799 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			799 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2014 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #ifndef ART_RUNTIME_GC_SPACE_REGION_SPACE_H_
 | |
| #define ART_RUNTIME_GC_SPACE_REGION_SPACE_H_
 | |
| 
 | |
| #include "base/macros.h"
 | |
| #include "base/mutex.h"
 | |
| #include "space.h"
 | |
| #include "thread.h"
 | |
| 
 | |
| #include <functional>
 | |
| #include <map>
 | |
| 
 | |
| namespace art {
 | |
| namespace gc {
 | |
| 
 | |
| namespace accounting {
 | |
| class ReadBarrierTable;
 | |
| }  // namespace accounting
 | |
| 
 | |
| namespace space {
 | |
| 
 | |
| // Cyclic region allocation strategy. If `true`, region allocation
 | |
| // will not try to allocate a new region from the beginning of the
 | |
| // region space, but from the last allocated region. This allocation
 | |
| // strategy reduces region reuse and should help catch some GC bugs
 | |
| // earlier. However, cyclic region allocation can also create memory
 | |
| // fragmentation at the region level (see b/33795328); therefore, we
 | |
| // only enable it in debug mode.
 | |
| static constexpr bool kCyclicRegionAllocation = kIsDebugBuild;
 | |
| 
 | |
| // A space that consists of equal-sized regions.
 | |
| class RegionSpace final : public ContinuousMemMapAllocSpace {
 | |
|  public:
 | |
|   typedef void(*WalkCallback)(void *start, void *end, size_t num_bytes, void* callback_arg);
 | |
| 
 | |
|   enum EvacMode {
 | |
|     kEvacModeNewlyAllocated,
 | |
|     kEvacModeLivePercentNewlyAllocated,
 | |
|     kEvacModeForceAll,
 | |
|   };
 | |
| 
 | |
|   SpaceType GetType() const override {
 | |
|     return kSpaceTypeRegionSpace;
 | |
|   }
 | |
| 
 | |
|   // Create a region space mem map with the requested sizes. The requested base address is not
 | |
|   // guaranteed to be granted, if it is required, the caller should call Begin on the returned
 | |
|   // space to confirm the request was granted.
 | |
|   static MemMap CreateMemMap(const std::string& name, size_t capacity, uint8_t* requested_begin);
 | |
|   static RegionSpace* Create(const std::string& name, MemMap&& mem_map, bool use_generational_cc);
 | |
| 
 | |
|   // Allocate `num_bytes`, returns null if the space is full.
 | |
|   mirror::Object* Alloc(Thread* self,
 | |
|                         size_t num_bytes,
 | |
|                         /* out */ size_t* bytes_allocated,
 | |
|                         /* out */ size_t* usable_size,
 | |
|                         /* out */ size_t* bytes_tl_bulk_allocated)
 | |
|       override REQUIRES(!region_lock_);
 | |
|   // Thread-unsafe allocation for when mutators are suspended, used by the semispace collector.
 | |
|   mirror::Object* AllocThreadUnsafe(Thread* self,
 | |
|                                     size_t num_bytes,
 | |
|                                     /* out */ size_t* bytes_allocated,
 | |
|                                     /* out */ size_t* usable_size,
 | |
|                                     /* out */ size_t* bytes_tl_bulk_allocated)
 | |
|       override REQUIRES(Locks::mutator_lock_) REQUIRES(!region_lock_);
 | |
|   // The main allocation routine.
 | |
|   template<bool kForEvac>
 | |
|   ALWAYS_INLINE mirror::Object* AllocNonvirtual(size_t num_bytes,
 | |
|                                                 /* out */ size_t* bytes_allocated,
 | |
|                                                 /* out */ size_t* usable_size,
 | |
|                                                 /* out */ size_t* bytes_tl_bulk_allocated)
 | |
|       REQUIRES(!region_lock_);
 | |
|   // Allocate/free large objects (objects that are larger than the region size).
 | |
|   template<bool kForEvac>
 | |
|   mirror::Object* AllocLarge(size_t num_bytes,
 | |
|                              /* out */ size_t* bytes_allocated,
 | |
|                              /* out */ size_t* usable_size,
 | |
|                              /* out */ size_t* bytes_tl_bulk_allocated) REQUIRES(!region_lock_);
 | |
|   template<bool kForEvac>
 | |
|   void FreeLarge(mirror::Object* large_obj, size_t bytes_allocated) REQUIRES(!region_lock_);
 | |
| 
 | |
|   // Return the storage space required by obj.
 | |
|   size_t AllocationSize(mirror::Object* obj, size_t* usable_size) override
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_) {
 | |
|     return AllocationSizeNonvirtual(obj, usable_size);
 | |
|   }
 | |
|   size_t AllocationSizeNonvirtual(mirror::Object* obj, size_t* usable_size)
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_);
 | |
| 
 | |
|   size_t Free(Thread*, mirror::Object*) override {
 | |
|     UNIMPLEMENTED(FATAL);
 | |
|     return 0;
 | |
|   }
 | |
|   size_t FreeList(Thread*, size_t, mirror::Object**) override {
 | |
|     UNIMPLEMENTED(FATAL);
 | |
|     return 0;
 | |
|   }
 | |
|   accounting::ContinuousSpaceBitmap* GetLiveBitmap() override {
 | |
|     return &mark_bitmap_;
 | |
|   }
 | |
|   accounting::ContinuousSpaceBitmap* GetMarkBitmap() override {
 | |
|     return &mark_bitmap_;
 | |
|   }
 | |
| 
 | |
|   void Clear() override REQUIRES(!region_lock_);
 | |
| 
 | |
|   // Remove read and write memory protection from the whole region space,
 | |
|   // i.e. make memory pages backing the region area not readable and not
 | |
|   // writable.
