1084 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1084 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2014 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| #include <deque>
 | |
| 
 | |
| #include "bump_pointer_space-inl.h"
 | |
| #include "bump_pointer_space.h"
 | |
| #include "base/dumpable.h"
 | |
| #include "base/logging.h"
 | |
| #include "gc/accounting/read_barrier_table.h"
 | |
| #include "mirror/class-inl.h"
 | |
| #include "mirror/object-inl.h"
 | |
| #include "thread_list.h"
 | |
| 
 | |
| namespace art {
 | |
| namespace gc {
 | |
| namespace space {
 | |
| 
 | |
| // If a region has live objects whose size is less than this percent
 | |
| // value of the region size, evaculate the region.
 | |
| static constexpr uint kEvacuateLivePercentThreshold = 75U;
 | |
| 
 | |
| // Whether we protect the unused and cleared regions.
 | |
| static constexpr bool kProtectClearedRegions = kIsDebugBuild;
 | |
| 
 | |
| // Wether we poison memory areas occupied by dead objects in unevacuated regions.
 | |
| static constexpr bool kPoisonDeadObjectsInUnevacuatedRegions = true;
 | |
| 
 | |
| // Special 32-bit value used to poison memory areas occupied by dead
 | |
| // objects in unevacuated regions. Dereferencing this value is expected
 | |
| // to trigger a memory protection fault, as it is unlikely that it
 | |
| // points to a valid, non-protected memory area.
 | |
| static constexpr uint32_t kPoisonDeadObject = 0xBADDB01D;  // "BADDROID"
 | |
| 
 | |
| // Whether we check a region's live bytes count against the region bitmap.
 | |
| static constexpr bool kCheckLiveBytesAgainstRegionBitmap = kIsDebugBuild;
 | |
| 
 | |
| MemMap RegionSpace::CreateMemMap(const std::string& name,
 | |
|                                  size_t capacity,
 | |
|                                  uint8_t* requested_begin) {
 | |
|   CHECK_ALIGNED(capacity, kRegionSize);
 | |
|   std::string error_msg;
 | |
|   // Ask for the capacity of an additional kRegionSize so that we can align the map by kRegionSize
 | |
|   // even if we get unaligned base address. This is necessary for the ReadBarrierTable to work.
 | |
|   MemMap mem_map;
 | |
|   while (true) {
 | |
|     mem_map = MemMap::MapAnonymous(name.c_str(),
 | |
|                                    requested_begin,
 | |
|                                    capacity + kRegionSize,
 | |
|                                    PROT_READ | PROT_WRITE,
 | |
|                                    /*low_4gb=*/ true,
 | |
|                                    /*reuse=*/ false,
 | |
|                                    /*reservation=*/ nullptr,
 | |
|                                    &error_msg);
 | |
|     if (mem_map.IsValid() || requested_begin == nullptr) {
 | |
|       break;
 | |
|     }
 | |
|     // Retry with no specified request begin.
 | |
|     requested_begin = nullptr;
 | |
|   }
 | |
|   if (!mem_map.IsValid()) {
 | |
|     LOG(ERROR) << "Failed to allocate pages for alloc space (" << name << ") of size "
 | |
|         << PrettySize(capacity) << " with message " << error_msg;
 | |
|     PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
 | |
|     MemMap::DumpMaps(LOG_STREAM(ERROR));
 | |
|     return MemMap::Invalid();
 | |
|   }
 | |
|   CHECK_EQ(mem_map.Size(), capacity + kRegionSize);
 | |
|   CHECK_EQ(mem_map.Begin(), mem_map.BaseBegin());
 | |
|   CHECK_EQ(mem_map.Size(), mem_map.BaseSize());
 | |
|   if (IsAlignedParam(mem_map.Begin(), kRegionSize)) {
 | |
|     // Got an aligned map. Since we requested a map that's kRegionSize larger. Shrink by
 | |
|     // kRegionSize at the end.
 | |
|     mem_map.SetSize(capacity);
 | |
|   } else {
 | |
|     // Got an unaligned map. Align the both ends.
 | |
|     mem_map.AlignBy(kRegionSize);
 | |
|   }
 | |
|   CHECK_ALIGNED(mem_map.Begin(), kRegionSize);
 | |
|   CHECK_ALIGNED(mem_map.End(), kRegionSize);
 | |
|   CHECK_EQ(mem_map.Size(), capacity);
 | |
|   return mem_map;
 | |
| }
 | |
| 
 | |
| RegionSpace* RegionSpace::Create(
 | |
|     const std::string& name, MemMap&& mem_map, bool use_generational_cc) {
 | |
|   return new RegionSpace(name, std::move(mem_map), use_generational_cc);
 | |
| }
 | |
| 
 | |
| RegionSpace::RegionSpace(const std::string& name, MemMap&& mem_map, bool use_generational_cc)
 | |
|     : ContinuousMemMapAllocSpace(name,
 | |
|                                  std::move(mem_map),
 | |
|                                  mem_map.Begin(),
 | |
|                                  mem_map.End(),
 | |
|                                  mem_map.End(),
 | |
|                                  kGcRetentionPolicyAlwaysCollect),
 | |
|       region_lock_("Region lock", kRegionSpaceRegionLock),
 | |
|       use_generational_cc_(use_generational_cc),
 | |
|       time_(1U),
 | |
|       num_regions_(mem_map_.Size() / kRegionSize),
 | |
|       madvise_time_(0U),
 | |
|       num_non_free_regions_(0U),
 | |
|       num_evac_regions_(0U),
 | |
|       max_peak_num_non_free_regions_(0U),
 | |
|       non_free_region_index_limit_(0U),
 | |
|       current_region_(&full_region_),
 | |
|       evac_region_(nullptr),
 | |
|       cyclic_alloc_region_index_(0U) {
 | |
|   CHECK_ALIGNED(mem_map_.Size(), kRegionSize);
 | |
|   CHECK_ALIGNED(mem_map_.Begin(), kRegionSize);
 | |
|   DCHECK_GT(num_regions_, 0U);
 | |
|   regions_.reset(new Region[num_regions_]);
 | |
|   uint8_t* region_addr = mem_map_.Begin();
 | |
|   for (size_t i = 0; i < num_regions_; ++i, region_addr += kRegionSize) {
 | |
|     regions_[i].Init(i, region_addr, region_addr + kRegionSize);
 | |
|   }
 | |
|   mark_bitmap_ =
 | |
|       accounting::ContinuousSpaceBitmap::Create("region space live bitmap", Begin(), Capacity());
 | |
|   if (kIsDebugBuild) {
 | |
|     CHECK_EQ(regions_[0].Begin(), Begin());
 | |
|     for (size_t i = 0; i < num_regions_; ++i) {
 | |
|       CHECK(regions_[i].IsFree());
 | |
|       CHECK_EQ(static_cast<size_t>(regions_[i].End() - regions_[i].Begin()), kRegionSize);
 | |
|       if (i + 1 < num_regions_) {
 | |
|         CHECK_EQ(regions_[i].End(), regions_[i + 1].Begin());
 | |
|       }
 | |
|     }
 | |
|     CHECK_EQ(regions_[num_regions_ - 1].End(), Limit());
 | |
|   }
 | |
|   DCHECK(!full_region_.IsFree());
 | |
|   DCHECK(full_region_.IsAllocated());
 | |
|   size_t ignored;
 | |
|   DCHECK(full_region_.Alloc(kAlignment, &ignored, nullptr, &ignored) == nullptr);
 | |
|   // Protect the whole region space from the start.
