) {
 | |
|   MutexLock mu(self, *Locks::reference_processor_lock_);
 | |
|   condition_.Broadcast(self);
 | |
| }
 | |
| 
 | |
| ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self,
 | |
|                                                        ObjPtr<mirror::Reference> reference) {
 | |
|   auto slow_path_required = [this, self]() REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     return kUseReadBarrier ? !self->GetWeakRefAccessEnabled() : SlowPathEnabled();
 | |
|   };
 | |
|   if (!slow_path_required()) {
 | |
|     return reference->GetReferent();
 | |
|   }
 | |
|   // If the referent is null then it is already cleared, we can just return null since there is no
 | |
|   // scenario where it becomes non-null during the reference processing phase.
 | |
|   // A read barrier may be unsafe here, and we use the result only when it's null or marked.
 | |
|   ObjPtr<mirror::Object> referent = reference->template GetReferent<kWithoutReadBarrier>();
 | |
|   if (referent.IsNull()) {
 | |
|     return referent;
 | |
|   }
 | |
| 
 | |
|   bool started_trace = false;
 | |
|   uint64_t start_millis;
 | |
|   auto finish_trace = [](uint64_t start_millis) {
 | |
|     ATraceEnd();
 | |
|     uint64_t millis = MilliTime() - start_millis;
 | |
|     static constexpr uint64_t kReportMillis = 10;  // Long enough to risk dropped frames.
 | |
|     if (millis > kReportMillis) {
 | |
|       LOG(WARNING) << "Weak pointer dereference blocked for " << millis << " milliseconds.";
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   MutexLock mu(self, *Locks::reference_processor_lock_);
 | |
|   // Keeping reference_processor_lock_ blocks the broadcast when we try to reenable the fast path.
 | |
|   while (slow_path_required()) {
 | |
|     DCHECK(collector_ != nullptr);
 | |
|     constexpr bool kOtherReadBarrier = kUseReadBarrier && !kUseBakerReadBarrier;
 | |
|     if (UNLIKELY(reference->IsFinalizerReferenceInstance()
 | |
|                  || rp_state_ == RpState::kStarting /* too early to determine mark state */
 | |
|                  || (kOtherReadBarrier && reference->IsPhantomReferenceInstance()))) {
 | |
|       // Odd cases in which it doesn't hurt to just wait, or the wait is likely to be very brief.
 | |
| 
 | |
|       // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
 | |
|       // presence of threads blocking for weak ref access.
 | |
|       self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
 | |
|       if (!started_trace) {
 | |
|         ATraceBegin("GetReferent blocked");
 | |
|         started_trace = true;
 | |
|         start_millis = MilliTime();
 | |
|       }
 | |
|       condition_.WaitHoldingLocks(self);
 | |
|       continue;
 | |
|     }
 | |
|     DCHECK(!reference->IsPhantomReferenceInstance());
 | |
| 
 | |
|     if (rp_state_ == RpState::kInitClearingDone) {
 | |
|       // Reachable references have their final referent values.
 | |
|       break;
 | |
|     }
 | |
|     // Although reference processing is not done, we can always predict the correct return value
 | |
|     // based on the current mark state. No additional marking from finalizers has been done, since
 | |
|     // we hold reference_processor_lock_, which is required to advance to kInitClearingDone.
 | |
|     DCHECK(rp_state_ == RpState::kInitMarkingDone);
 | |
|     // Re-load and re-check referent, since the current one may have been read before we acquired
 | |
|     // reference_lock. In particular a Reference.clear() call may have intervened. (b/33569625)
 | |
|     referent = reference->GetReferent<kWithoutReadBarrier>();
 | |
|     ObjPtr<mirror::Object> forwarded_ref =
 | |
|         referent.IsNull() ? nullptr : collector_->IsMarked(referent.Ptr());
 | |
|     // Either the referent was marked, and forwarded_ref is the correct return value, or it
 | |
|     // was not, and forwarded_ref == null, which is again the correct return value.
 | |
|     if (started_trace) {
 | |
|       finish_trace(start_millis);
 | |
|     }
 | |
|     return forwarded_ref;
 | |
|   }
 | |
|   if (started_trace) {
 | |
|     finish_trace(start_millis);
 | |
|   }
 | |
|   return reference->GetReferent();
 | |
| }
 | |
| 
 | |
| // Forward SoftReferences. Can be done before we disable Reference access. Only
 | |
| // invoked if we are not clearing SoftReferences.
 | |
| uint32_t ReferenceProcessor::ForwardSoftReferences(TimingLogger* timings) {
 | |
|   TimingLogger::ScopedTiming split(
 | |
|       concurrent_ ? "ForwardSoftReferences" : "(Paused)ForwardSoftReferences", timings);
 | |
|   // We used to argue that we should be smarter about doing this conditionally, but it's unclear
 | |
|   // that's actually better than the more predictable strategy of basically only clearing
 | |
|   // SoftReferences just before we would otherwise run out of memory.