 | |
|   void Protect();
 | |
| 
 | |
|   // Remove memory protection from the whole region space, i.e. make memory
 | |
|   // pages backing the region area readable and writable. This method is useful
 | |
|   // to avoid page protection faults when dumping information about an invalid
 | |
|   // reference.
 | |
|   void Unprotect();
 | |
| 
 | |
|   // Change the non growth limit capacity to new capacity by shrinking or expanding the map.
 | |
|   // Currently, only shrinking is supported.
 | |
|   // Unlike implementations of this function in other spaces, we need to pass
 | |
|   // new capacity as argument here as region space doesn't have any notion of
 | |
|   // growth limit.
 | |
|   void ClampGrowthLimit(size_t new_capacity) REQUIRES(!region_lock_);
 | |
| 
 | |
|   void Dump(std::ostream& os) const override;
 | |
|   void DumpRegions(std::ostream& os) REQUIRES(!region_lock_);
 | |
|   // Dump region containing object `obj`. Precondition: `obj` is in the region space.
 | |
|   void DumpRegionForObject(std::ostream& os, mirror::Object* obj) REQUIRES(!region_lock_);
 | |
|   void DumpNonFreeRegions(std::ostream& os) REQUIRES(!region_lock_);
 | |
| 
 | |
|   size_t RevokeThreadLocalBuffers(Thread* thread) override REQUIRES(!region_lock_);
 | |
|   size_t RevokeThreadLocalBuffers(Thread* thread, const bool reuse) REQUIRES(!region_lock_);
 | |
|   size_t RevokeAllThreadLocalBuffers() override
 | |
|       REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_);
 | |
|   void AssertThreadLocalBuffersAreRevoked(Thread* thread) REQUIRES(!region_lock_);
 | |
|   void AssertAllThreadLocalBuffersAreRevoked()
 | |
|       REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_);
 | |
| 
 | |
|   enum class RegionType : uint8_t {
 | |
|     kRegionTypeAll,              // All types.
 | |
|     kRegionTypeFromSpace,        // From-space. To be evacuated.
 | |
|     kRegionTypeUnevacFromSpace,  // Unevacuated from-space. Not to be evacuated.
 | |
|     kRegionTypeToSpace,          // To-space.
 | |
|     kRegionTypeNone,             // None.
 | |
|   };
 | |
| 
 | |
|   enum class RegionState : uint8_t {
 | |
|     kRegionStateFree,            // Free region.
 | |
|     kRegionStateAllocated,       // Allocated region.
 | |
|     kRegionStateLarge,           // Large allocated (allocation larger than the region size).
 | |
|     kRegionStateLargeTail,       // Large tail (non-first regions of a large allocation).
 | |
|   };
 | |
| 
 | |
|   template<RegionType kRegionType> uint64_t GetBytesAllocatedInternal() REQUIRES(!region_lock_);
 | |
|   template<RegionType kRegionType> uint64_t GetObjectsAllocatedInternal() REQUIRES(!region_lock_);
 | |
|   uint64_t GetBytesAllocated() override REQUIRES(!region_lock_) {
 | |
|     return GetBytesAllocatedInternal<RegionType::kRegionTypeAll>();
 | |
|   }
 | |
|   uint64_t GetObjectsAllocated() override REQUIRES(!region_lock_) {
 | |
|     return GetObjectsAllocatedInternal<RegionType::kRegionTypeAll>();
 | |
|   }
 | |
|   uint64_t GetBytesAllocatedInFromSpace() REQUIRES(!region_lock_) {
 | |
|     return GetBytesAllocatedInternal<RegionType::kRegionTypeFromSpace>();
 | |
|   }
 | |
|   uint64_t GetObjectsAllocatedInFromSpace() REQUIRES(!region_lock_) {
 | |
|     return GetObjectsAllocatedInternal<RegionType::kRegionTypeFromSpace>();
 | |
|   }
 | |
|   uint64_t GetBytesAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) {
 | |
|     return GetBytesAllocatedInternal<RegionType::kRegionTypeUnevacFromSpace>();
 | |
|   }
 | |
|   uint64_t GetObjectsAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) {
 | |
|     return GetObjectsAllocatedInternal<RegionType::kRegionTypeUnevacFromSpace>();
 | |
|   }
 | |
|   size_t GetMaxPeakNumNonFreeRegions() const {
 | |
|     return max_peak_num_non_free_regions_;
 | |
|   }
 | |
|   size_t GetNumRegions() const {
 | |
|     return num_regions_;
 | |
|   }
 | |
|   size_t GetNumNonFreeRegions() const NO_THREAD_SAFETY_ANALYSIS {
 | |
|     return num_non_free_regions_;
 | |
|   }
 | |
| 
 | |
|   bool CanMoveObjects() const override {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool Contains(const mirror::Object* obj) const override {
 | |
|     const uint8_t* byte_obj = reinterpret_cast<const uint8_t*>(obj);
 | |
|     return byte_obj >= Begin() && byte_obj < Limit();
 | |
|   }
 | |
| 
 | |
|   RegionSpace* AsRegionSpace() override {
 | |
|     return this;
 | |
|   }
 | |
| 
 | |
|   // Go through all of the blocks and visit the continuous objects.
