763 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			763 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright (c) Facebook, Inc. and its affiliates.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/AlignedAllocator.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| #include <xnnpack/requantization.h>
 | |
| 
 | |
| 
 | |
| class AvgPoolMicrokernelTester {
 | |
|  public:
 | |
|   inline AvgPoolMicrokernelTester& output_pixels(size_t output_pixels) {
 | |
|     assert(output_pixels != 0);
 | |
|     this->output_pixels_ = output_pixels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_pixels() const {
 | |
|     return this->output_pixels_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& step(size_t step) {
 | |
|     assert(step != 0);
 | |
|     this->step_ = step;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t step() const {
 | |
|     return this->step_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& input_offset(size_t input_offset) {
 | |
|     assert(input_offset != 0);
 | |
|     this->input_offset_ = input_offset;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_offset() const {
 | |
|     return this->input_offset_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& zero_index(size_t zero_index) {
 | |
|     this->zero_index_ = zero_index;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t zero_index() const {
 | |
|     return this->zero_index_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& pooling_elements(size_t pooling_elements) {
 | |
|     assert(pooling_elements != 0);
 | |
|     this->pooling_elements_ = pooling_elements;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t pooling_elements() const {
 | |
|     return this->pooling_elements_;
 | |
|   }
 | |
| 
 | |
|   inline size_t packed_pooling_elements() const {
 | |
|     if (pooling_elements() <= primary_pooling_tile()) {
 | |
|       return primary_pooling_tile();
 | |
|     } else {
 | |
|       return (pooling_elements() - primary_pooling_tile()) % incremental_pooling_tile() == 0 ? pooling_elements() : ((pooling_elements() - primary_pooling_tile()) / incremental_pooling_tile() + 1) * incremental_pooling_tile() + primary_pooling_tile();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& pooling_tile(size_t primary_tile, size_t incremental_tile = 0) {
 | |
|     assert(primary_tile != 0);
 | |
|     this->primary_pooling_tile_ = primary_tile;
 | |
|     this->incremental_pooling_tile_ = incremental_tile;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& primary_pooling_tile(size_t primary_pooling_tile) {
 | |
|     assert(primary_pooling_tile != 0);
 | |
|     this->primary_pooling_tile_ = primary_pooling_tile;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t primary_pooling_tile() const {
 | |
|     return this->primary_pooling_tile_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& incremental_pooling_tile(size_t incremental_pooling_tile) {
 | |
|     assert(incremental_pooling_tile != 0);
 | |
|     this->incremental_pooling_tile_ = incremental_pooling_tile;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t incremental_pooling_tile() const {
 | |
|     return this->incremental_pooling_tile_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& channels(size_t channels) {
 | |
|     assert(channels != 0);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& output_stride(size_t output_stride) {
 | |
|     assert(output_stride != 0);
 | |
|     this->output_stride_ = output_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_stride() const {
 | |
|     if (this->output_stride_ == 0) {
 | |
|       return channels();
 | |
|     } else {
 | |
|       assert(this->output_stride_ >= channels());
 | |
|       return this->output_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& input_scale(float input_scale) {
 | |
|     assert(input_scale > 0.0f);
 | |
|     assert(std::isnormal(input_scale));
 | |
|     this->input_scale_ = input_scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float input_scale() const {
 | |
|     return this->input_scale_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& input_zero_point(uint8_t input_zero_point) {
 | |
|     this->input_zero_point_ = input_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t input_zero_point() const {
 | |
|     return this->input_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& output_scale(float output_scale) {
 | |
|     assert(output_scale > 0.0f);
 | |
|     assert(std::isnormal(output_scale));
 | |
|     this->output_scale_ = output_scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float output_scale() const {
 | |
|     return this->output_scale_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& output_zero_point(uint8_t output_zero_point) {
 | |
|     this->output_zero_point_ = output_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t output_zero_point() const {
 | |
|     return this->output_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline AvgPoolMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_qu8_avgpool_minmax_unipass_ukernel_function avgpool_minmax, xnn_init_qu8_avgpool_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<const uint8_t*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
 | |
|     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
 | |
|       input_offset() + indirect_input.size() * channels());
 | |
|     std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> output((output_pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<uint8_t> output_ref(output_pixels() * channels());
 | |
|     std::vector<float> output_real(output_pixels() * channels());
 | |
|     std::vector<int32_t> accumulator(output_pixels() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       do {
 | |
|         std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend()));
 | |
|       std::fill(input.begin(), input.begin() + input_offset(), 0xA5);