 | |
|   uint32_t non_null_refs = soft_reference_queue_.ForwardSoftReferences(collector_);
 | |
|   if (ATraceEnabled()) {
 | |
|     static constexpr size_t kBufSize = 80;
 | |
|     char buf[kBufSize];
 | |
|     snprintf(buf, kBufSize, "Marking for %" PRIu32 " SoftReferences", non_null_refs);
 | |
|     ATraceBegin(buf);
 | |
|     collector_->ProcessMarkStack();
 | |
|     ATraceEnd();
 | |
|   } else {
 | |
|     collector_->ProcessMarkStack();
 | |
|   }
 | |
|   return non_null_refs;
 | |
| }
 | |
| 
 | |
| void ReferenceProcessor::Setup(Thread* self,
 | |
|                                collector::GarbageCollector* collector,
 | |
|                                bool concurrent,
 | |
|                                bool clear_soft_references) {
 | |
|   DCHECK(collector != nullptr);
 | |
|   MutexLock mu(self, *Locks::reference_processor_lock_);
 | |
|   collector_ = collector;
 | |
|   rp_state_ = RpState::kStarting;
 | |
|   concurrent_ = concurrent;
 | |
|   clear_soft_references_ = clear_soft_references;
 | |
| }
 | |
| 
 | |
| // Process reference class instances and schedule finalizations.
 | |
| // We advance rp_state_ to signal partial completion for the benefit of GetReferent.
 | |
| void ReferenceProcessor::ProcessReferences(Thread* self, TimingLogger* timings) {
 | |
|   TimingLogger::ScopedTiming t(concurrent_ ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
 | |
|   if (!clear_soft_references_) {
 | |
|     // Forward any additional SoftReferences we discovered late, now that reference access has been
 | |
|     // inhibited.
 | |
|     while (!soft_reference_queue_.IsEmpty()) {
 | |
|       ForwardSoftReferences(timings);
 | |
|     }
 | |
|   }
 | |
|   {
 | |
|     MutexLock mu(self, *Locks::reference_processor_lock_);
 | |
|     if (!kUseReadBarrier) {
 | |
|       CHECK_EQ(SlowPathEnabled(), concurrent_) << "Slow path must be enabled iff concurrent";
 | |
|     } else {
 | |
|       // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent_ == false).
 | |
|       CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent_);
 | |
|     }
 | |
|     DCHECK(rp_state_ == RpState::kStarting);
 | |
|     rp_state_ = RpState::kInitMarkingDone;
 | |
|     condition_.Broadcast(self);
 | |
|   }
 | |
|   if (kIsDebugBuild && collector_->IsTransactionActive()) {
 | |
|     // In transaction mode, we shouldn't enqueue any Reference to the queues.
 | |
|     // See DelayReferenceReferent().
 | |
|     DCHECK(soft_reference_queue_.IsEmpty());
 | |
|     DCHECK(weak_reference_queue_.IsEmpty());
 | |
|     DCHECK(finalizer_reference_queue_.IsEmpty());
 | |
|     DCHECK(phantom_reference_queue_.IsEmpty());
 | |
|   }
 | |
|   // Clear all remaining soft and weak references with white referents.
 | |
|   // This misses references only reachable through finalizers.
 | |
|   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_);
 | |
|   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_);
 | |
|   // Defer PhantomReference processing until we've finished marking through finalizers.
 | |
|   {
 | |
|     // TODO: Capture mark state of some system weaks here. If the referent was marked here,
 | |
|     // then it is now safe to return, since it can only refer to marked objects. If it becomes
 | |
|     // marked below, that is no longer guaranteed.
 | |
|     MutexLock mu(self, *Locks::reference_processor_lock_);
 | |
|     rp_state_ = RpState::kInitClearingDone;
 | |
|     // At this point, all mutator-accessible data is marked (black). Objects enqueued for
 | |
|     // finalization will only be made available to the mutator via CollectClearedReferences after
 | |
|     // we're fully done marking. Soft and WeakReferences accessible to the mutator have been
 | |
|     // processed and refer only to black objects.  Thus there is no danger of the mutator getting
 | |
|     // access to non-black objects.  Weak reference processing is still nominally suspended,
 | |
|     // But many kinds of references, including all java.lang.ref ones, are handled normally from
 | |
|     // here on. See GetReferent().
 | |
|   }
 | |
|   {
 | |
|     TimingLogger::ScopedTiming t2(
 | |
|         concurrent_ ? "EnqueueFinalizerReferences" : "(Paused)EnqueueFinalizerReferences", timings);
 | |
|     // Preserve all white objects with finalize methods and schedule them for finalization.