 | |
|   Protect();
 | |
| }
 | |
| 
 | |
| size_t RegionSpace::FromSpaceSize() {
 | |
|   uint64_t num_regions = 0;
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   for (size_t i = 0; i < num_regions_; ++i) {
 | |
|     Region* r = ®ions_[i];
 | |
|     if (r->IsInFromSpace()) {
 | |
|       ++num_regions;
 | |
|     }
 | |
|   }
 | |
|   return num_regions * kRegionSize;
 | |
| }
 | |
| 
 | |
| size_t RegionSpace::UnevacFromSpaceSize() {
 | |
|   uint64_t num_regions = 0;
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   for (size_t i = 0; i < num_regions_; ++i) {
 | |
|     Region* r = ®ions_[i];
 | |
|     if (r->IsInUnevacFromSpace()) {
 | |
|       ++num_regions;
 | |
|     }
 | |
|   }
 | |
|   return num_regions * kRegionSize;
 | |
| }
 | |
| 
 | |
| size_t RegionSpace::ToSpaceSize() {
 | |
|   uint64_t num_regions = 0;
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   for (size_t i = 0; i < num_regions_; ++i) {
 | |
|     Region* r = ®ions_[i];
 | |
|     if (r->IsInToSpace()) {
 | |
|       ++num_regions;
 | |
|     }
 | |
|   }
 | |
|   return num_regions * kRegionSize;
 | |
| }
 | |
| 
 | |
| void RegionSpace::Region::SetAsUnevacFromSpace(bool clear_live_bytes) {
 | |
|   // Live bytes are only preserved (i.e. not cleared) during sticky-bit CC collections.
 | |
|   DCHECK(GetUseGenerationalCC() || clear_live_bytes);
 | |
|   DCHECK(!IsFree() && IsInToSpace());
 | |
|   type_ = RegionType::kRegionTypeUnevacFromSpace;
 | |
|   if (IsNewlyAllocated()) {
 | |
|     // A newly allocated region set as unevac from-space must be
 | |
|     // a large or large tail region.
 | |
|     DCHECK(IsLarge() || IsLargeTail()) << static_cast<uint>(state_);
 | |
|     // Always clear the live bytes of a newly allocated (large or
 | |
|     // large tail) region.
 | |
|     clear_live_bytes = true;
 | |
|     // Clear the "newly allocated" status here, as we do not want the
 | |
|     // GC to see it when encountering (and processing) references in the
 | |
|     // from-space.
 | |
|     //
 | |
|     // Invariant: There should be no newly-allocated region in the
 | |
|     // from-space (when the from-space exists, which is between the calls
 | |
|     // to RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace).
 | |
|     is_newly_allocated_ = false;
 | |
|   }
 | |
|   if (clear_live_bytes) {
 | |
|     // Reset the live bytes, as we have made a non-evacuation
 | |
|     // decision (possibly based on the percentage of live bytes).
 | |
|     live_bytes_ = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool RegionSpace::Region::GetUseGenerationalCC() {
 | |
|   // We are retrieving the info from Heap, instead of the cached version in
 | |
|   // RegionSpace, because accessing the Heap from a Region object is easier
 | |
|   // than accessing the RegionSpace.
 | |
|   return art::Runtime::Current()->GetHeap()->GetUseGenerationalCC();
 | |
| }
 | |
| 
 | |
| inline bool RegionSpace::Region::ShouldBeEvacuated(EvacMode evac_mode) {
 | |
|   // Evacuation mode `kEvacModeNewlyAllocated` is only used during sticky-bit CC collections.
 | |
|   DCHECK(GetUseGenerationalCC() || (evac_mode != kEvacModeNewlyAllocated));
 | |
|   DCHECK((IsAllocated() || IsLarge()) && IsInToSpace());
 | |
|   // The region should be evacuated if:
 | |
|   // - the evacuation is forced (!large && `evac_mode == kEvacModeForceAll`); or
 | |
|   // - the region was allocated after the start of the previous GC (newly allocated region); or
 | |
|   // - !large and the live ratio is below threshold (`kEvacuateLivePercentThreshold`).
 | |
|   if (IsLarge()) {
 | |
|     // It makes no sense to evacuate in the large case, since the region only contains zero or
 | |
|     // one object. If the regions is completely empty, we'll reclaim it anyhow. If its one object
 | |
|     // is live, we would just be moving around region-aligned memory.
 | |
|     return false;
 | |
|   }
 | |
|   if (UNLIKELY(evac_mode == kEvacModeForceAll)) {
 | |
|     return true;
 | |
|   }
 | |
|   DCHECK(IsAllocated());
 | |
|   if (is_newly_allocated_) {
 | |
|     // Invariant: newly allocated regions have an undefined live bytes count.
 | |
|     DCHECK_EQ(live_bytes_, static_cast<size_t>(-1));
 | |
|     // We always evacuate newly-allocated non-large regions as we
 | |
|     // believe they contain many dead objects (a very simple form of
 | |
|     // the generational hypothesis, even before the Sticky-Bit CC
 | |
|     // approach).
 | |
|     //
 | |
|     // TODO: Verify that assertion by collecting statistics on the
 | |
|     // number/proportion of live objects in newly allocated regions
 | |
|     // in RegionSpace::ClearFromSpace.
 | |
|     //
 | |
|     // Note that a side effect of evacuating a newly-allocated
 | |
|     // non-large region is that the "newly allocated" status will
 | |
|     // later be removed, as its live objects will be copied to an
 | |
|     // evacuation region, which won't be marked as "newly
 | |
|     // allocated" (see RegionSpace::AllocateRegion).
 | |
|     return true;
 | |
|   } else if (evac_mode == kEvacModeLivePercentNewlyAllocated) {
 | |
|     bool is_live_percent_valid = (live_bytes_ != static_cast<size_t>(-1));
 | |
|     if (is_live_percent_valid) {
 | |
|       DCHECK(IsInToSpace());
 | |
|       DCHECK_NE(live_bytes_, static_cast<size_t>(-1));
 | |
|       DCHECK_LE(live_bytes_, BytesAllocated());
 | |
|       const size_t bytes_allocated = RoundUp(BytesAllocated(), kRegionSize);
 | |
|       DCHECK_LE(live_bytes_, bytes_allocated);
 | |
|       // Side node: live_percent == 0 does not necessarily mean
 | |
|       // there's no live objects due to rounding (there may be a
 | |
|       // few).
 | |
|       return live_bytes_ * 100U < kEvacuateLivePercentThreshold * bytes_allocated;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void RegionSpace::ZeroLiveBytesForLargeObject(mirror::Object* obj) {
 | |
|   // This method is only used when Generational CC collection is enabled.
 | |
|   DCHECK(use_generational_cc_);
 | |
| 
 | |
|   // This code uses a logic similar to the one used in RegionSpace::FreeLarge
 | |
|   // to traverse the regions supporting `obj`.
 | |
|   // TODO: Refactor.
 | |
|   DCHECK(IsLargeObject(obj));
 | |
|   DCHECK_ALIGNED(obj, kRegionSize);
 | |
|   size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
 | |
|   DCHECK_GT(obj_size, space::RegionSpace::kRegionSize);
 | |
|   // Size of the memory area allocated for `obj`.
 | |
|   size_t obj_alloc_size = RoundUp(obj_size, space::RegionSpace::kRegionSize);
 | |
|   uint8_t* begin_addr = reinterpret_cast<uint8_t*>(obj);
 | |
|   uint8_t* end_addr = begin_addr + obj_alloc_size;
 | |
|   DCHECK_ALIGNED(end_addr, kRegionSize);
 | |
| 
 | |
|   // Zero the live bytes of the large region and large tail regions containing the object.
