456 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			456 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <initializer_list>
 | |
| #include <numeric>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| 
 | |
| 
 | |
| class ConstantPadOperatorTester {
 | |
|  public:
 | |
|   inline ConstantPadOperatorTester& input_shape(std::initializer_list<size_t> input_shape) {
 | |
|     assert(input_shape.size() <= XNN_MAX_TENSOR_DIMS);
 | |
|     input_shape_ = std::vector<size_t>(input_shape);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline const std::vector<size_t>& input_shape() const {
 | |
|     return input_shape_;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_dim(size_t i) const {
 | |
|     return i < input_shape_.size() ? input_shape_[i] : 1;
 | |
|   }
 | |
| 
 | |
|   inline size_t num_dims() const {
 | |
|     return input_shape_.size();
 | |
|   }
 | |
| 
 | |
|   inline size_t num_input_elements() const {
 | |
|     return std::accumulate(
 | |
|       input_shape_.cbegin(), input_shape_.cend(), size_t(1), std::multiplies<size_t>());
 | |
|   }
 | |
| 
 | |
|   inline ConstantPadOperatorTester& pre_paddings(std::initializer_list<size_t> pre_paddings) {
 | |
|     assert(pre_paddings.size() <= XNN_MAX_TENSOR_DIMS);
 | |
|     pre_paddings_ = std::vector<size_t>(pre_paddings);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline const std::vector<size_t>& pre_paddings() const {
 | |
|     return pre_paddings_;
 | |
|   }
 | |
| 
 | |
|   inline size_t pre_padding(size_t i) const {
 | |
|     return i < pre_paddings_.size() ? pre_paddings_[i] : 0;
 | |
|   }
 | |
| 
 | |
|   inline size_t num_pre_paddings() const {
 | |
|     return pre_paddings_.size();
 | |
|   }
 | |
| 
 | |
|   inline ConstantPadOperatorTester& post_paddings(std::initializer_list<size_t> post_paddings) {
 | |
|     assert(post_paddings.size() <= XNN_MAX_TENSOR_DIMS);
 | |
|     post_paddings_ = std::vector<size_t>(post_paddings);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline const std::vector<size_t>& post_paddings() const {
 | |
|     return post_paddings_;
 | |
|   }
 | |
| 
 | |
|   inline size_t post_padding(size_t i) const {
 | |
|     return i < post_paddings_.size() ? post_paddings_[i] : 0;
 | |
|   }
 | |
| 
 | |
|   inline size_t num_post_paddings() const {
 | |
|     return post_paddings_.size();
 | |
|   }
 | |
| 
 | |
|   inline size_t output_dim(size_t i) const {
 | |
|     return pre_padding(i) + input_dim(i) + post_padding(i);
 | |
|   }
 | |
| 
 | |
|   inline size_t num_output_elements() const {
 | |
|     size_t elements = 1;
 | |
|     for (size_t i = 0; i < num_dims(); i++) {
 | |
|       elements *= output_dim(i);
 | |
|     }
 | |
|     return elements;
 | |
|   }
 | |
| 
 | |
|   inline ConstantPadOperatorTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void TestX8() const {
 | |
|     ASSERT_EQ(num_dims(), num_pre_paddings());
 | |
|     ASSERT_EQ(num_dims(), num_post_paddings());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | |
| 
 | |
|     // Compute generalized shapes.
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_dims;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_pre_paddings;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_post_paddings;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims;
 | |
|     std::fill(input_dims.begin(), input_dims.end(), 1);
 | |
|     std::fill(input_pre_paddings.begin(), input_pre_paddings.end(), 0);
 | |
|     std::fill(input_post_paddings.begin(), input_post_paddings.end(), 0);
 | |
|     std::fill(output_dims.begin(), output_dims.end(), 1);
 | |
|     for (size_t i = 0; i < num_dims(); i++) {
 | |
|       input_dims[XNN_MAX_TENSOR_DIMS - num_dims() + i] = input_dim(i);
 | |
|       input_pre_paddings[XNN_MAX_TENSOR_DIMS - num_dims() + i] = pre_padding(i);
 | |
|       input_post_paddings[XNN_MAX_TENSOR_DIMS - num_dims() + i] = post_padding(i);
 | |
|       output_dims[XNN_MAX_TENSOR_DIMS - num_dims() + i] = output_dim(i);
 | |
|     }
 | |
| 
 | |
|     // Compute generalized strides.