 | |
|   template <typename Visitor>
 | |
|   ALWAYS_INLINE void Walk(Visitor&& visitor) REQUIRES(Locks::mutator_lock_);
 | |
|   template <typename Visitor>
 | |
|   ALWAYS_INLINE void WalkToSpace(Visitor&& visitor) REQUIRES(Locks::mutator_lock_);
 | |
| 
 | |
|   // Scans regions and calls visitor for objects in unevac-space corresponding
 | |
|   // to the bits set in 'bitmap'.
 | |
|   // Cannot acquire region_lock_ as visitor may need to acquire it for allocation.
 | |
|   // Should not be called concurrently with functions (like SetFromSpace()) which
 | |
|   // change regions' type.
 | |
|   template <typename Visitor>
 | |
|   ALWAYS_INLINE void ScanUnevacFromSpace(accounting::ContinuousSpaceBitmap* bitmap,
 | |
|                                          Visitor&& visitor) NO_THREAD_SAFETY_ANALYSIS;
 | |
| 
 | |
|   accounting::ContinuousSpaceBitmap::SweepCallback* GetSweepCallback() override {
 | |
|     return nullptr;
 | |
|   }
 | |
|   bool LogFragmentationAllocFailure(std::ostream& os, size_t failed_alloc_bytes) override
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_);
 | |
| 
 | |
|   // Object alignment within the space.
 | |
|   static constexpr size_t kAlignment = kObjectAlignment;
 | |
|   // The region size.
 | |
|   static constexpr size_t kRegionSize = 256 * KB;
 | |
| 
 | |
|   bool IsInFromSpace(mirror::Object* ref) {
 | |
|     if (HasAddress(ref)) {
 | |
|       Region* r = RefToRegionUnlocked(ref);
 | |
|       return r->IsInFromSpace();
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool IsRegionNewlyAllocated(size_t idx) const NO_THREAD_SAFETY_ANALYSIS {
 | |
|     DCHECK_LT(idx, num_regions_);
 | |
|     return regions_[idx].IsNewlyAllocated();
 | |
|   }
 | |
| 
 | |
|   bool IsInNewlyAllocatedRegion(mirror::Object* ref) {
 | |
|     if (HasAddress(ref)) {
 | |
|       Region* r = RefToRegionUnlocked(ref);
 | |
|       return r->IsNewlyAllocated();
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool IsInUnevacFromSpace(mirror::Object* ref) {
 | |
|     if (HasAddress(ref)) {
 | |
|       Region* r = RefToRegionUnlocked(ref);
 | |
|       return r->IsInUnevacFromSpace();
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool IsLargeObject(mirror::Object* ref) {
 | |
|     if (HasAddress(ref)) {
 | |
|       Region* r = RefToRegionUnlocked(ref);
 | |
|       return r->IsLarge();
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool IsInToSpace(mirror::Object* ref) {
 | |
|     if (HasAddress(ref)) {
 | |
|       Region* r = RefToRegionUnlocked(ref);
 | |
|       return r->IsInToSpace();
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If `ref` is in the region space, return the type of its region;
 | |
|   // otherwise, return `RegionType::kRegionTypeNone`.
 | |
|   RegionType GetRegionType(mirror::Object* ref) {
 | |
|     if (HasAddress(ref)) {
 | |
|       return GetRegionTypeUnsafe(ref);
 | |
|     }
 | |
|     return RegionType::kRegionTypeNone;
 | |
|   }
 | |
| 
 | |
|   // Unsafe version of RegionSpace::GetRegionType.
 | |
|   // Precondition: `ref` is in the region space.
 | |
|   RegionType GetRegionTypeUnsafe(mirror::Object* ref) {
 | |
|     DCHECK(HasAddress(ref)) << ref;
 | |
|     Region* r = RefToRegionUnlocked(ref);
 | |
|     return r->Type();
 | |
|   }
 | |
| 
 | |
|   // Zero live bytes for a large object, used by young gen CC for marking newly allocated large
 | |
|   // objects.
 | |
|   void ZeroLiveBytesForLargeObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_);
 | |
| 
 | |
|   // Determine which regions to evacuate and tag them as
 | |
|   // from-space. Tag the rest as unevacuated from-space.