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   for (uint8_t* addr = begin_addr; addr < end_addr; addr += kRegionSize) {
 | |
|     Region* region = RefToRegionLocked(reinterpret_cast<mirror::Object*>(addr));
 | |
|     if (addr == begin_addr) {
 | |
|       DCHECK(region->IsLarge());
 | |
|     } else {
 | |
|       DCHECK(region->IsLargeTail());
 | |
|     }
 | |
|     region->ZeroLiveBytes();
 | |
|   }
 | |
|   if (kIsDebugBuild && end_addr < Limit()) {
 | |
|     // If we aren't at the end of the space, check that the next region is not a large tail.
 | |
|     Region* following_region = RefToRegionLocked(reinterpret_cast<mirror::Object*>(end_addr));
 | |
|     DCHECK(!following_region->IsLargeTail());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Determine which regions to evacuate and mark them as
 | |
| // from-space. Mark the rest as unevacuated from-space.
 | |
| void RegionSpace::SetFromSpace(accounting::ReadBarrierTable* rb_table,
 | |
|                                EvacMode evac_mode,
 | |
|                                bool clear_live_bytes) {
 | |
|   // Live bytes are only preserved (i.e. not cleared) during sticky-bit CC collections.
 | |
|   DCHECK(use_generational_cc_ || clear_live_bytes);
 | |
|   ++time_;
 | |
|   if (kUseTableLookupReadBarrier) {
 | |
|     DCHECK(rb_table->IsAllCleared());
 | |
|     rb_table->SetAll();
 | |
|   }
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   // We cannot use the partially utilized TLABs across a GC. Therefore, revoke
 | |
|   // them during the thread-flip.
 | |
|   partial_tlabs_.clear();
 | |
| 
 | |
|   // Counter for the number of expected large tail regions following a large region.
 | |
|   size_t num_expected_large_tails = 0U;
 | |
|   // Flag to store whether the previously seen large region has been evacuated.
 | |
|   // This is used to apply the same evacuation policy to related large tail regions.
 | |
|   bool prev_large_evacuated = false;
 | |
|   VerifyNonFreeRegionLimit();
 | |
|   const size_t iter_limit = kUseTableLookupReadBarrier
 | |
|       ? num_regions_
 | |
|       : std::min(num_regions_, non_free_region_index_limit_);
 | |
|   for (size_t i = 0; i < iter_limit; ++i) {
 | |
|     Region* r = ®ions_[i];
 | |
|     RegionState state = r->State();
 | |
|     RegionType type = r->Type();
 | |
|     if (!r->IsFree()) {
 | |
|       DCHECK(r->IsInToSpace());
 | |
|       if (LIKELY(num_expected_large_tails == 0U)) {
 | |
|         DCHECK((state == RegionState::kRegionStateAllocated ||
 | |
|                 state == RegionState::kRegionStateLarge) &&
 | |
|                type == RegionType::kRegionTypeToSpace);
 | |
|         bool should_evacuate = r->ShouldBeEvacuated(evac_mode);
 | |
|         bool is_newly_allocated = r->IsNewlyAllocated();
 | |
|         if (should_evacuate) {
 | |
|           r->SetAsFromSpace();
 | |
|           DCHECK(r->IsInFromSpace());
 | |
|         } else {
 | |
|           r->SetAsUnevacFromSpace(clear_live_bytes);
 | |
|           DCHECK(r->IsInUnevacFromSpace());
 | |
|         }
 | |
|         if (UNLIKELY(state == RegionState::kRegionStateLarge &&
 | |
|                      type == RegionType::kRegionTypeToSpace)) {
 | |
|           prev_large_evacuated = should_evacuate;
 | |
|           // In 2-phase full heap GC, this function is called after marking is
 | |
|           // done. So, it is possible that some newly allocated large object is
 | |
|           // marked but its live_bytes is still -1. We need to clear the
 | |
|           // mark-bit otherwise the live_bytes will not be updated in
 | |
|           // ConcurrentCopying::ProcessMarkStackRef() and hence will break the
 | |
|           // logic.
 | |
|           if (use_generational_cc_ && !should_evacuate && is_newly_allocated) {
 | |
|             GetMarkBitmap()->Clear(reinterpret_cast<mirror::Object*>(r->Begin()));
 | |
|           }
 | |
|           num_expected_large_tails = RoundUp(r->BytesAllocated(), kRegionSize) / kRegionSize - 1;
 | |
|           DCHECK_GT(num_expected_large_tails, 0U);
 | |
|         }
 | |
|       } else {
 | |
|         DCHECK(state == RegionState::kRegionStateLargeTail &&
 | |
|                type == RegionType::kRegionTypeToSpace);
 | |
|         if (prev_large_evacuated) {
 | |
|           r->SetAsFromSpace();
 | |
|           DCHECK(r->IsInFromSpace());
 | |
|         } else {
 | |
|           r->SetAsUnevacFromSpace(clear_live_bytes);
 | |
|           DCHECK(r->IsInUnevacFromSpace());
 | |
|         }
 | |
|         --num_expected_large_tails;
 | |
|       }
 | |
|     } else {
 | |
|       DCHECK_EQ(num_expected_large_tails, 0U);
 | |
|       if (kUseTableLookupReadBarrier) {
 | |
|         // Clear the rb table for to-space regions.
 | |
|         rb_table->Clear(r->Begin(), r->End());
 | |
|       }
 | |
|     }
 | |
|     // Invariant: There should be no newly-allocated region in the from-space.
 | |
|     DCHECK(!r->is_newly_allocated_);
 | |
|   }
 | |
|   DCHECK_EQ(num_expected_large_tails, 0U);
 | |
|   current_region_ = &full_region_;
 | |
|   evac_region_ = &full_region_;
 | |
| }
 | |
| 
 | |
| static void ZeroAndProtectRegion(uint8_t* begin, uint8_t* end) {
 | |
|   ZeroAndReleasePages(begin, end - begin);
 | |
|   if (kProtectClearedRegions) {
 | |
|     CheckedCall(mprotect, __FUNCTION__, begin, end - begin, PROT_NONE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegionSpace::ClearFromSpace(/* out */ uint64_t* cleared_bytes,
 | |
|                                  /* out */ uint64_t* cleared_objects,
 | |
|                                  const bool clear_bitmap) {
 | |
|   DCHECK(cleared_bytes != nullptr);
 | |
|   DCHECK(cleared_objects != nullptr);
 | |
|   *cleared_bytes = 0;
 | |
|   *cleared_objects = 0;
 | |
|   size_t new_non_free_region_index_limit = 0;
 | |
|   // We should avoid calling madvise syscalls while holding region_lock_.