 | |
|       std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(uint8_t), input.end(), 0xA5);
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
 | |
|         indirect_input[i] = input.data() + i * channels();
 | |
|       }
 | |
|       std::shuffle(indirect_input.begin(),
 | |
|         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         indirect_input[zero_index()] = zero.data();
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_qu8_avgpool_minmax_params params;
 | |
|       init_params(
 | |
|         ¶ms,
 | |
|         -int32_t(input_zero_point()) * int32_t(pooling_elements()),
 | |
|         input_scale() / (output_scale() * float(pooling_elements())),
 | |
|         output_zero_point(), qmin(), qmax());
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           int32_t acc = 0;
 | |
|           for (size_t p = 0; p < pooling_elements(); p++) {
 | |
|             const uint8_t* row = indirect_input[x * step() + p];
 | |
|             if (row != zero.data()) {
 | |
|               acc += int32_t(row[c + input_offset()]);
 | |
|             }
 | |
|             acc -= int32_t(input_zero_point());
 | |
|           }
 | |
|           accumulator[x * channels() + c] = acc;
 | |
|           output_ref[x * channels() + c] = xnn_qu8_requantize_rndna(
 | |
|             acc, input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax());
 | |
|           const float scaled_acc =
 | |
|             float(acc) * input_scale() / (output_scale() * float(pooling_elements())) + float(output_zero_point());
 | |
|           output_real[x * channels() + c] = std::min(std::max(scaled_acc, float(qmin())), float(qmax()));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       avgpool_minmax(output_pixels(), pooling_elements(), channels(),
 | |
|         indirect_input.data(), input_offset() * sizeof(uint8_t), zero.data(),
 | |
|         output.data(),
 | |
|         step() * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(uint8_t),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin()))
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax()))
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_NEAR(float(int32_t(output[x * output_stride() + c])), output_real[x * channels() + c], 0.5f)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c];
 | |
|           ASSERT_EQ(uint32_t(output_ref[x * channels() + c]), uint32_t(output[x * output_stride() + c]))
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_qu8_avgpool_minmax_multipass_ukernel_function avgpool_minmax, xnn_init_qu8_avgpool_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<const uint8_t*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
 | |
|     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
 | |
|       input_offset() + indirect_input.size() * channels());
 | |
|     std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> output((output_pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<uint8_t> output_ref(output_pixels() * channels());
 | |
|     std::vector<float> output_real(output_pixels() * channels());
 | |
|     std::vector<int32_t> accumulator(output_pixels() * channels());
 | |
|     std::vector<int32_t, AlignedAllocator<int32_t, 64>> buffer(XNN_EXTRA_BYTES / sizeof(uint8_t) + channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       do {
 | |
|         std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend()));
 | |
|       std::fill(input.begin(), input.begin() + input_offset(), 0xA5);
 | |
|       std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(uint8_t), input.end(), 0xA5);
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
 | |
|         indirect_input[i] = input.data() + i * channels();
 | |
|       }
 | |
|       std::shuffle(indirect_input.begin(),
 | |
|         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         indirect_input[zero_index()] = zero.data();
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_qu8_avgpool_minmax_params params;
 | |
|       init_params(
 | |
|         ¶ms,
 | |
|         -int32_t(input_zero_point()) * int32_t(pooling_elements()),
 | |
|         input_scale() / (output_scale() * float(pooling_elements())),
 | |
|         output_zero_point(), qmin(), qmax());
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           int32_t acc = 0;
 | |
|           for (size_t p = 0; p < pooling_elements(); p++) {
 | |
|             const uint8_t* row = indirect_input[x * step() + p];
 | |
|             if (row != zero.data()) {
 | |
|               acc += int32_t(row[c + input_offset()]);
 | |
|             }
 | |
|             acc -= int32_t(input_zero_point());
 | |
|           }
 | |
|           accumulator[x * channels() + c] = acc;
 | |
|           output_ref[x * channels() + c] = xnn_qu8_requantize_rndna(
 | |
|             acc, input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax());
 | |
|           const float scaled_acc =
 | |
|             float(acc) * input_scale() / (output_scale() * float(pooling_elements())) + float(output_zero_point());
 | |
|           output_real[x * channels() + c] = std::min(std::max(scaled_acc, float(qmin())), float(qmax()));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       avgpool_minmax(output_pixels(), pooling_elements(), channels(),
 | |
|         indirect_input.data(), input_offset() * sizeof(uint8_t), zero.data(),
 | |
|         buffer.data(), output.data(),
 | |
|         (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(uint8_t),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin()))
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax()))
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_NEAR(float(int32_t(output[x * output_stride() + c])), output_real[x * channels() + c], 0.5f)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c];
 | |
|           ASSERT_EQ(uint32_t(output_ref[x * channels() + c]), uint32_t(output[x * output_stride() + c]))