 | |
|   void SetFromSpace(accounting::ReadBarrierTable* rb_table,
 | |
|                     EvacMode evac_mode,
 | |
|                     bool clear_live_bytes)
 | |
|       REQUIRES(!region_lock_);
 | |
| 
 | |
|   size_t FromSpaceSize() REQUIRES(!region_lock_);
 | |
|   size_t UnevacFromSpaceSize() REQUIRES(!region_lock_);
 | |
|   size_t ToSpaceSize() REQUIRES(!region_lock_);
 | |
|   void ClearFromSpace(/* out */ uint64_t* cleared_bytes,
 | |
|                       /* out */ uint64_t* cleared_objects,
 | |
|                       const bool clear_bitmap)
 | |
|       REQUIRES(!region_lock_);
 | |
| 
 | |
|   void AddLiveBytes(mirror::Object* ref, size_t alloc_size) {
 | |
|     Region* reg = RefToRegionUnlocked(ref);
 | |
|     reg->AddLiveBytes(alloc_size);
 | |
|   }
 | |
| 
 | |
|   void AssertAllRegionLiveBytesZeroOrCleared() REQUIRES(!region_lock_) {
 | |
|     if (kIsDebugBuild) {
 | |
|       MutexLock mu(Thread::Current(), region_lock_);
 | |
|       for (size_t i = 0; i < num_regions_; ++i) {
 | |
|         Region* r = ®ions_[i];
 | |
|         size_t live_bytes = r->LiveBytes();
 | |
|         CHECK(live_bytes == 0U || live_bytes == static_cast<size_t>(-1)) << live_bytes;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void SetAllRegionLiveBytesZero() REQUIRES(!region_lock_) {
 | |
|     MutexLock mu(Thread::Current(), region_lock_);
 | |
|     const size_t iter_limit = kUseTableLookupReadBarrier
 | |
|         ? num_regions_
 | |
|         : std::min(num_regions_, non_free_region_index_limit_);
 | |
|     for (size_t i = 0; i < iter_limit; ++i) {
 | |
|       Region* r = ®ions_[i];
 | |
|       // Newly allocated regions don't need up-to-date live_bytes_ for deciding
 | |
|       // whether to be evacuated or not. See Region::ShouldBeEvacuated().
 | |
|       if (!r->IsFree() && !r->IsNewlyAllocated()) {
 | |
|         r->ZeroLiveBytes();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   size_t RegionIdxForRefUnchecked(mirror::Object* ref) const NO_THREAD_SAFETY_ANALYSIS {
 | |
|     DCHECK(HasAddress(ref));
 | |
|     uintptr_t offset = reinterpret_cast<uintptr_t>(ref) - reinterpret_cast<uintptr_t>(Begin());
 | |
|     size_t reg_idx = offset / kRegionSize;
 | |
|     DCHECK_LT(reg_idx, num_regions_);
 | |
|     Region* reg = ®ions_[reg_idx];
 | |
|     DCHECK_EQ(reg->Idx(), reg_idx);
 | |
|     DCHECK(reg->Contains(ref));
 | |
|     return reg_idx;
 | |
|   }
 | |
|   // Return -1 as region index for references outside this region space.
 | |
|   size_t RegionIdxForRef(mirror::Object* ref) const NO_THREAD_SAFETY_ANALYSIS {
 | |
|     if (HasAddress(ref)) {
 | |
|       return RegionIdxForRefUnchecked(ref);
 | |
|     } else {
 | |
|       return static_cast<size_t>(-1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Increment object allocation count for region containing ref.
 | |
|   void RecordAlloc(mirror::Object* ref) REQUIRES(!region_lock_);
 | |
| 
 | |
|   bool AllocNewTlab(Thread* self, const size_t tlab_size, size_t* bytes_tl_bulk_allocated)
 | |
|       REQUIRES(!region_lock_);
 | |
| 
 | |
|   uint32_t Time() {
 | |
|     return time_;
 | |
|   }
 | |
| 
 | |
|   size_t EvacBytes() const NO_THREAD_SAFETY_ANALYSIS {
 | |
|     return num_evac_regions_ * kRegionSize;
 | |
|   }
 | |
| 
 | |
|   uint64_t GetMadviseTime() const {
 | |
|     return madvise_time_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   RegionSpace(const std::string& name, MemMap&& mem_map, bool use_generational_cc);
 | |
| 
 | |
|   class Region {
 | |
|    public:
 | |
|     Region()
 | |
|         : idx_(static_cast<size_t>(-1)),
 | |
|           live_bytes_(static_cast<size_t>(-1)),
 | |
|           begin_(nullptr),
 | |
|           thread_(nullptr),
 | |
|           top_(nullptr),
 | |
|           end_(nullptr),
 | |
|           objects_allocated_(0),
 | |
|           alloc_time_(0),
 | |
|           is_newly_allocated_(false),
 | |
|           is_a_tlab_(false),
 | |
|           state_(RegionState::kRegionStateAllocated),
 | |
|           type_(RegionType::kRegionTypeToSpace) {}
 | |
| 
 | |
|     void Init(size_t idx, uint8_t* begin, uint8_t* end) {
 | |
|       idx_ = idx;
 | |
|       begin_ = begin;
 | |