 | |
|   // Therefore, we split the working of this function into 2 loops. The first
 | |
|   // loop gathers memory ranges that must be madvised. Then we release the lock
 | |
|   // and perform madvise on the gathered memory ranges. Finally, we reacquire
 | |
|   // the lock and loop over the regions to clear the from-space regions and make
 | |
|   // them availabe for allocation.
 | |
|   std::deque<std::pair<uint8_t*, uint8_t*>> madvise_list;
 | |
|   // Gather memory ranges that need to be madvised.
 | |
|   {
 | |
|     MutexLock mu(Thread::Current(), region_lock_);
 | |
|     // Lambda expression `expand_madvise_range` adds a region to the "clear block".
 | |
|     //
 | |
|     // As we iterate over from-space regions, we maintain a "clear block", composed of
 | |
|     // adjacent to-be-cleared regions and whose bounds are `clear_block_begin` and
 | |
|     // `clear_block_end`. When processing a new region which is not adjacent to
 | |
|     // the clear block (discontinuity in cleared regions), the clear block
 | |
|     // is added to madvise_list and the clear block is reset (to the most recent
 | |
|     // to-be-cleared region).
 | |
|     //
 | |
|     // This is done in order to combine zeroing and releasing pages to reduce how
 | |
|     // often madvise is called. This helps reduce contention on the mmap semaphore
 | |
|     // (see b/62194020).
 | |
|     uint8_t* clear_block_begin = nullptr;
 | |
|     uint8_t* clear_block_end = nullptr;
 | |
|     auto expand_madvise_range = [&madvise_list, &clear_block_begin, &clear_block_end] (Region* r) {
 | |
|       if (clear_block_end != r->Begin()) {
 | |
|         if (clear_block_begin != nullptr) {
 | |
|           DCHECK(clear_block_end != nullptr);
 | |
|           madvise_list.push_back(std::pair(clear_block_begin, clear_block_end));
 | |
|         }
 | |
|         clear_block_begin = r->Begin();
 | |
|       }
 | |
|       clear_block_end = r->End();
 | |
|     };
 | |
|     for (size_t i = 0; i < std::min(num_regions_, non_free_region_index_limit_); ++i) {
 | |
|       Region* r = ®ions_[i];
 | |
|       // The following check goes through objects in the region, therefore it
 | |
|       // must be performed before madvising the region. Therefore, it can't be
 | |
|       // executed in the following loop.
 | |
|       if (kCheckLiveBytesAgainstRegionBitmap) {
 | |
|         CheckLiveBytesAgainstRegionBitmap(r);
 | |
|       }
 | |
|       if (r->IsInFromSpace()) {
 | |
|         expand_madvise_range(r);
 | |
|       } else if (r->IsInUnevacFromSpace()) {
 | |
|         // We must skip tails of live large objects.
 | |
|         if (r->LiveBytes() == 0 && !r->IsLargeTail()) {
 | |
|           // Special case for 0 live bytes, this means all of the objects in the region are
 | |
|           // dead and we can to clear it. This is important for large objects since we must
 | |
|           // not visit dead ones in RegionSpace::Walk because they may contain dangling
 | |
|           // references to invalid objects. It is also better to clear these regions now
 | |
|           // instead of at the end of the next GC to save RAM. If we don't clear the regions
 | |
|           // here, they will be cleared in next GC by the normal live percent evacuation logic.
 | |
|           expand_madvise_range(r);
 | |
|           // Also release RAM for large tails.
 | |
|           while (i + 1 < num_regions_ && regions_[i + 1].IsLargeTail()) {
 | |
|             expand_madvise_range(®ions_[i + 1]);
 | |
|             i++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // There is a small probability that we may reach here with
 | |
|     // clear_block_{begin, end} = nullptr. If all the regions allocated since
 | |
|     // last GC have been for large objects and all of them survive till this GC
 | |
|     // cycle, then there will be no regions in from-space.
 | |
|     if (LIKELY(clear_block_begin != nullptr)) {
 | |
|       DCHECK(clear_block_end != nullptr);
 | |
|       madvise_list.push_back(std::pair(clear_block_begin, clear_block_end));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Madvise the memory ranges.
 | |
|   uint64_t start_time = NanoTime();
 | |
|   for (const auto &iter : madvise_list) {
 | |
|     ZeroAndProtectRegion(iter.first, iter.second);
 | |
|   }
 | |
|   madvise_time_ += NanoTime() - start_time;
 | |
| 
 | |
|   for (const auto &iter : madvise_list) {
 | |
|     if (clear_bitmap) {
 | |
|       GetLiveBitmap()->ClearRange(
 | |
|           reinterpret_cast<mirror::Object*>(iter.first),
 | |
|           reinterpret_cast<mirror::Object*>(iter.second));
 | |
|     }
 | |
|   }
 | |
|   madvise_list.clear();
 | |
| 
 | |
|   // Iterate over regions again and actually make the from space regions
 | |
|   // available for allocation.
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   VerifyNonFreeRegionLimit();
 | |
| 
 | |
|   // Update max of peak non free region count before reclaiming evacuated regions.
 | |
|   max_peak_num_non_free_regions_ = std::max(max_peak_num_non_free_regions_,
 | |
|                                             num_non_free_regions_);
 | |
| 
 | |
|   for (size_t i = 0; i < std::min(num_regions_, non_free_region_index_limit_); ++i) {
 | |
|     Region* r = ®ions_[i];
 | |
|     if (r->IsInFromSpace()) {
 | |
|       DCHECK(!r->IsTlab());
 | |
|       *cleared_bytes += r->BytesAllocated();
 | |
|       *cleared_objects += r->ObjectsAllocated();
 | |
|       --num_non_free_regions_;
 | |
|       r->Clear(/*zero_and_release_pages=*/false);
 | |
|     } else if (r->IsInUnevacFromSpace()) {
 | |
|       if (r->LiveBytes() == 0) {
 | |
|         DCHECK(!r->IsLargeTail());
 | |
|         *cleared_bytes += r->BytesAllocated();
 | |
|         *cleared_objects += r->ObjectsAllocated();
 | |
|         r->Clear(/*zero_and_release_pages=*/false);
 | |
|         size_t free_regions = 1;
 | |
|         // Also release RAM for large tails.
 | |
|         while (i + free_regions < num_regions_ && regions_[i + free_regions].IsLargeTail()) {
 | |
|           regions_[i + free_regions].Clear(/*zero_and_release_pages=*/false);
 | |
|           ++free_regions;
 | |
|         }
 | |
|         num_non_free_regions_ -= free_regions;
 | |
|         // When clear_bitmap is true, this clearing of bitmap is taken care in
 | |
|         // clear_region().