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_avgpool_minmax_unipass_ukernel_function avgpool_minmax, xnn_init_f32_scaleminmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
 | |
| 
 | |
|     std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       input_offset() + indirect_input.size() * channels());
 | |
|     std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output((output_pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(output_pixels() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
 | |
|       std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf(""));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
 | |
|         indirect_input[i] = input.data() + i * channels();
 | |
|       }
 | |
|       std::shuffle(indirect_input.begin(),
 | |
|         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         indirect_input[zero_index()] = zero.data();
 | |
|       }
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float acc = 0.0f;
 | |
|           for (size_t p = 0; p < pooling_elements(); p++) {
 | |
|             const float* row = indirect_input[x * step() + p];
 | |
|             if (row != zero.data()) {
 | |
|               acc += row[c + input_offset()];
 | |
|             }
 | |
|           }
 | |
|           output_ref[x * channels() + c] = acc / float(pooling_elements());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
 | |
|       const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_value : output_ref) {
 | |
|         output_value = std::max(std::min(output_value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_scaleminmax_params params;
 | |
|       init_params(¶ms, 1.0f / float(pooling_elements()), output_min, output_max);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       avgpool_minmax(output_pixels(), pooling_elements(), channels(),
 | |
|         indirect_input.data(), input_offset() * sizeof(float), zero.data(),
 | |
|         output.data(),
 | |
|         step() * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(float),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(output[x * output_stride() + c], output_min)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_LE(output[x * output_stride() + c], output_max)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_NEAR(
 | |
|               output[x * output_stride() + c],
 | |
|               output_ref[x * channels() + c],
 | |
|               std::abs(output_ref[x * channels() + c]) * 1.0e-6f)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_avgpool_minmax_multipass_ukernel_function avgpool_minmax, xnn_init_f32_scaleminmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
 | |
| 
 | |
|     std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       input_offset() + indirect_input.size() * channels());
 | |
|     std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output((output_pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(output_pixels() * channels());
 | |
|     std::vector<float, AlignedAllocator<float, 64>> buffer(XNN_EXTRA_BYTES / sizeof(float) + channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
 | |
|       std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf(""));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
 | |
|         indirect_input[i] = input.data() + i * channels();
 | |
|       }
 | |
|       std::shuffle(indirect_input.begin(),
 | |
|         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         indirect_input[zero_index()] = zero.data();
 | |
|       }
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float acc = 0.0f;
 | |
|           for (size_t p = 0; p < pooling_elements(); p++) {
 | |
|             const float* row = indirect_input[x * step() + p];
 | |
|             if (row != zero.data()) {
 | |
|               acc += row[c + input_offset()];
 | |
|             }
 | |
|           }
 | |
|           output_ref[x * channels() + c] = acc / float(pooling_elements());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
 | |
|       const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_value : output_ref) {
 | |
|         output_value = std::max(std::min(output_value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_scaleminmax_params params;
 | |
|       init_params(¶ms, 1.0f / float(pooling_elements()), output_min, output_max);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       avgpool_minmax(output_pixels(), pooling_elements(), channels(),
 | |
|         indirect_input.data(), input_offset() * sizeof(float), zero.data(),
 | |
|         buffer.data(), output.data(),
 | |
|         (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(float),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(output[x * output_stride() + c], output_min)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_LE(output[x * output_stride() + c], output_max)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_NEAR(
 | |
|               output[x * output_stride() + c],
 | |
|               output_ref[x * channels() + c],
 | |
|               std::abs(output_ref[x * channels() + c]) * 1.0e-6f)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_pavgpool_minmax_unipass_ukernel_function pavgpool_minmax, xnn_init_f32_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32irng = std::bind(std::uniform_real_distribution<float>(), rng);
 | |
|     auto f32mrng = std::bind(std::uniform_real_distribution<float>(0.1f, 0.5f), rng);
 | |
| 
 | |
|     std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       input_offset() + indirect_input.size() * channels());
 | |
|     std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> multiplier(output_pixels());
 | |
|     std::vector<float> output((output_pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(output_pixels() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32irng));
 | |