|       top_.store(begin, std::memory_order_relaxed);
 | |
|       end_ = end;
 | |
|       state_ = RegionState::kRegionStateFree;
 | |
|       type_ = RegionType::kRegionTypeNone;
 | |
|       objects_allocated_.store(0, std::memory_order_relaxed);
 | |
|       alloc_time_ = 0;
 | |
|       live_bytes_ = static_cast<size_t>(-1);
 | |
|       is_newly_allocated_ = false;
 | |
|       is_a_tlab_ = false;
 | |
|       thread_ = nullptr;
 | |
|       DCHECK_LT(begin, end);
 | |
|       DCHECK_EQ(static_cast<size_t>(end - begin), kRegionSize);
 | |
|     }
 | |
| 
 | |
|     RegionState State() const {
 | |
|       return state_;
 | |
|     }
 | |
| 
 | |
|     RegionType Type() const {
 | |
|       return type_;
 | |
|     }
 | |
| 
 | |
|     void Clear(bool zero_and_release_pages);
 | |
| 
 | |
|     ALWAYS_INLINE mirror::Object* Alloc(size_t num_bytes,
 | |
|                                         /* out */ size_t* bytes_allocated,
 | |
|                                         /* out */ size_t* usable_size,
 | |
|                                         /* out */ size_t* bytes_tl_bulk_allocated);
 | |
| 
 | |
|     bool IsFree() const {
 | |
|       bool is_free = (state_ == RegionState::kRegionStateFree);
 | |
|       if (is_free) {
 | |
|         DCHECK(IsInNoSpace());
 | |
|         DCHECK_EQ(begin_, Top());
 | |
|         DCHECK_EQ(objects_allocated_.load(std::memory_order_relaxed), 0U);
 | |
|       }
 | |
|       return is_free;
 | |
|     }
 | |
| 
 | |
|     // Given a free region, declare it non-free (allocated).
 | |
|     void Unfree(RegionSpace* region_space, uint32_t alloc_time)
 | |
|         REQUIRES(region_space->region_lock_);
 | |
| 
 | |
|     // Given a free region, declare it non-free (allocated) and large.
 | |
|     void UnfreeLarge(RegionSpace* region_space, uint32_t alloc_time)
 | |
|         REQUIRES(region_space->region_lock_);
 | |
| 
 | |
|     // Given a free region, declare it non-free (allocated) and large tail.
 | |
|     void UnfreeLargeTail(RegionSpace* region_space, uint32_t alloc_time)
 | |
|         REQUIRES(region_space->region_lock_);
 | |
| 
 | |
|     void MarkAsAllocated(RegionSpace* region_space, uint32_t alloc_time)
 | |
|         REQUIRES(region_space->region_lock_);
 | |
| 
 | |
|     void SetNewlyAllocated() {
 | |
|       is_newly_allocated_ = true;
 | |
|     }
 | |
| 
 | |
|     // Non-large, non-large-tail allocated.
 | |
|     bool IsAllocated() const {
 | |
|       return state_ == RegionState::kRegionStateAllocated;
 | |
|     }
 | |
| 
 | |
|     // Large allocated.
 | |
|     bool IsLarge() const {
 | |
|       bool is_large = (state_ == RegionState::kRegionStateLarge);
 | |
|       if (is_large) {
 | |
|         DCHECK_LT(begin_ + kRegionSize, Top());
 | |
|       }
 | |
|       return is_large;
 | |
|     }
 | |
| 
 | |
|     void ZeroLiveBytes() {
 | |
|       live_bytes_ = 0;
 | |
|     }
 | |
| 
 | |
|     // Large-tail allocated.
 | |
|     bool IsLargeTail() const {
 | |
|       bool is_large_tail = (state_ == RegionState::kRegionStateLargeTail);
 | |
|       if (is_large_tail) {
 | |
|         DCHECK_EQ(begin_, Top());
 | |
|       }
 | |
|       return is_large_tail;
 | |
|     }
 | |
| 
 | |
|     size_t Idx() const {
 | |
|       return idx_;
 | |
|     }
 | |
| 
 | |
|     bool IsNewlyAllocated() const {
 | |
|       return is_newly_allocated_;
 | |
|     }
 | |
| 
 | |
|     bool IsTlab() const {
 | |
|       return is_a_tlab_;
 | |
|     }
 | |
| 
 | |
|     bool IsInFromSpace() const {
 | |
|       return type_ == RegionType::kRegionTypeFromSpace;
 | |
|     }
 | |
| 
 | |
|     bool IsInToSpace() const {
 | |
|       return type_ == RegionType::kRegionTypeToSpace;
 | |
|     }
 | |
| 
 | |
|     bool IsInUnevacFromSpace() const {
 | |
|       return type_ == RegionType::kRegionTypeUnevacFromSpace;
 | |
|     }
 | |
| 
 | |
|     bool IsInNoSpace() const {
 | |
|       return type_ == RegionType::kRegionTypeNone;
 | |
|     }
 | |
| 
 | |
|     // Set this region as evacuated from-space. At the end of the
 | |
|     // collection, RegionSpace::ClearFromSpace will clear and reclaim
 | |
|     // the space used by this region, and tag it as unallocated/free.