 | |
|         if (!clear_bitmap) {
 | |
|           GetLiveBitmap()->ClearRange(
 | |
|               reinterpret_cast<mirror::Object*>(r->Begin()),
 | |
|               reinterpret_cast<mirror::Object*>(r->Begin() + free_regions * kRegionSize));
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       r->SetUnevacFromSpaceAsToSpace();
 | |
|       if (r->AllAllocatedBytesAreLive()) {
 | |
|         // Try to optimize the number of ClearRange calls by checking whether the next regions
 | |
|         // can also be cleared.
 | |
|         size_t regions_to_clear_bitmap = 1;
 | |
|         while (i + regions_to_clear_bitmap < num_regions_) {
 | |
|           Region* const cur = ®ions_[i + regions_to_clear_bitmap];
 | |
|           if (!cur->AllAllocatedBytesAreLive()) {
 | |
|             DCHECK(!cur->IsLargeTail());
 | |
|             break;
 | |
|           }
 | |
|           CHECK(cur->IsInUnevacFromSpace());
 | |
|           cur->SetUnevacFromSpaceAsToSpace();
 | |
|           ++regions_to_clear_bitmap;
 | |
|         }
 | |
| 
 | |
|         // Optimization (for full CC only): If the live bytes are *all* live
 | |
|         // in a region then the live-bit information for these objects is
 | |
|         // superfluous:
 | |
|         // - We can determine that these objects are all live by using
 | |
|         //   Region::AllAllocatedBytesAreLive (which just checks whether
 | |
|         //   `LiveBytes() == static_cast<size_t>(Top() - Begin())`.
 | |
|         // - We can visit the objects in this region using
 | |
|         //   RegionSpace::GetNextObject, i.e. without resorting to the
 | |
|         //   live bits (see RegionSpace::WalkInternal).
 | |
|         // Therefore, we can clear the bits for these objects in the
 | |
|         // (live) region space bitmap (and release the corresponding pages).
 | |
|         //
 | |
|         // This optimization is incompatible with Generational CC, because:
 | |
|         // - minor (young-generation) collections need to know which objects
 | |
|         //   where marked during the previous GC cycle, meaning all mark bitmaps
 | |
|         //   (this includes the region space bitmap) need to be preserved
 | |
|         //   between a (minor or major) collection N and a following minor
 | |
|         //   collection N+1;
 | |
|         // - at this stage (in the current GC cycle), we cannot determine
 | |
|         //   whether the next collection will be a minor or a major one;
 | |
|         // This means that we need to be conservative and always preserve the
 | |
|         // region space bitmap when using Generational CC.
 | |
|         // Note that major collections do not require the previous mark bitmaps
 | |
|         // to be preserved, and as matter of fact they do clear the region space
 | |
|         // bitmap. But they cannot do so before we know the next GC cycle will
 | |
|         // be a major one, so this operation happens at the beginning of such a
 | |
|         // major collection, before marking starts.
 | |
|         if (!use_generational_cc_) {
 | |
|           GetLiveBitmap()->ClearRange(
 | |
|               reinterpret_cast<mirror::Object*>(r->Begin()),
 | |
|               reinterpret_cast<mirror::Object*>(r->Begin()
 | |
|                                                 + regions_to_clear_bitmap * kRegionSize));
 | |
|         }
 | |
|         // Skip over extra regions for which we cleared the bitmaps: we shall not clear them,
 | |
|         // as they are unevac regions that are live.
 | |
|         // Subtract one for the for-loop.
 | |
|         i += regions_to_clear_bitmap - 1;
 | |
|       } else {
 | |
|         // TODO: Explain why we do not poison dead objects in region
 | |
|         // `r` when it has an undefined live bytes count (i.e. when
 | |
|         // `r->LiveBytes() == static_cast<size_t>(-1)`) with
 | |
|         // Generational CC.
 | |
|         if (!use_generational_cc_ || (r->LiveBytes() != static_cast<size_t>(-1))) {
 | |
|           // Only some allocated bytes are live in this unevac region.
 | |
|           // This should only happen for an allocated non-large region.
 | |
|           DCHECK(r->IsAllocated()) << r->State();
 | |
|           if (kPoisonDeadObjectsInUnevacuatedRegions) {
 | |
|             PoisonDeadObjectsInUnevacuatedRegion(r);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // Note r != last_checked_region if r->IsInUnevacFromSpace() was true above.
 | |
|     Region* last_checked_region = ®ions_[i];
 | |
|     if (!last_checked_region->IsFree()) {
 | |
|       new_non_free_region_index_limit = std::max(new_non_free_region_index_limit,
 | |
|                                                  last_checked_region->Idx() + 1);
 | |
|     }
 | |
|   }
 | |
|   // Update non_free_region_index_limit_.
 | |
|   SetNonFreeRegionLimit(new_non_free_region_index_limit);
 | |
|   evac_region_ = nullptr;
 | |
|   num_non_free_regions_ += num_evac_regions_;
 | |
|   num_evac_regions_ = 0;
 | |
| }
 | |
| 
 | |
| void RegionSpace::CheckLiveBytesAgainstRegionBitmap(Region* r) {
 | |
|   if (r->LiveBytes() == static_cast<size_t>(-1)) {
 | |
|     // Live bytes count is undefined for `r`; nothing to check here.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Functor walking the region space bitmap for the range corresponding
 | |
|   // to region `r` and calculating the sum of live bytes.
 | |
|   size_t live_bytes_recount = 0u;
 | |
|   auto recount_live_bytes =
 | |
|       [&r, &live_bytes_recount](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     DCHECK_ALIGNED(obj, kAlignment);
 | |
|     if (r->IsLarge()) {
 | |
|       // If `r` is a large region, then it contains at most one
 | |
|       // object, which must start at the beginning of the
 | |
|       // region. The live byte count in that case is equal to the
 | |
|       // allocated regions (large region + large tails regions).
 | |
|       DCHECK_EQ(reinterpret_cast<uint8_t*>(obj), r->Begin());
 | |
|       DCHECK_EQ(live_bytes_recount, 0u);
 | |
|       live_bytes_recount = r->Top() - r->Begin();
 | |
|     } else {
 | |
|       DCHECK(r->IsAllocated())
 | |
|           << "r->State()=" << r->State() << " r->LiveBytes()=" << r->LiveBytes();
 | |
|       size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
 | |
|       size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
 | |
|       live_bytes_recount += alloc_size;
 | |
|     }
 | |
|   };
 | |
|   // Visit live objects in `r` and recount the live bytes.
 | |
|   GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(r->Begin()),
 | |
|                                     reinterpret_cast<uintptr_t>(r->Top()),
 | |
|                                     recount_live_bytes);
 | |
|   // Check that this recount matches the region's current live bytes count.
 | |
|   DCHECK_EQ(live_bytes_recount, r->LiveBytes());
 | |
| }
 | |
| 
 | |
| // Poison the memory area in range [`begin`, `end`) with value `kPoisonDeadObject`.