 | |
|     FinalizerStats finalizer_stats =
 | |
|         finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector_);
 | |
|     if (ATraceEnabled()) {
 | |
|       static constexpr size_t kBufSize = 80;
 | |
|       char buf[kBufSize];
 | |
|       snprintf(buf, kBufSize, "Marking from %" PRIu32 " / %" PRIu32 " finalizers",
 | |
|                finalizer_stats.num_enqueued_, finalizer_stats.num_refs_);
 | |
|       ATraceBegin(buf);
 | |
|       collector_->ProcessMarkStack();
 | |
|       ATraceEnd();
 | |
|     } else {
 | |
|       collector_->ProcessMarkStack();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Process all soft and weak references with white referents, where the references are reachable
 | |
|   // only from finalizers. It is unclear that there is any way to do this without slightly
 | |
|   // violating some language spec. We choose to apply normal Reference processing rules for these.
 | |
|   // This exposes the following issues:
 | |
|   // 1) In the case of an unmarked referent, we may end up enqueuing an "unreachable" reference.
 | |
|   //    This appears unavoidable, since we need to clear the reference for safety, unless we
 | |
|   //    mark the referent and undo finalization decisions for objects we encounter during marking.
 | |
|   //    (Some versions of the RI seem to do something along these lines.)
 | |
|   //    Or we could clear the reference without enqueuing it, which also seems strange and
 | |
|   //    unhelpful.
 | |
|   // 2) In the case of a marked referent, we will preserve a reference to objects that may have
 | |
|   //    been enqueued for finalization. Again fixing this would seem to involve at least undoing
 | |
|   //    previous finalization / reference clearing decisions. (This would also mean than an object
 | |
|   //    containing both a strong and a WeakReference to the same referent could see the
 | |
|   //    WeakReference cleared.)
 | |
|   // The treatment in (2) is potentially quite dangerous, since Reference.get() can e.g. return a
 | |
|   // finalized object containing pointers to native objects that have already been deallocated.
 | |
|   // But it can be argued that this is just an instance of the broader rule that it is not safe
 | |
|   // for finalizers to access otherwise inaccessible finalizable objects.
 | |
|   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_,
 | |
|                                              /*report_cleared=*/ true);
 | |
|   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_,
 | |
|                                              /*report_cleared=*/ true);
 | |
| 
 | |
|   // Clear all phantom references with white referents. It's fine to do this just once here.
 | |
|   phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_);
 | |
| 
 | |
|   // At this point all reference queues other than the cleared references should be empty.
 | |
|   DCHECK(soft_reference_queue_.IsEmpty());
 | |
|   DCHECK(weak_reference_queue_.IsEmpty());
 | |
|   DCHECK(finalizer_reference_queue_.IsEmpty());
 | |
|   DCHECK(phantom_reference_queue_.IsEmpty());
 | |
| 
 | |
|   {
 | |
|     MutexLock mu(self, *Locks::reference_processor_lock_);
 | |
|     // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
 | |
|     // could result in a stale is_marked_callback_ being called before the reference processing
 | |
|     // starts since there is a small window of time where slow_path_enabled_ is enabled but the
 | |
|     // callback isn't yet set.
 | |
|     if (!kUseReadBarrier && concurrent_) {
 | |
|       // Done processing, disable the slow path and broadcast to the waiters.
 | |
|       DisableSlowPath(self);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
 | |
| // marked, put it on the appropriate list in the heap for later processing.
 | |
| void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
 | |
|                                                 ObjPtr<mirror::Reference> ref,
 | |
|                                                 collector::GarbageCollector* collector) {
 | |
|   // klass can be the class of the old object if the visitor already updated the class of ref.
 | |
|   DCHECK(klass != nullptr);
 | |
|   DCHECK(klass->IsTypeOfReferenceClass());
 | |
|   mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
 | |
|   // do_atomic_update needs to be true because this happens outside of the reference processing
 | |
|   // phase.
 | |
|   if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update=*/true)) {
 | |
|     if (UNLIKELY(collector->IsTransactionActive())) {
 | |
|       // In transaction mode, keep the referent alive and avoid any reference processing to avoid the
 | |
|       // issue of rolling back reference processing.  do_atomic_update needs to be true because this
 | |
|       // happens outside of the reference processing phase.
 | |
|       if (!referent->IsNull()) {
 | |
|         collector->MarkHeapReference(referent, /*do_atomic_update=*/ true);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     Thread* self = Thread::Current();
 | |
|     // TODO: Remove these locks, and use atomic stacks for storing references?
 | |
|     // We need to check that the references haven't already been enqueued since we can end up
 | |
|     // scanning the same reference multiple times due to dirty cards.