 | |
|     void SetAsFromSpace() {
 | |
|       DCHECK(!IsFree() && IsInToSpace());
 | |
|       type_ = RegionType::kRegionTypeFromSpace;
 | |
|       if (IsNewlyAllocated()) {
 | |
|         // Clear the "newly allocated" status here, as we do not want the
 | |
|         // GC to see it when encountering references in the from-space.
 | |
|         //
 | |
|         // Invariant: There should be no newly-allocated region in the
 | |
|         // from-space (when the from-space exists, which is between the calls
 | |
|         // to RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace).
 | |
|         is_newly_allocated_ = false;
 | |
|       }
 | |
|       // Set live bytes to an invalid value, as we have made an
 | |
|       // evacuation decision (possibly based on the percentage of live
 | |
|       // bytes).
 | |
|       live_bytes_ = static_cast<size_t>(-1);
 | |
|     }
 | |
| 
 | |
|     // Set this region as unevacuated from-space. At the end of the
 | |
|     // collection, RegionSpace::ClearFromSpace will preserve the space
 | |
|     // used by this region, and tag it as to-space (see
 | |
|     // Region::SetUnevacFromSpaceAsToSpace below).
 | |
|     void SetAsUnevacFromSpace(bool clear_live_bytes);
 | |
| 
 | |
|     // Set this region as to-space. Used by RegionSpace::ClearFromSpace.
 | |
|     // This is only valid if it is currently an unevac from-space region.
 | |
|     void SetUnevacFromSpaceAsToSpace() {
 | |
|       DCHECK(!IsFree() && IsInUnevacFromSpace());
 | |
|       type_ = RegionType::kRegionTypeToSpace;
 | |
|     }
 | |
| 
 | |
|     // Return whether this region should be evacuated. Used by RegionSpace::SetFromSpace.
 | |
|     ALWAYS_INLINE bool ShouldBeEvacuated(EvacMode evac_mode);
 | |
| 
 | |
|     void AddLiveBytes(size_t live_bytes) {
 | |
|       DCHECK(GetUseGenerationalCC() || IsInUnevacFromSpace());
 | |
|       DCHECK(!IsLargeTail());
 | |
|       DCHECK_NE(live_bytes_, static_cast<size_t>(-1));
 | |
|       // For large allocations, we always consider all bytes in the regions live.
 | |
|       live_bytes_ += IsLarge() ? Top() - begin_ : live_bytes;
 | |
|       DCHECK_LE(live_bytes_, BytesAllocated());
 | |
|     }
 | |
| 
 | |
|     bool AllAllocatedBytesAreLive() const {
 | |
|       return LiveBytes() == static_cast<size_t>(Top() - Begin());
 | |
|     }
 | |
| 
 | |
|     size_t LiveBytes() const {
 | |
|       return live_bytes_;
 | |
|     }
 | |
| 
 | |
|     // Returns the number of allocated bytes.  "Bulk allocated" bytes in active TLABs are excluded.
 | |
|     size_t BytesAllocated() const;
 | |
| 
 | |
|     size_t ObjectsAllocated() const;
 | |
| 
 | |
|     uint8_t* Begin() const {
 | |
|       return begin_;
 | |
|     }
 | |
| 
 | |
|     ALWAYS_INLINE uint8_t* Top() const {
 | |
|       return top_.load(std::memory_order_relaxed);
 | |
|     }
 | |
| 
 | |
|     void SetTop(uint8_t* new_top) {
 | |
|       top_.store(new_top, std::memory_order_relaxed);
 | |
|     }
 | |
| 
 | |
|     uint8_t* End() const {
 | |
|       return end_;
 | |
|     }
 | |
| 
 | |
|     bool Contains(mirror::Object* ref) const {
 | |
|       return begin_ <= reinterpret_cast<uint8_t*>(ref) && reinterpret_cast<uint8_t*>(ref) < end_;
 | |
|     }
 | |
| 
 | |
|     void Dump(std::ostream& os) const;
 | |
| 
 | |
|     void RecordThreadLocalAllocations(size_t num_objects, size_t num_bytes) {
 | |
|       DCHECK(IsAllocated());
 | |
|       DCHECK_EQ(Top(), end_);
 | |
|       objects_allocated_.fetch_add(num_objects, std::memory_order_relaxed);
 | |
|       top_.store(begin_ + num_bytes, std::memory_order_relaxed);
 | |
|       DCHECK_LE(Top(), end_);
 | |
|     }
 | |
| 
 | |
|     uint64_t GetLongestConsecutiveFreeBytes() const;
 | |
| 
 | |
|    private:
 | |
|     static bool GetUseGenerationalCC();
 | |
| 
 | |
|     size_t idx_;                        // The region's index in the region space.
 | |
|     // Number of bytes in live objects, or -1 for newly allocated regions.  Used to compute
 | |
|     // percent live for region evacuation decisions, and to determine whether an unevacuated
 | |
|     // region is completely empty, and thus can be reclaimed. Reset to zero either at the
 | |
|     // beginning of MarkingPhase(), or during the flip for a nongenerational GC, where we
 | |
|     // don't have a separate mark phase. It is then incremented whenever a mark bit in that
 | |
|     // region is set.
 | |
|     size_t live_bytes_;                 // The live bytes. Used to compute the live percent.