 | |
| static void PoisonUnevacuatedRange(uint8_t* begin, uint8_t* end) {
 | |
|   static constexpr size_t kPoisonDeadObjectSize = sizeof(kPoisonDeadObject);
 | |
|   static_assert(IsPowerOfTwo(kPoisonDeadObjectSize) &&
 | |
|                 IsPowerOfTwo(RegionSpace::kAlignment) &&
 | |
|                 (kPoisonDeadObjectSize < RegionSpace::kAlignment),
 | |
|                 "RegionSpace::kAlignment should be a multiple of kPoisonDeadObjectSize"
 | |
|                 " and both should be powers of 2");
 | |
|   DCHECK_ALIGNED(begin, kPoisonDeadObjectSize);
 | |
|   DCHECK_ALIGNED(end, kPoisonDeadObjectSize);
 | |
|   uint32_t* begin_addr = reinterpret_cast<uint32_t*>(begin);
 | |
|   uint32_t* end_addr = reinterpret_cast<uint32_t*>(end);
 | |
|   std::fill(begin_addr, end_addr, kPoisonDeadObject);
 | |
| }
 | |
| 
 | |
| void RegionSpace::PoisonDeadObjectsInUnevacuatedRegion(Region* r) {
 | |
|   // The live byte count of `r` should be different from -1, as this
 | |
|   // region should neither be a newly allocated region nor an
 | |
|   // evacuated region.
 | |
|   DCHECK_NE(r->LiveBytes(), static_cast<size_t>(-1))
 | |
|       << "Unexpected live bytes count of -1 in " << Dumpable<Region>(*r);
 | |
| 
 | |
|   // Past-the-end address of the previously visited (live) object (or
 | |
|   // the beginning of the region, if `maybe_poison` has not run yet).
 | |
|   uint8_t* prev_obj_end = reinterpret_cast<uint8_t*>(r->Begin());
 | |
| 
 | |
|   // Functor poisoning the space between `obj` and the previously
 | |
|   // visited (live) object (or the beginng of the region), if any.
 | |
|   auto maybe_poison = [&prev_obj_end](mirror::Object* obj) REQUIRES(Locks::mutator_lock_) {
 | |
|     DCHECK_ALIGNED(obj, kAlignment);
 | |
|     uint8_t* cur_obj_begin = reinterpret_cast<uint8_t*>(obj);
 | |
|     if (cur_obj_begin != prev_obj_end) {
 | |
|       // There is a gap (dead object(s)) between the previously
 | |
|       // visited (live) object (or the beginning of the region) and
 | |
|       // `obj`; poison that space.
 | |
|       PoisonUnevacuatedRange(prev_obj_end, cur_obj_begin);
 | |
|     }
 | |
|     prev_obj_end = reinterpret_cast<uint8_t*>(GetNextObject(obj));
 | |
|   };
 | |
| 
 | |
|   // Visit live objects in `r` and poison gaps (dead objects) between them.
 | |
|   GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(r->Begin()),
 | |
|                                     reinterpret_cast<uintptr_t>(r->Top()),
 | |
|                                     maybe_poison);
 | |
|   // Poison memory between the last live object and the end of the region, if any.
 | |
|   if (prev_obj_end < r->Top()) {
 | |
|     PoisonUnevacuatedRange(prev_obj_end, r->Top());
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool RegionSpace::LogFragmentationAllocFailure(std::ostream& os,
 | |
|                                                size_t failed_alloc_bytes) {
 | |
|   size_t max_contiguous_allocation = 0;
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
| 
 | |
|   if (current_region_->End() - current_region_->Top() > 0) {
 | |
|     max_contiguous_allocation = current_region_->End() - current_region_->Top();
 | |
|   }
 | |
| 
 | |
|   size_t max_contiguous_free_regions = 0;
 | |
|   size_t num_contiguous_free_regions = 0;
 | |
|   bool prev_free_region = false;
 | |
|   for (size_t i = 0; i < num_regions_; ++i) {
 | |
|     Region* r = ®ions_[i];
 | |
|     if (r->IsFree()) {
 | |
|       if (!prev_free_region) {
 | |
|         CHECK_EQ(num_contiguous_free_regions, 0U);
 | |
|         prev_free_region = true;
 | |
|       }
 | |
|       ++num_contiguous_free_regions;
 | |
|     } else if (prev_free_region) {
 | |
|       CHECK_NE(num_contiguous_free_regions, 0U);
 | |
|       max_contiguous_free_regions = std::max(max_contiguous_free_regions,
 | |
|                                              num_contiguous_free_regions);
 | |
|       num_contiguous_free_regions = 0U;
 | |
|       prev_free_region = false;
 | |
|     }
 | |
|   }
 | |
|   max_contiguous_allocation = std::max(max_contiguous_allocation,
 | |
|                                        max_contiguous_free_regions * kRegionSize);
 | |
| 
 | |
|   // Calculate how many regions are available for allocations as we have to ensure
 | |
|   // that enough regions are left for evacuation.
 | |
|   size_t regions_free_for_alloc = num_regions_ / 2 - num_non_free_regions_;
 | |
| 
 | |
|   max_contiguous_allocation = std::min(max_contiguous_allocation,
 | |
|                                        regions_free_for_alloc * kRegionSize);
 | |
|   if (failed_alloc_bytes > max_contiguous_allocation) {
 | |
|     os << "; failed due to fragmentation (largest possible contiguous allocation "
 | |
|        <<  max_contiguous_allocation << " bytes). Number of "
 | |
|        << PrettySize(kRegionSize)
 | |
|        << " sized free regions are: " << regions_free_for_alloc;
 | |
|     return true;
 | |
|   }
 | |
|   // Caller's job to print failed_alloc_bytes.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void RegionSpace::Clear() {
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   for (size_t i = 0; i < num_regions_; ++i) {
 | |
|     Region* r = ®ions_[i];
 | |
|     if (!r->IsFree()) {
 | |
|       --num_non_free_regions_;
 | |
|     }
 | |
|     r->Clear(/*zero_and_release_pages=*/true);
 | |
|   }
 | |
|   SetNonFreeRegionLimit(0);
 | |
|   DCHECK_EQ(num_non_free_regions_, 0u);
 | |
|   current_region_ = &full_region_;
 | |
|   evac_region_ = &full_region_;
 | |
| }
 | |
| 
 | |
| void RegionSpace::Protect() {
 | |
|   if (kProtectClearedRegions) {
 | |
|     CheckedCall(mprotect, __FUNCTION__, Begin(), Size(), PROT_NONE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegionSpace::Unprotect() {
 | |
|   if (kProtectClearedRegions) {
 | |
|     CheckedCall(mprotect, __FUNCTION__, Begin(), Size(), PROT_READ | PROT_WRITE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegionSpace::ClampGrowthLimit(size_t new_capacity) {
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   CHECK_LE(new_capacity, NonGrowthLimitCapacity());
 | |
|   size_t new_num_regions = new_capacity / kRegionSize;
 | |
|   if (non_free_region_index_limit_ > new_num_regions) {
 | |
|     LOG(WARNING) << "Couldn't clamp region space as there are regions in use beyond growth limit.";
 | |
|     return;
 | |
|   }
 | |
|   num_regions_ = new_num_regions;
 | |
|   if (kCyclicRegionAllocation && cyclic_alloc_region_index_ >= num_regions_) {
 | |
|     cyclic_alloc_region_index_ = 0u;
 | |
|   }
 | |
|   SetLimit(Begin() + new_capacity);
 | |
|   if (Size() > new_capacity) {
 | |
|     SetEnd(Limit());
 | |
|   }
 | |
|   GetMarkBitmap()->SetHeapSize(new_capacity);
 | |
|   GetMemMap()->SetSize(new_capacity);
 | |
| }
 | |
| 
 | |
| void RegionSpace::Dump(std::ostream& os) const {
 | |
|   os << GetName() << " "
 | |
|      << reinterpret_cast<void*>(Begin()) << "-" << reinterpret_cast<void*>(Limit());
 | |
| }
 | |
| 
 | |
| void RegionSpace::DumpRegionForObject(std::ostream& os, mirror::Object* obj) {
 | |
|   CHECK(HasAddress(obj));
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   RefToRegionUnlocked(obj)->Dump(os);
 | |
| }
 | |
| 
 | |
| void RegionSpace::DumpRegions(std::ostream& os) {
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   for (size_t i = 0; i < num_regions_; ++i) {
 | |
|     regions_[i].Dump(os);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegionSpace::DumpNonFreeRegions(std::ostream& os) {
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   for (size_t i = 0; i < num_regions_; ++i) {
 | |
|     Region* reg = ®ions_[i];
 | |
|     if (!reg->IsFree()) {
 | |
|       reg->Dump(os);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegionSpace::RecordAlloc(mirror::Object* ref) {
 | |
|   CHECK(ref != nullptr);
 | |
|   Region* r = RefToRegion(ref);
 | |
|   r->objects_allocated_.fetch_add(1, std::memory_order_relaxed);
 | |
| }
 | |
| 
 | |
| bool RegionSpace::AllocNewTlab(Thread* self,
 | |
|                                const size_t tlab_size,
 | |
|                                size_t* bytes_tl_bulk_allocated) {
 | |
|   MutexLock mu(self, region_lock_);
 | |
|   RevokeThreadLocalBuffersLocked(self, /*reuse=*/ gc::Heap::kUsePartialTlabs);
 | |
|   Region* r = nullptr;
 | |
|   uint8_t* pos = nullptr;
 | |
|   *bytes_tl_bulk_allocated = tlab_size;
 | |
|   // First attempt to get a partially used TLAB, if available.