|       std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
 | |
|       std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf(""));
 | |
|       std::generate(multiplier.begin(), multiplier.end(), std::ref(f32mrng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
 | |
|         indirect_input[i] = input.data() + i * channels();
 | |
|       }
 | |
|       std::shuffle(indirect_input.begin(),
 | |
|         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         indirect_input[zero_index()] = zero.data();
 | |
|       }
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float acc = 0.0f;
 | |
|           for (size_t p = 0; p < pooling_elements(); p++) {
 | |
|             const float* row = indirect_input[x * step() + p];
 | |
|             if (row != zero.data()) {
 | |
|               acc += row[c + input_offset()];
 | |
|             }
 | |
|           }
 | |
|           output_ref[x * channels() + c] = acc * multiplier[x];
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
 | |
|       const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_value : output_ref) {
 | |
|         output_value = std::max(std::min(output_value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_minmax_params params;
 | |
|       init_params(¶ms, output_min, output_max);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       pavgpool_minmax(output_pixels(), pooling_elements(), channels(),
 | |
|         indirect_input.data(), input_offset() * sizeof(float), zero.data(),
 | |
|         multiplier.data(), output.data(),
 | |
|         step() * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(float),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(output[x * output_stride() + c], output_min)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_LE(output[x * output_stride() + c], output_max)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_NEAR(
 | |
|               output[x * output_stride() + c],
 | |
|               output_ref[x * channels() + c],
 | |
|               std::abs(output_ref[x * channels() + c]) * 1.0e-6f)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_pavgpool_minmax_multipass_ukernel_function pavgpool_minmax, xnn_init_f32_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32irng = std::bind(std::uniform_real_distribution<float>(), rng);
 | |
|     auto f32mrng = std::bind(std::uniform_real_distribution<float>(0.1f, 0.5f), rng);
 | |
| 
 | |
|     std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       input_offset() + indirect_input.size() * channels());
 | |
|     std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> multiplier(output_pixels());
 | |
|     std::vector<float> output((output_pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(output_pixels() * channels());
 | |
|     std::vector<float, AlignedAllocator<float, 64>> buffer(XNN_EXTRA_BYTES / sizeof(float) + channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32irng));
 | |
|       std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
 | |
|       std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf(""));
 | |
|       std::generate(multiplier.begin(), multiplier.end(), std::ref(f32mrng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
 | |
|         indirect_input[i] = input.data() + i * channels();
 | |
|       }
 | |
|       std::shuffle(indirect_input.begin(),
 | |
|         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         indirect_input[zero_index()] = zero.data();
 | |
|       }
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float acc = 0.0f;
 | |
|           for (size_t p = 0; p < pooling_elements(); p++) {
 | |
|             const float* row = indirect_input[x * step() + p];
 | |
|             if (row != zero.data()) {
 | |
|               acc += row[c + input_offset()];
 | |
|             }
 | |
|           }
 | |
|           output_ref[x * channels() + c] = acc * multiplier[x];
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
 | |
|       const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_value : output_ref) {
 | |
|         output_value = std::max(std::min(output_value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_minmax_params params;
 | |
|       init_params(¶ms, output_min, output_max);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       pavgpool_minmax(output_pixels(), pooling_elements(), channels(),
 | |
|         indirect_input.data(), input_offset() * sizeof(float), zero.data(),
 | |
|         multiplier.data(), buffer.data(), output.data(),
 | |
|         (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(float),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < output_pixels(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(output[x * output_stride() + c], output_min)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_LE(output[x * output_stride() + c], output_max)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|           ASSERT_NEAR(
 | |
|               output[x * output_stride() + c],
 | |
|               output_ref[x * channels() + c],
 | |
|               std::abs(output_ref[x * channels() + c]) * 1.0e-6f)
 | |
|             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
 | |
|             << ", pooling elements = " << pooling_elements() << ", step = " << step()
 | |
|             << ", input offset = " << input_offset();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t output_pixels_{1};
 | |
|   size_t pooling_elements_{1};
 | |
|   size_t channels_{1};
 | |
|   size_t input_offset_{0};
 | |
|   size_t zero_index_{SIZE_MAX};
 | |
|   size_t step_{1};
 | |
|   size_t primary_pooling_tile_{1};
 | |
|   size_t incremental_pooling_tile_{1};
 | |
|   size_t output_stride_{0};
 | |
|   float input_scale_{1.25f};
 | |
|   float output_scale_{0.75f};
 | |
|   uint8_t input_zero_point_{121};
 | |
|   uint8_t output_zero_point_{133};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{3};
 | |
| };
 |