 | |
|     uint8_t* begin_;                    // The begin address of the region.
 | |
|     Thread* thread_;                    // The owning thread if it's a tlab.
 | |
|     // Note that `top_` can be higher than `end_` in the case of a
 | |
|     // large region, where an allocated object spans multiple regions
 | |
|     // (large region + one or more large tail regions).
 | |
|     Atomic<uint8_t*> top_;              // The current position of the allocation.
 | |
|     uint8_t* end_;                      // The end address of the region.
 | |
|     // objects_allocated_ is accessed using memory_order_relaxed. Treat as approximate when there
 | |
|     // are concurrent updates.
 | |
|     Atomic<size_t> objects_allocated_;  // The number of objects allocated.
 | |
|     uint32_t alloc_time_;               // The allocation time of the region.
 | |
|     // Note that newly allocated and evacuated regions use -1 as
 | |
|     // special value for `live_bytes_`.
 | |
|     bool is_newly_allocated_;           // True if it's allocated after the last collection.
 | |
|     bool is_a_tlab_;                    // True if it's a tlab.
 | |
|     RegionState state_;                 // The region state (see RegionState).
 | |
|     RegionType type_;                   // The region type (see RegionType).
 | |
| 
 | |
|     friend class RegionSpace;
 | |
|   };
 | |
| 
 | |
|   template<bool kToSpaceOnly, typename Visitor>
 | |
|   ALWAYS_INLINE void WalkInternal(Visitor&& visitor) NO_THREAD_SAFETY_ANALYSIS;
 | |
| 
 | |
|   // Visitor will be iterating on objects in increasing address order.
 | |
|   template<typename Visitor>
 | |
|   ALWAYS_INLINE void WalkNonLargeRegion(Visitor&& visitor, const Region* r)
 | |
|       NO_THREAD_SAFETY_ANALYSIS;
 | |
| 
 | |
|   Region* RefToRegion(mirror::Object* ref) REQUIRES(!region_lock_) {
 | |
|     MutexLock mu(Thread::Current(), region_lock_);
 | |
|     return RefToRegionLocked(ref);
 | |
|   }
 | |
| 
 | |
|   void TraceHeapSize() REQUIRES(region_lock_);
 | |
| 
 | |
|   Region* RefToRegionUnlocked(mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS {
 | |
|     // For a performance reason (this is frequently called via
 | |
|     // RegionSpace::IsInFromSpace, etc.) we avoid taking a lock here.
 | |
|     // Note that since we only change a region from to-space to (evac)
 | |
|     // from-space during a pause (in RegionSpace::SetFromSpace) and
 | |
|     // from (evac) from-space to free (after GC is done), as long as
 | |
|     // `ref` is a valid reference into an allocated region, it's safe
 | |
|     // to access the region state without the lock.
 | |
|     return RefToRegionLocked(ref);
 | |
|   }
 | |
| 
 | |
|   Region* RefToRegionLocked(mirror::Object* ref) REQUIRES(region_lock_) {
 | |
|     DCHECK(HasAddress(ref));
 | |
|     uintptr_t offset = reinterpret_cast<uintptr_t>(ref) - reinterpret_cast<uintptr_t>(Begin());
 | |
|     size_t reg_idx = offset / kRegionSize;
 | |
|     DCHECK_LT(reg_idx, num_regions_);
 | |
|     Region* reg = ®ions_[reg_idx];
 | |
|     DCHECK_EQ(reg->Idx(), reg_idx);
 | |
|     DCHECK(reg->Contains(ref));
 | |
|     return reg;
 | |
|   }
 | |
| 
 | |
|   // Return the object location following `obj` in the region space
 | |
|   // (i.e., the object location at `obj + obj->SizeOf()`).
 | |
|   //
 | |
|   // Note that unless
 | |
|   // - the region containing `obj` is fully used; and
 | |
|   // - `obj` is not the last object of that region;
 | |
|   // the returned location is not guaranteed to be a valid object.
 | |
|   static mirror::Object* GetNextObject(mirror::Object* obj)
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_);
 | |
| 
 | |
|   void AdjustNonFreeRegionLimit(size_t new_non_free_region_index) REQUIRES(region_lock_) {
 | |
|     DCHECK_LT(new_non_free_region_index, num_regions_);
 | |
|     non_free_region_index_limit_ = std::max(non_free_region_index_limit_,
 | |
|                                             new_non_free_region_index + 1);
 | |
|     VerifyNonFreeRegionLimit();
 | |
|   }
 | |
| 
 | |
|   void SetNonFreeRegionLimit(size_t new_non_free_region_index_limit) REQUIRES(region_lock_) {
 | |
|     DCHECK_LE(new_non_free_region_index_limit, num_regions_);
 | |
|     non_free_region_index_limit_ = new_non_free_region_index_limit;
 | |
|     VerifyNonFreeRegionLimit();
 | |
|   }
 | |
| 
 | |
|   // Implementation of this invariant:
 | |
|   // for all `i >= non_free_region_index_limit_`, `regions_[i].IsFree()` is true.