 | |
|   if (tlab_size < kRegionSize) {
 | |
|     // Fetch the largest partial TLAB. The multimap is ordered in decreasing
 | |
|     // size.
 | |
|     auto largest_partial_tlab = partial_tlabs_.begin();
 | |
|     if (largest_partial_tlab != partial_tlabs_.end() && largest_partial_tlab->first >= tlab_size) {
 | |
|       r = largest_partial_tlab->second;
 | |
|       pos = r->End() - largest_partial_tlab->first;
 | |
|       partial_tlabs_.erase(largest_partial_tlab);
 | |
|       DCHECK_GT(r->End(), pos);
 | |
|       DCHECK_LE(r->Begin(), pos);
 | |
|       DCHECK_GE(r->Top(), pos);
 | |
|       *bytes_tl_bulk_allocated -= r->Top() - pos;
 | |
|     }
 | |
|   }
 | |
|   if (r == nullptr) {
 | |
|     // Fallback to allocating an entire region as TLAB.
 | |
|     r = AllocateRegion(/*for_evac=*/ false);
 | |
|   }
 | |
|   if (r != nullptr) {
 | |
|     uint8_t* start = pos != nullptr ? pos : r->Begin();
 | |
|     DCHECK_ALIGNED(start, kObjectAlignment);
 | |
|     r->is_a_tlab_ = true;
 | |
|     r->thread_ = self;
 | |
|     r->SetTop(r->End());
 | |
|     self->SetTlab(start, start + tlab_size, r->End());
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| size_t RegionSpace::RevokeThreadLocalBuffers(Thread* thread) {
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   RevokeThreadLocalBuffersLocked(thread, /*reuse=*/ gc::Heap::kUsePartialTlabs);
 | |
|   return 0U;
 | |
| }
 | |
| 
 | |
| size_t RegionSpace::RevokeThreadLocalBuffers(Thread* thread, const bool reuse) {
 | |
|   MutexLock mu(Thread::Current(), region_lock_);
 | |
|   RevokeThreadLocalBuffersLocked(thread, reuse);
 | |
|   return 0U;
 | |
| }
 | |
| 
 | |
| void RegionSpace::RevokeThreadLocalBuffersLocked(Thread* thread, bool reuse) {
 | |
|   uint8_t* tlab_start = thread->GetTlabStart();
 | |
|   DCHECK_EQ(thread->HasTlab(), tlab_start != nullptr);
 | |
|   if (tlab_start != nullptr) {
 | |
|     Region* r = RefToRegionLocked(reinterpret_cast<mirror::Object*>(tlab_start));
 | |
|     r->is_a_tlab_ = false;
 | |
|     r->thread_ = nullptr;
 | |
|     DCHECK(r->IsAllocated());
 | |
|     DCHECK_LE(thread->GetThreadLocalBytesAllocated(), kRegionSize);
 | |
|     r->RecordThreadLocalAllocations(thread->GetThreadLocalObjectsAllocated(),
 | |
|                                     thread->GetTlabEnd() - r->Begin());
 | |
|     DCHECK_GE(r->End(), thread->GetTlabPos());
 | |
|     DCHECK_LE(r->Begin(), thread->GetTlabPos());
 | |
|     size_t remaining_bytes = r->End() - thread->GetTlabPos();
 | |
|     if (reuse && remaining_bytes >= gc::Heap::kPartialTlabSize) {
 | |
|       partial_tlabs_.insert(std::make_pair(remaining_bytes, r));
 | |
|     }
 | |
|   }
 | |
|   thread->ResetTlab();
 | |
| }
 | |
| 
 | |
| size_t RegionSpace::RevokeAllThreadLocalBuffers() {
 | |
|   Thread* self = Thread::Current();
 | |
|   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
 | |
|   MutexLock mu2(self, *Locks::thread_list_lock_);
 | |
|   std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
 | |
|   for (Thread* thread : thread_list) {
 | |
|     RevokeThreadLocalBuffers(thread);
 | |
|   }
 | |
|   return 0U;
 | |
| }
 | |
| 
 | |
| void RegionSpace::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
 | |
|   if (kIsDebugBuild) {
 | |
|     DCHECK(!thread->HasTlab());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegionSpace::AssertAllThreadLocalBuffersAreRevoked() {
 | |
|   if (kIsDebugBuild) {
 | |
|     Thread* self = Thread::Current();
 | |
|     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
 | |
|     MutexLock mu2(self, *Locks::thread_list_lock_);
 | |
|     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
 | |
|     for (Thread* thread : thread_list) {
 | |
|       AssertThreadLocalBuffersAreRevoked(thread);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegionSpace::Region::Dump(std::ostream& os) const {
 | |
|   os << "Region[" << idx_ << "]="
 | |
|      << reinterpret_cast<void*>(begin_)
 | |
|      << "-" << reinterpret_cast<void*>(Top())
 | |
|      << "-" << reinterpret_cast<void*>(end_)
 | |
|      << " state=" << state_
 | |
|      << " type=" << type_
 | |
|      << " objects_allocated=" << objects_allocated_
 | |
|      << " alloc_time=" << alloc_time_
 | |
|      << " live_bytes=" << live_bytes_;
 | |
| 
 | |
|   if (live_bytes_ != static_cast<size_t>(-1)) {
 | |
|     os << " ratio over allocated bytes="
 | |
|        << (static_cast<float>(live_bytes_) / RoundUp(BytesAllocated(), kRegionSize));
 | |
|     uint64_t longest_consecutive_free_bytes = GetLongestConsecutiveFreeBytes();
 | |
|     os << " longest_consecutive_free_bytes=" << longest_consecutive_free_bytes
 | |
|        << " (" << PrettySize(longest_consecutive_free_bytes) << ")";
 | |
|   }
 | |
| 
 | |
|   os << " is_newly_allocated=" << std::boolalpha << is_newly_allocated_ << std::noboolalpha
 | |
|      << " is_a_tlab=" << std::boolalpha << is_a_tlab_ << std::noboolalpha
 | |
|      << " thread=" << thread_ << '\n';
 | |
| }
 | |
| 
 | |
| uint64_t RegionSpace::Region::GetLongestConsecutiveFreeBytes() const {
 | |
|   if (IsFree()) {
 | |
|     return kRegionSize;
 | |
|   }
 | |
|   if (IsLarge() || IsLargeTail()) {
 | |
|     return 0u;
 | |
|   }
 | |
|   uintptr_t max_gap = 0u;
 | |
|   uintptr_t prev_object_end = reinterpret_cast<uintptr_t>(Begin());
 | |
|   // Iterate through all live objects and find the largest free gap.
