298 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			298 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/AlignedAllocator.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| 
 | |
| 
 | |
| class ArgMaxPoolMicrokernelTester {
 | |
|  public:
 | |
|   enum class Variant {
 | |
|     Native,
 | |
|     Scalar,
 | |
|   };
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& output_pixels(size_t output_pixels) {
 | |
|     assert(output_pixels != 0);
 | |
|     this->output_pixels_ = output_pixels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_pixels() const {
 | |
|     return this->output_pixels_;
 | |
|   }
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& step(size_t step) {
 | |
|     assert(step != 0);
 | |
|     this->step_ = step;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t step() const {
 | |
|     return this->step_;
 | |
|   }
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& input_offset(size_t input_offset) {
 | |
|     assert(input_offset != 0);
 | |
|     this->input_offset_ = input_offset;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_offset() const {
 | |
|     return this->input_offset_;
 | |
|   }
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& pooling_elements(size_t pooling_elements) {
 | |
|     assert(pooling_elements != 0);
 | |
|     this->pooling_elements_ = pooling_elements;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t pooling_elements() const {
 | |
|     return this->pooling_elements_;
 | |
|   }
 | |
| 
 | |
|   inline size_t packed_pooling_elements() const {
 | |
|     if (pooling_elements() <= primary_pooling_tile()) {
 | |
|       return primary_pooling_tile();
 | |
|     } else {
 | |
|       return (pooling_elements() - primary_pooling_tile()) % incremental_pooling_tile() == 0 ? pooling_elements() : ((pooling_elements() - primary_pooling_tile()) / incremental_pooling_tile() + 1) * incremental_pooling_tile() + primary_pooling_tile();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& pooling_tile(size_t primary_tile) {
 | |
|     assert(primary_tile != 0);
 | |
|     this->primary_pooling_tile_ = primary_tile;
 | |
|     this->incremental_pooling_tile_ = 0;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& pooling_tile(size_t primary_tile, size_t incremental_tile) {
 | |
|     assert(primary_tile != 0);
 | |
|     this->primary_pooling_tile_ = primary_tile;
 | |
|     this->incremental_pooling_tile_ = incremental_tile;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& primary_pooling_tile(size_t primary_pooling_tile) {
 | |
|     assert(primary_pooling_tile != 0);
 | |
|     this->primary_pooling_tile_ = primary_pooling_tile;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t primary_pooling_tile() const {
 | |
|     return this->primary_pooling_tile_;
 | |
|   }
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& incremental_pooling_tile(size_t incremental_pooling_tile) {
 | |
|     assert(incremental_pooling_tile != 0);
 | |
|     this->incremental_pooling_tile_ = incremental_pooling_tile;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t incremental_pooling_tile() const {
 | |
|     return this->incremental_pooling_tile_;
 | |
|   }
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& channels(size_t channels) {
 | |
|     assert(channels != 0);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& output_stride(size_t output_stride) {
 | |
|     assert(output_stride != 0);
 | |
|     this->output_stride_ = output_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_stride() const {
 | |
|     if (this->output_stride_ == 0) {
 | |
|       return channels();
 | |
|     } else {
 | |
|       assert(this->output_stride_ >= channels());
 | |
|       return this->output_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline ArgMaxPoolMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_argmaxpool_unipass_ukernel_function argmaxpool, Variant variant = Variant::Native) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       ((output_pixels() - 1) * step() + pooling_elements()) * channels());
 | |
|     std::vector<float> output((output_pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<uint32_t> index(output_pixels() * channels());
 | |
|     std::vector<float> output_ref(output_pixels() * channels());
 | |
|     std::vector<uint32_t> index_ref(output_pixels() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
 | |
|         indirect_input[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirect_input.begin(),
 | |
|         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float max_value = indirect_input[x * step()][c + input_offset()];
 | |
|           uint32_t max_index = 0;
 | |
|           for (size_t p = 0; p < pooling_elements(); p++) {
 | |
|             const float value = indirect_input[x * step() + p][c + input_offset()];
 | |
|             if (value > max_value) {
 | |
|               max_value = value;
 | |
|               max_index = p;
 | |
|             }
 | |
|           }
 | |
|           output_ref[x * channels() + c] = max_value;
 | |
|           index_ref[x * channels() + c] = max_index;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       argmaxpool(output_pixels(), pooling_elements(), channels(),
 | |
|         indirect_input.data(), input_offset() * sizeof(float), output.data(), index.data(),
 | |
|         step() * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(float));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_EQ(output_ref[x * channels() + c], output[x * output_stride() + c])
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_EQ(
 | |
|               indirect_input[x * step() + index_ref[x * channels() + c]][c + input_offset()],
 | |
|               indirect_input[x * step() + index[x * channels() + c]][c + input_offset()])
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_EQ(index_ref[x * channels() + c], index[x * channels() + c])
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_argmaxpool_multipass_ukernel_function argmaxpool, Variant variant = Variant::Native) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       ((output_pixels() - 1) * step() + pooling_elements()) * channels());
 | |
|     std::vector<float> output((output_pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<uint32_t> index(output_pixels() * channels());
 | |
|     std::vector<uint32_t, AlignedAllocator<uint32_t, 64>> index_buffer(
 | |
|       channels() + XNN_EXTRA_BYTES / sizeof(uint32_t));
 | |
|     std::vector<float, AlignedAllocator<float, 64>> output_buffer(
 | |
|       channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output_ref(output_pixels() * channels());
 | |
|     std::vector<uint32_t> index_ref(output_pixels() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
 | |
|         indirect_input[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirect_input.begin(),
 | |
|         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float max_value = indirect_input[x * step()][c + input_offset()];
 | |
|           uint32_t max_index = 0;
 | |
|           for (size_t p = 0; p < pooling_elements(); p++) {
 | |
|             const float value = indirect_input[x * step() + p][c + input_offset()];
 | |
|             if (value > max_value) {
 | |
|               max_value = value;
 | |
|               max_index = p;
 | |
|             }
 | |
|           }
 | |
|           output_ref[x * channels() + c] = max_value;
 | |
|           index_ref[x * channels() + c] = max_index;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       argmaxpool(output_pixels(), pooling_elements(), channels(),
 | |
|         indirect_input.data(), input_offset() * sizeof(float),
 | |
|         output_buffer.data(), index_buffer.data(),
 | |
|         output.data(), index.data(),
 | |
|         (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(float));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_EQ(output_ref[x * channels() + c], output[x * output_stride() + c])
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_EQ(
 | |
|               indirect_input[x * step() + index_ref[x * channels() + c]][c + input_offset()],
 | |
|               indirect_input[x * step() + index[x * channels() + c]][c + input_offset()])
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_EQ(index_ref[x * channels() + c], index[x * channels() + c])
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t output_pixels_{1};
 | |
|   size_t pooling_elements_{1};
 | |
|   size_t channels_{1};
 | |
|   size_t input_offset_{0};
 | |
|   size_t step_{1};
 | |
|   size_t primary_pooling_tile_{1};
 | |
|   size_t incremental_pooling_tile_{1};
 | |
|   size_t output_stride_{0};
 | |
|   size_t iterations_{3};
 | |
| };
 |