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_strides;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides;
 | |
|     size_t input_stride = 1, output_stride = 1;
 | |
|     for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) {
 | |
|       input_strides[i - 1] = input_stride;
 | |
|       output_strides[i - 1] = output_stride;
 | |
|       input_stride *= input_dims[i - 1];
 | |
|       output_stride *= output_dims[i - 1];
 | |
|     }
 | |
| 
 | |
|     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + num_input_elements());
 | |
|     std::vector<uint8_t> output(num_output_elements());
 | |
|     std::vector<uint8_t> output_ref(num_output_elements());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::fill(output.begin(), output.end(), UINT32_C(0xAA));
 | |
|       const uint8_t padding_value = u8rng();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       std::fill(output_ref.begin(), output_ref.end(), padding_value);
 | |
|       for (size_t i = 0; i < input_dims[0]; i++) {
 | |
|         for (size_t j = 0; j < input_dims[1]; j++) {
 | |
|           for (size_t k = 0; k < input_dims[2]; k++) {
 | |
|             for (size_t l = 0; l < input_dims[3]; l++) {
 | |
|               for (size_t m = 0; m < input_dims[4]; m++) {
 | |
|                 for (size_t n = 0; n < input_dims[5]; n++) {
 | |
|                   const size_t output_index =
 | |
|                     (i + input_pre_paddings[0]) * output_strides[0] +
 | |
|                     (j + input_pre_paddings[1]) * output_strides[1] +
 | |
|                     (k + input_pre_paddings[2]) * output_strides[2] +
 | |
|                     (l + input_pre_paddings[3]) * output_strides[3] +
 | |
|                     (m + input_pre_paddings[4]) * output_strides[4] +
 | |
|                     (n + input_pre_paddings[5]) * output_strides[5];
 | |
|                   const size_t input_index =
 | |
|                     i * input_strides[0] + j * input_strides[1] + k * input_strides[2] +
 | |
|                     l * input_strides[3] + m * input_strides[4] + n * input_strides[5];
 | |
|                   output_ref[output_index] = input[input_index];
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy a binary elementwise operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t pad_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_constant_pad_nd_x8(
 | |
|           &padding_value, 0, &pad_op));
 | |
|       ASSERT_NE(nullptr, pad_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete pad_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_pad_op(pad_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_constant_pad_nd_x8(
 | |
|           pad_op,
 | |
|           num_dims(),
 | |
|           input_shape().data(), pre_paddings().data(), post_paddings().data(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(pad_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < output_dims[0]; i++) {
 | |
|         for (size_t j = 0; j < output_dims[1]; j++) {
 | |
|           for (size_t k = 0; k < output_dims[2]; k++) {
 | |
|             for (size_t l = 0; l < output_dims[3]; l++) {
 | |
|               for (size_t m = 0; m < output_dims[4]; m++) {
 | |
|                 for (size_t n = 0; n < output_dims[5]; n++) {
 | |
|                   const size_t index =
 | |
|                     i * output_strides[0] + j * output_strides[1] + k * output_strides[2] +
 | |
|                     l * output_strides[3] + m * output_strides[4] + n * output_strides[5];
 | |
|                   ASSERT_EQ(output[index], output_ref[index])
 | |
|                     << "(i, j, k, l, m, n) = ("
 | |
|                     << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")"
 | |
|                     << ", padding value = " << padding_value;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestX16() const {
 | |
|     ASSERT_EQ(num_dims(), num_pre_paddings());
 | |
|     ASSERT_EQ(num_dims(), num_post_paddings());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u16rng = std::bind(std::uniform_int_distribution<uint16_t>(), rng);
 | |
| 
 | |
|     // Compute generalized shapes.
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_dims;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_pre_paddings;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_post_paddings;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims;
 | |
|     std::fill(input_dims.begin(), input_dims.end(), 1);
 | |
|     std::fill(input_pre_paddings.begin(), input_pre_paddings.end(), 0);
 | |
|     std::fill(input_post_paddings.begin(), input_post_paddings.end(), 0);
 | |
|     std::fill(output_dims.begin(), output_dims.end(), 1);
 | |
|     for (size_t i = 0; i < num_dims(); i++) {
 | |
|       input_dims[XNN_MAX_TENSOR_DIMS - num_dims() + i] = input_dim(i);
 | |
|       input_pre_paddings[XNN_MAX_TENSOR_DIMS - num_dims() + i] = pre_padding(i);
 | |
|       input_post_paddings[XNN_MAX_TENSOR_DIMS - num_dims() + i] = post_padding(i);
 | |
|       output_dims[XNN_MAX_TENSOR_DIMS - num_dims() + i] = output_dim(i);
 | |
|     }
 | |
| 
 | |
|     // Compute generalized strides.