 | |
|   auto visitor = [&max_gap, &prev_object_end](mirror::Object* obj)
 | |
|     REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     uintptr_t current = reinterpret_cast<uintptr_t>(obj);
 | |
|     uintptr_t diff = current - prev_object_end;
 | |
|     max_gap = std::max(diff, max_gap);
 | |
|     uintptr_t object_end = reinterpret_cast<uintptr_t>(obj) + obj->SizeOf();
 | |
|     prev_object_end = RoundUp(object_end, kAlignment);
 | |
|   };
 | |
|   space::RegionSpace* region_space = art::Runtime::Current()->GetHeap()->GetRegionSpace();
 | |
|   region_space->WalkNonLargeRegion(visitor, this);
 | |
|   return static_cast<uint64_t>(max_gap);
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t RegionSpace::AllocationSizeNonvirtual(mirror::Object* obj, size_t* usable_size) {
 | |
|   size_t num_bytes = obj->SizeOf();
 | |
|   if (usable_size != nullptr) {
 | |
|     if (LIKELY(num_bytes <= kRegionSize)) {
 | |
|       DCHECK(RefToRegion(obj)->IsAllocated());
 | |
|       *usable_size = RoundUp(num_bytes, kAlignment);
 | |
|     } else {
 | |
|       DCHECK(RefToRegion(obj)->IsLarge());
 | |
|       *usable_size = RoundUp(num_bytes, kRegionSize);
 | |
|     }
 | |
|   }
 | |
|   return num_bytes;
 | |
| }
 | |
| 
 | |
| void RegionSpace::Region::Clear(bool zero_and_release_pages) {
 | |
|   top_.store(begin_, std::memory_order_relaxed);
 | |
|   state_ = RegionState::kRegionStateFree;
 | |
|   type_ = RegionType::kRegionTypeNone;
 | |
|   objects_allocated_.store(0, std::memory_order_relaxed);
 | |
|   alloc_time_ = 0;
 | |
|   live_bytes_ = static_cast<size_t>(-1);
 | |
|   if (zero_and_release_pages) {
 | |
|     ZeroAndProtectRegion(begin_, end_);
 | |
|   }
 | |
|   is_newly_allocated_ = false;
 | |
|   is_a_tlab_ = false;
 | |
|   thread_ = nullptr;
 | |
| }
 | |
| 
 | |
| void RegionSpace::TraceHeapSize() {
 | |
|   Heap* heap = Runtime::Current()->GetHeap();
 | |
|   heap->TraceHeapSize(heap->GetBytesAllocated() + EvacBytes());
 | |
| }
 | |
| 
 | |
| RegionSpace::Region* RegionSpace::AllocateRegion(bool for_evac) {
 | |
|   if (!for_evac && (num_non_free_regions_ + 1) * 2 > num_regions_) {
 | |
|     return nullptr;
 | |
|   }
 | |
|   for (size_t i = 0; i < num_regions_; ++i) {
 | |
|     // When using the cyclic region allocation strategy, try to
 | |
|     // allocate a region starting from the last cyclic allocated
 | |
|     // region marker. Otherwise, try to allocate a region starting
 | |
|     // from the beginning of the region space.
 | |
|     size_t region_index = kCyclicRegionAllocation
 | |
|         ? ((cyclic_alloc_region_index_ + i) % num_regions_)
 | |
|         : i;
 | |
|     Region* r = ®ions_[region_index];
 | |
|     if (r->IsFree()) {
 | |
|       r->Unfree(this, time_);
 | |
|       if (use_generational_cc_) {
 | |
|         // TODO: Add an explanation for this assertion.
 | |
|         DCHECK_IMPLIES(for_evac, !r->is_newly_allocated_);
 | |
|       }
 | |
|       if (for_evac) {
 | |
|         ++num_evac_regions_;
 | |
|         TraceHeapSize();
 | |
|         // Evac doesn't count as newly allocated.
 | |
|       } else {
 | |
|         r->SetNewlyAllocated();
 | |
|         ++num_non_free_regions_;
 | |
|       }
 | |
|       if (kCyclicRegionAllocation) {
 | |
|         // Move the cyclic allocation region marker to the region
 | |
|         // following the one that was just allocated.
 | |
|         cyclic_alloc_region_index_ = (region_index + 1) % num_regions_;
 | |
|       }
 | |
|       return r;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void RegionSpace::Region::MarkAsAllocated(RegionSpace* region_space, uint32_t alloc_time) {
 | |
|   DCHECK(IsFree());
 | |
|   alloc_time_ = alloc_time;
 | |
|   region_space->AdjustNonFreeRegionLimit(idx_);
 | |
|   type_ = RegionType::kRegionTypeToSpace;
 | |
|   if (kProtectClearedRegions) {
 | |
|     CheckedCall(mprotect, __FUNCTION__, Begin(), kRegionSize, PROT_READ | PROT_WRITE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegionSpace::Region::Unfree(RegionSpace* region_space, uint32_t alloc_time) {
 | |
|   MarkAsAllocated(region_space, alloc_time);
 | |
|   state_ = RegionState::kRegionStateAllocated;
 | |
| }
 | |
| 
 | |
| void RegionSpace::Region::UnfreeLarge(RegionSpace* region_space, uint32_t alloc_time) {
 | |
|   MarkAsAllocated(region_space, alloc_time);
 | |
|   state_ = RegionState::kRegionStateLarge;
 | |
| }
 | |
| 
 | |
| void RegionSpace::Region::UnfreeLargeTail(RegionSpace* region_space, uint32_t alloc_time) {
 | |
|   MarkAsAllocated(region_space, alloc_time);
 | |
|   state_ = RegionState::kRegionStateLargeTail;
 | |
| }
 | |
| 
 | |
| }  // namespace space
 | |
| }  // namespace gc
 | |
| }  // namespace art
 |