394 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			394 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2011 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
 | |
| #define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <memory>
 | |
| 
 | |
| #include "common_runtime_test.h"
 | |
| #include "handle_scope-inl.h"
 | |
| #include "mirror/array-inl.h"
 | |
| #include "mirror/class-inl.h"
 | |
| #include "mirror/class_loader.h"
 | |
| #include "mirror/object-inl.h"
 | |
| #include "runtime_globals.h"
 | |
| #include "scoped_thread_state_change-inl.h"
 | |
| #include "thread_list.h"
 | |
| #include "zygote_space.h"
 | |
| 
 | |
| namespace art {
 | |
| namespace gc {
 | |
| namespace space {
 | |
| 
 | |
| template <class Super>
 | |
| class SpaceTest : public Super {
 | |
|  public:
 | |
|   jobject byte_array_class_ = nullptr;
 | |
| 
 | |
|   void AddSpace(ContinuousSpace* space, bool revoke = true) {
 | |
|     Heap* heap = Runtime::Current()->GetHeap();
 | |
|     if (revoke) {
 | |
|       heap->RevokeAllThreadLocalBuffers();
 | |
|     }
 | |
|     {
 | |
|       ScopedThreadStateChange sts(Thread::Current(), ThreadState::kSuspended);
 | |
|       ScopedSuspendAll ssa("Add image space");
 | |
|       heap->AddSpace(space);
 | |
|     }
 | |
|     heap->SetSpaceAsDefault(space);
 | |
|   }
 | |
| 
 | |
|   ObjPtr<mirror::Class> GetByteArrayClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     if (byte_array_class_ == nullptr) {
 | |
|       ObjPtr<mirror::Class> byte_array_class =
 | |
|           Runtime::Current()->GetClassLinker()->FindSystemClass(self, "[B");
 | |
|       EXPECT_TRUE(byte_array_class != nullptr);
 | |
|       byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class.Ptr());
 | |
|       EXPECT_TRUE(byte_array_class_ != nullptr);
 | |
|     }
 | |
|     return self->DecodeJObject(byte_array_class_)->AsClass();
 | |
|   }
 | |
| 
 | |
|   mirror::Object* Alloc(space::MallocSpace* alloc_space,
 | |
|                         Thread* self,
 | |
|                         size_t bytes,
 | |
|                         size_t* bytes_allocated,
 | |
|                         size_t* usable_size,
 | |
|                         size_t* bytes_tl_bulk_allocated)
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     StackHandleScope<1> hs(self);
 | |
|     Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
 | |
|     mirror::Object* obj = alloc_space->Alloc(self,
 | |
|                                              bytes,
 | |
|                                              bytes_allocated,
 | |
|                                              usable_size,
 | |
|                                              bytes_tl_bulk_allocated);
 | |
|     if (obj != nullptr) {
 | |
|       InstallClass(obj, byte_array_class.Get(), bytes);
 | |
|     }
 | |
|     return obj;
 | |
|   }
 | |
| 
 | |
|   mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space,
 | |
|                                   Thread* self,
 | |
|                                   size_t bytes,
 | |
|                                   size_t* bytes_allocated,
 | |
|                                   size_t* usable_size,
 | |
|                                   size_t* bytes_tl_bulk_allocated)
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     StackHandleScope<1> hs(self);
 | |
|     Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
 | |
|     mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
 | |
|                                                        bytes_tl_bulk_allocated);
 | |
|     if (obj != nullptr) {
 | |
|       InstallClass(obj, byte_array_class.Get(), bytes);
 | |
|     }
 | |
|     return obj;
 | |
|   }
 | |
| 
 | |
|   void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
 | |
|       REQUIRES_SHARED(Locks::mutator_lock_) {
 | |
|     // Note the minimum size, which is the size of a zero-length byte array.
 | |
|     EXPECT_GE(size, SizeOfZeroLengthByteArray());
 | |
|     EXPECT_TRUE(byte_array_class != nullptr);
 | |
|     o->SetClass(byte_array_class);
 | |
|     if (kUseBakerReadBarrier) {
 | |
|       // Like the proper heap object allocation, install and verify
 | |
|       // the correct read barrier state.