 | |
|     if (klass->IsSoftReferenceClass()) {
 | |
|       soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
 | |
|     } else if (klass->IsWeakReferenceClass()) {
 | |
|       weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
 | |
|     } else if (klass->IsFinalizerReferenceClass()) {
 | |
|       finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
 | |
|     } else if (klass->IsPhantomReferenceClass()) {
 | |
|       phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
 | |
|     } else {
 | |
|       LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex
 | |
|                  << klass->GetAccessFlags();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) {
 | |
|   cleared_references_.UpdateRoots(visitor);
 | |
| }
 | |
| 
 | |
| class ClearedReferenceTask : public HeapTask {
 | |
|  public:
 | |
|   explicit ClearedReferenceTask(jobject cleared_references)
 | |
|       : HeapTask(NanoTime()), cleared_references_(cleared_references) {
 | |
|   }
 | |
|   void Run(Thread* thread) override {
 | |
|     ScopedObjectAccess soa(thread);
 | |
|     jvalue args[1];
 | |
|     args[0].l = cleared_references_;
 | |
|     InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
 | |
|     soa.Env()->DeleteGlobalRef(cleared_references_);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const jobject cleared_references_;
 | |
| };
 | |
| 
 | |
| SelfDeletingTask* ReferenceProcessor::CollectClearedReferences(Thread* self) {
 | |
|   Locks::mutator_lock_->AssertNotHeld(self);
 | |
|   // By default we don't actually need to do anything. Just return this no-op task to avoid having
 | |
|   // to put in ifs.
 | |
|   std::unique_ptr<SelfDeletingTask> result(new FunctionTask([](Thread*) {}));
 | |
|   // When a runtime isn't started there are no reference queues to care about so ignore.
 | |
|   if (!cleared_references_.IsEmpty()) {
 | |
|     if (LIKELY(Runtime::Current()->IsStarted())) {
 | |
|       jobject cleared_references;
 | |
|       {
 | |
|         ReaderMutexLock mu(self, *Locks::mutator_lock_);
 | |
|         cleared_references = self->GetJniEnv()->GetVm()->AddGlobalRef(
 | |
|             self, cleared_references_.GetList());
 | |
|       }
 | |
|       if (kAsyncReferenceQueueAdd) {
 | |
|         // TODO: This can cause RunFinalization to terminate before newly freed objects are
 | |
|         // finalized since they may not be enqueued by the time RunFinalization starts.
 | |
|         Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
 | |
|             self, new ClearedReferenceTask(cleared_references));
 | |
|       } else {
 | |
|         result.reset(new ClearedReferenceTask(cleared_references));
 | |
|       }
 | |
|     }
 | |
|     cleared_references_.Clear();
 | |
|   }
 | |
|   return result.release();
 | |
| }
 | |
| 
 | |
| void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) {
 | |
|   Thread* self = Thread::Current();
 | |
|   MutexLock mu(self, *Locks::reference_processor_lock_);
 | |
|   // Need to wait until reference processing is done since IsMarkedHeapReference does not have a
 | |
|   // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions.
 | |
|   // This also handles the race where the referent gets cleared after a null check but before
 | |
|   // IsMarkedHeapReference is called.
 | |
|   WaitUntilDoneProcessingReferences(self);
 | |
|   if (Runtime::Current()->IsActiveTransaction()) {
 | |
|     ref->ClearReferent<true>();
 | |
|   } else {
 | |
|     ref->ClearReferent<false>();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) {
 | |
|   // Wait until we are done processing reference.
 | |
|   while ((!kUseReadBarrier && SlowPathEnabled()) ||
 | |
|          (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
 | |
|     // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
 | |
|     // presence of threads blocking for weak ref access.
 | |
|     self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
 | |
|     condition_.WaitHoldingLocks(self);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ReferenceProcessor::MakeCircularListIfUnenqueued(
 | |
|     ObjPtr<mirror::FinalizerReference> reference) {
 | |
|   Thread* self = Thread::Current();
 | |
|   MutexLock mu(self, *Locks::reference_processor_lock_);
 | |
|   WaitUntilDoneProcessingReferences(self);
 | |
|   // At this point, since the sentinel of the reference is live, it is guaranteed to not be
 | |
|   // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
 | |
|   // phase. Since we are holding the reference processor lock, it guarantees that reference
 | |
|   // processing can't begin. The GC could have just enqueued the reference one one of the internal
 | |
|   // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
 | |
|   // race.
 | |
|   MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
 | |
|   if (reference->IsUnprocessed()) {
 | |
|     CHECK(reference->IsFinalizerReferenceInstance());
 | |
|     reference->SetPendingNext(reference);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| }  // namespace gc
 | |
| }  // namespace art
 |