 | |
|   void VerifyNonFreeRegionLimit() REQUIRES(region_lock_) {
 | |
|     if (kIsDebugBuild && non_free_region_index_limit_ < num_regions_) {
 | |
|       for (size_t i = non_free_region_index_limit_; i < num_regions_; ++i) {
 | |
|         CHECK(regions_[i].IsFree());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Region* AllocateRegion(bool for_evac) REQUIRES(region_lock_);
 | |
|   void RevokeThreadLocalBuffersLocked(Thread* thread, bool reuse) REQUIRES(region_lock_);
 | |
| 
 | |
|   // Scan region range [`begin`, `end`) in increasing order to try to
 | |
|   // allocate a large region having a size of `num_regs_in_large_region`
 | |
|   // regions. If there is no space in the region space to allocate this
 | |
|   // large region, return null.
 | |
|   //
 | |
|   // If argument `next_region` is not null, use `*next_region` to
 | |
|   // return the index to the region next to the allocated large region
 | |
|   // returned by this method.
 | |
|   template<bool kForEvac>
 | |
|   mirror::Object* AllocLargeInRange(size_t begin,
 | |
|                                     size_t end,
 | |
|                                     size_t num_regs_in_large_region,
 | |
|                                     /* out */ size_t* bytes_allocated,
 | |
|                                     /* out */ size_t* usable_size,
 | |
|                                     /* out */ size_t* bytes_tl_bulk_allocated,
 | |
|                                     /* out */ size_t* next_region = nullptr) REQUIRES(region_lock_);
 | |
| 
 | |
|   // Check that the value of `r->LiveBytes()` matches the number of
 | |
|   // (allocated) bytes used by live objects according to the live bits
 | |
|   // in the region space bitmap range corresponding to region `r`.
 | |
|   void CheckLiveBytesAgainstRegionBitmap(Region* r);
 | |
| 
 | |
|   // Poison memory areas used by dead objects within unevacuated
 | |
|   // region `r`. This is meant to detect dangling references to dead
 | |
|   // objects earlier in debug mode.
 | |
|   void PoisonDeadObjectsInUnevacuatedRegion(Region* r);
 | |
| 
 | |
|   Mutex region_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
 | |
| 
 | |
|   // Cached version of Heap::use_generational_cc_.
 | |
|   const bool use_generational_cc_;
 | |
|   uint32_t time_;                  // The time as the number of collections since the startup.
 | |
|   size_t num_regions_;             // The number of regions in this space.
 | |
|   uint64_t madvise_time_;          // The amount of time spent in madvise for purging pages.
 | |
|   // The number of non-free regions in this space.
 | |
|   size_t num_non_free_regions_ GUARDED_BY(region_lock_);
 | |
| 
 | |
|   // The number of evac regions allocated during collection. 0 when GC not running.
 | |
|   size_t num_evac_regions_ GUARDED_BY(region_lock_);
 | |
| 
 | |
|   // Maintain the maximum of number of non-free regions collected just before
 | |
|   // reclaim in each GC cycle. At this moment in cycle, highest number of
 | |
|   // regions are in non-free.
 | |
|   size_t max_peak_num_non_free_regions_;
 | |
| 
 | |
|   // The pointer to the region array.
 | |
|   std::unique_ptr<Region[]> regions_ GUARDED_BY(region_lock_);
 | |
| 
 | |
|   // To hold partially used TLABs which can be reassigned to threads later for
 | |
|   // utilizing the un-used portion.
 | |
|   std::multimap<size_t, Region*, std::greater<size_t>> partial_tlabs_ GUARDED_BY(region_lock_);
 | |
|   // The upper-bound index of the non-free regions. Used to avoid scanning all regions in
 | |
|   // RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace.
 | |
|   //
 | |
|   // Invariant (verified by RegionSpace::VerifyNonFreeRegionLimit):
 | |
|   //   for all `i >= non_free_region_index_limit_`, `regions_[i].IsFree()` is true.
 | |
|   size_t non_free_region_index_limit_ GUARDED_BY(region_lock_);
 | |
| 
 | |
|   Region* current_region_;         // The region currently used for allocation.
 | |
|   Region* evac_region_;            // The region currently used for evacuation.
 | |
|   Region full_region_;             // The fake/sentinel region that looks full.
 | |
| 
 | |
|   // Index into the region array pointing to the starting region when
 | |
|   // trying to allocate a new region. Only used when
 | |
|   // `kCyclicRegionAllocation` is true.
 | |
|   size_t cyclic_alloc_region_index_ GUARDED_BY(region_lock_);
 | |
| 
 | |
|   // Mark bitmap used by the GC.
 | |
|   accounting::ContinuousSpaceBitmap mark_bitmap_;
 | |
| 
 | |
|   DISALLOW_COPY_AND_ASSIGN(RegionSpace);
 | |
| };
 | |
| 
 | |
| std::ostream& operator<<(std::ostream& os, RegionSpace::RegionState value);
 | |
| std::ostream& operator<<(std::ostream& os, RegionSpace::RegionType value);
 | |
| 
 | |
| }  // namespace space
 | |
| }  // namespace gc
 | |
| }  // namespace art
 | |
| 
 | |
| #endif  // ART_RUNTIME_GC_SPACE_REGION_SPACE_H_
 |