 | |
|       o->AssertReadBarrierState();
 | |
|     }
 | |
|     ObjPtr<mirror::Array> arr = o->AsArray<kVerifyNone>();
 | |
|     size_t header_size = SizeOfZeroLengthByteArray();
 | |
|     int32_t length = size - header_size;
 | |
|     arr->SetLength(length);
 | |
|     EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
 | |
|   }
 | |
| 
 | |
|   static size_t SizeOfZeroLengthByteArray() {
 | |
|     return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
 | |
|   }
 | |
| 
 | |
|   typedef MallocSpace* (*CreateSpaceFn)(const std::string& name,
 | |
|                                         size_t initial_size,
 | |
|                                         size_t growth_limit,
 | |
|                                         size_t capacity);
 | |
| 
 | |
|   void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
 | |
|                                            int round, size_t growth_limit);
 | |
|   void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
 | |
| };
 | |
| 
 | |
| static inline size_t test_rand(size_t* seed) {
 | |
|   *seed = *seed * 1103515245 + 12345;
 | |
|   return *seed;
 | |
| }
 | |
| 
 | |
| template <class Super>
 | |
| void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space,
 | |
|                                                            intptr_t object_size,
 | |
|                                                            int round,
 | |
|                                                            size_t growth_limit) {
 | |
|   if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
 | |
|       ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
 | |
|     // No allocation can succeed
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The space's footprint equals amount of resources requested from system
 | |
|   size_t footprint = space->GetFootprint();
 | |
| 
 | |
|   // The space must at least have its book keeping allocated
 | |
|   EXPECT_GT(footprint, 0u);
 | |
| 
 | |
|   // But it shouldn't exceed the initial size
 | |
|   EXPECT_LE(footprint, growth_limit);
 | |
| 
 | |
|   // space's size shouldn't exceed the initial size
 | |
|   EXPECT_LE(space->Size(), growth_limit);
 | |
| 
 | |
|   // this invariant should always hold or else the space has grown to be larger than what the
 | |
|   // space believes its size is (which will break invariants)
 | |
|   EXPECT_GE(space->Size(), footprint);
 | |
| 
 | |
|   // Fill the space with lots of small objects up to the growth limit
 | |
|   size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
 | |
|   std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
 | |
|   size_t last_object = 0;  // last object for which allocation succeeded
 | |
|   size_t amount_allocated = 0;  // amount of space allocated
 | |
|   Thread* self = Thread::Current();
 | |
|   ScopedObjectAccess soa(self);
 | |
|   size_t rand_seed = 123456789;
 | |
|   for (size_t i = 0; i < max_objects; i++) {
 | |
|     size_t alloc_fails = 0;  // number of failed allocations
 | |
|     size_t max_fails = 30;  // number of times we fail allocation before giving up
 | |
|     for (; alloc_fails < max_fails; alloc_fails++) {
 | |
|       size_t alloc_size;
 | |
|       if (object_size > 0) {
 | |
|         alloc_size = object_size;
 | |
|       } else {
 | |
|         alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
 | |
|         // Note the minimum size, which is the size of a zero-length byte array.
 | |
|         size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
 | |
|         if (alloc_size < size_of_zero_length_byte_array) {
 | |
|           alloc_size = size_of_zero_length_byte_array;
 | |
|         }
 | |
|       }
 | |
|       StackHandleScope<1> hs(soa.Self());
 | |
|       auto object(hs.NewHandle<mirror::Object>(nullptr));
 | |
|       size_t bytes_allocated = 0;
 | |
|       size_t bytes_tl_bulk_allocated;
 | |
|       if (round <= 1) {
 | |
|         object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
 | |
|                             &bytes_tl_bulk_allocated));
 | |
|       } else {
 | |
|         object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
 | |
|                                       &bytes_tl_bulk_allocated));
 | |
|       }
 | |
|       footprint = space->GetFootprint();
 | |
|       EXPECT_GE(space->Size(), footprint);  // invariant
 | |
|       if (object != nullptr) {  // allocation succeeded
 | |
|         lots_of_objects[i] = object.Get();
 | |
|         size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
 | |
|         EXPECT_EQ(bytes_allocated, allocation_size);
 | |
|         if (object_size > 0) {
 | |
|           EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
 | |
|         } else {
 | |
|           EXPECT_GE(allocation_size, 8u);
 | |
|         }
 | |
|         EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
 | |
|                     bytes_tl_bulk_allocated >= allocation_size);
 | |
|         amount_allocated += allocation_size;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (alloc_fails == max_fails) {
 | |
|       last_object = i;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   CHECK_NE(last_object, 0u);  // we should have filled the space
 | |
|   EXPECT_GT(amount_allocated, 0u);
 | |
| 
 | |
|   // We shouldn't have gone past the growth_limit
 | |
|   EXPECT_LE(amount_allocated, growth_limit);
 | |
|   EXPECT_LE(footprint, growth_limit);
 | |
|   EXPECT_LE(space->Size(), growth_limit);
 | |
| 
 | |
|   // footprint and size should agree with amount allocated
 | |
|   EXPECT_GE(footprint, amount_allocated);
 | |
|   EXPECT_GE(space->Size(), amount_allocated);
 | |
| 
 | |
|   // Release storage in a semi-adhoc manner
 | |
|   size_t free_increment = 96;
 | |
|   while (true) {
 | |
|     {
 | |
|       ScopedThreadStateChange tsc(self, ThreadState::kNative);
 | |
|       // Give the space a haircut.
 | |
|       space->Trim();
 | |
|     }
 | |
| 
 | |
|     // Bounds consistency check.
 | |
|     footprint = space->GetFootprint();
 | |
|     EXPECT_LE(amount_allocated, growth_limit);
 | |
|     EXPECT_GE(footprint, amount_allocated);
 | |
|     EXPECT_LE(footprint, growth_limit);
 | |
|     EXPECT_GE(space->Size(), amount_allocated);
 | |
|     EXPECT_LE(space->Size(), growth_limit);
 | |
| 
 | |
|     if (free_increment == 0) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Free some objects
 | |
|     for (size_t i = 0; i < last_object; i += free_increment) {
 | |
|       mirror::Object* object = lots_of_objects.get()[i];
 | |
|       if (object == nullptr) {
 | |
|         continue;
 | |
|       }
 | |
|       size_t allocation_size = space->AllocationSize(object, nullptr);
 | |
|       if (object_size > 0) {
 | |
|         EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
 | |
|       } else {
 | |
|         EXPECT_GE(allocation_size, 8u);
 | |
|       }
 | |
|       space->Free(self, object);
 | |
|       lots_of_objects.get()[i] = nullptr;
 | |
|       amount_allocated -= allocation_size;
 | |
|       footprint = space->GetFootprint();
 | |
|       EXPECT_GE(space->Size(), footprint);  // invariant
 | |
|     }
 | |
| 
 | |
|     free_increment >>= 1;
 | |
|   }
 | |
| 
 | |
|   // The space has become empty here before allocating a large object
 | |
|   // below. For RosAlloc, revoke thread-local runs, which are kept
 | |
|   // even when empty for a performance reason, so that they won't
 | |
|   // cause the following large object allocation to fail due to
 | |
|   // potential fragmentation. Note they are normally revoked at each
 | |
|   // GC (but no GC here.)
 | |
|   space->RevokeAllThreadLocalBuffers();
 | |
| 
 | |
|   // All memory was released, try a large allocation to check freed memory is being coalesced
 | |
|   StackHandleScope<1> hs(soa.Self());
 | |
|   auto large_object(hs.NewHandle<mirror::Object>(nullptr));
 | |
|   size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
 | |
|   size_t bytes_allocated = 0;
 | |
|   size_t bytes_tl_bulk_allocated;
 | |
|   if (round <= 1) {
 | |
|     large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
 | |
|                               &bytes_tl_bulk_allocated));
 | |
|   } else {
 | |
|     large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
 | |
|                                         nullptr, &bytes_tl_bulk_allocated));
 | |
|   }
 | |
|   EXPECT_TRUE(large_object != nullptr);
 | |
| 
 | |
|   // Consistency check of the footprint.
 | |
|   footprint = space->GetFootprint();
 | |
|   EXPECT_LE(footprint, growth_limit);
 | |
|   EXPECT_GE(space->Size(), footprint);
 | |
|   EXPECT_LE(space->Size(), growth_limit);
 | |
| 
 | |
|   // Clean up.
 | |
|   space->Free(self, large_object.Assign(nullptr));
 | |
| 
 | |
|   // Consistency check of the footprint.
 | |
|   footprint = space->GetFootprint();
 | |
|   EXPECT_LE(footprint, growth_limit);
 | |
|   EXPECT_GE(space->Size(), footprint);
 | |
|   EXPECT_LE(space->Size(), growth_limit);
 | |
| }
 | |
| 
 | |
| template <class Super>
 | |
| void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,
 | |
|                                                              CreateSpaceFn create_space) {
 | |
|   if (object_size < SizeOfZeroLengthByteArray()) {
 | |
|     // Too small for the object layout/model.
 | |
|     return;
 | |
|   }
 | |
|   size_t initial_size = 4 * MB;
 | |
|   size_t growth_limit = 8 * MB;
 | |
|   size_t capacity = 16 * MB;
 | |
|   MallocSpace* space(create_space("test", initial_size, growth_limit, capacity));
 | |
|   ASSERT_TRUE(space != nullptr);
 | |
| 
 | |
|   // Basic consistency check.
 | |
|   EXPECT_EQ(space->Capacity(), growth_limit);
 | |
|   EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
 | |
| 
 | |
|   // Make space findable to the heap, will also delete space when runtime is cleaned up
 | |
|   AddSpace(space);
 | |
| 
 | |
|   // In this round we don't allocate with growth and therefore can't grow past the initial size.
 | |
|   // This effectively makes the growth_limit the initial_size, so assert this.
 | |
|   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
 | |
|   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
 | |
|   // Remove growth limit
 | |
|   space->ClearGrowthLimit();
 | |
|   EXPECT_EQ(space->Capacity(), capacity);
 | |
|   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
 | |
| }
 | |
| 
 | |
| #define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
 | |
|   TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
 | |
|     SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
 | |
|   }
 | |
| 
 | |
| #define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
 | |
|   TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
 | |
|     SizeFootPrintGrowthLimitAndTrimDriver(-(size), spaceFn); \
 | |
|   }
 | |
| 
 | |
| #define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
 | |
|   class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \
 | |
|   }; \
 | |
|   \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
 | |
| 
 | |
| #define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
 | |
|   class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \
 | |
|   }; \
 | |
|   \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
 | |
|   TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
 | |
| 
 | |
| }  // namespace space
 | |
| }  // namespace gc
 | |
| }  // namespace art
 | |
| 
 | |
| #endif  // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
 |