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_strides;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides;
 | |
|     size_t input_stride = 1, output_stride = 1;
 | |
|     for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) {
 | |
|       input_strides[i - 1] = input_stride;
 | |
|       output_strides[i - 1] = output_stride;
 | |
|       input_stride *= input_dims[i - 1];
 | |
|       output_stride *= output_dims[i - 1];
 | |
|     }
 | |
| 
 | |
|     std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input_elements());
 | |
|     std::vector<uint16_t> output(num_output_elements());
 | |
|     std::vector<uint16_t> output_ref(num_output_elements());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u16rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0xDEAD));
 | |
|       const uint16_t padding_value = u16rng();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       std::fill(output_ref.begin(), output_ref.end(), padding_value);
 | |
|       for (size_t i = 0; i < input_dims[0]; i++) {
 | |
|         for (size_t j = 0; j < input_dims[1]; j++) {
 | |
|           for (size_t k = 0; k < input_dims[2]; k++) {
 | |
|             for (size_t l = 0; l < input_dims[3]; l++) {
 | |
|               for (size_t m = 0; m < input_dims[4]; m++) {
 | |
|                 for (size_t n = 0; n < input_dims[5]; n++) {
 | |
|                   const size_t output_index =
 | |
|                     (i + input_pre_paddings[0]) * output_strides[0] +
 | |
|                     (j + input_pre_paddings[1]) * output_strides[1] +
 | |
|                     (k + input_pre_paddings[2]) * output_strides[2] +
 | |
|                     (l + input_pre_paddings[3]) * output_strides[3] +
 | |
|                     (m + input_pre_paddings[4]) * output_strides[4] +
 | |
|                     (n + input_pre_paddings[5]) * output_strides[5];
 | |
|                   const size_t input_index =
 | |
|                     i * input_strides[0] + j * input_strides[1] + k * input_strides[2] +
 | |
|                     l * input_strides[3] + m * input_strides[4] + n * input_strides[5];
 | |
|                   output_ref[output_index] = input[input_index];
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy a binary elementwise operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t pad_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_constant_pad_nd_x16(
 | |
|           &padding_value, 0, &pad_op));
 | |
|       ASSERT_NE(nullptr, pad_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete pad_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_pad_op(pad_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_constant_pad_nd_x16(
 | |
|           pad_op,
 | |
|           num_dims(),
 | |
|           input_shape().data(), pre_paddings().data(), post_paddings().data(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(pad_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < output_dims[0]; i++) {
 | |
|         for (size_t j = 0; j < output_dims[1]; j++) {
 | |
|           for (size_t k = 0; k < output_dims[2]; k++) {
 | |
|             for (size_t l = 0; l < output_dims[3]; l++) {
 | |
|               for (size_t m = 0; m < output_dims[4]; m++) {
 | |
|                 for (size_t n = 0; n < output_dims[5]; n++) {
 | |
|                   const size_t index =
 | |
|                     i * output_strides[0] + j * output_strides[1] + k * output_strides[2] +
 | |
|                     l * output_strides[3] + m * output_strides[4] + n * output_strides[5];
 | |
|                   ASSERT_EQ(output[index], output_ref[index])
 | |
|                     << "(i, j, k, l, m, n) = ("
 | |
|                     << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")"
 | |
|                     << ", padding value = " << padding_value;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestX32() const {
 | |
|     ASSERT_EQ(num_dims(), num_pre_paddings());
 | |
|     ASSERT_EQ(num_dims(), num_post_paddings());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u32rng = std::bind(std::uniform_int_distribution<uint32_t>(), rng);
 | |
| 
 | |
|     // Compute generalized shapes.
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_dims;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_pre_paddings;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_post_paddings;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims;
 | |
|     std::fill(input_dims.begin(), input_dims.end(), 1);
 | |
|     std::fill(input_pre_paddings.begin(), input_pre_paddings.end(), 0);
 | |
|     std::fill(input_post_paddings.begin(), input_post_paddings.end(), 0);
 | |
|     std::fill(output_dims.begin(), output_dims.end(), 1);
 | |
|     for (size_t i = 0; i < num_dims(); i++) {
 | |
|       input_dims[XNN_MAX_TENSOR_DIMS - num_dims() + i] = input_dim(i);
 | |
|       input_pre_paddings[XNN_MAX_TENSOR_DIMS - num_dims() + i] = pre_padding(i);
 | |
|       input_post_paddings[XNN_MAX_TENSOR_DIMS - num_dims() + i] = post_padding(i);
 | |
|       output_dims[XNN_MAX_TENSOR_DIMS - num_dims() + i] = output_dim(i);
 | |
|     }
 | |
| 
 | |
|     // Compute generalized strides.
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> input_strides;
 | |
|     std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides;
 | |
|     size_t input_stride = 1, output_stride = 1;
 | |
|     for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) {
 | |
|       input_strides[i - 1] = input_stride;
 | |
|       output_strides[i - 1] = output_stride;
 | |
|       input_stride *= input_dims[i - 1];
 | |
|       output_stride *= output_dims[i - 1];
 | |
|     }
 | |
| 
 | |
|     std::vector<uint32_t> input(XNN_EXTRA_BYTES / sizeof(uint32_t) + num_input_elements());
 | |
|     std::vector<uint32_t> output(num_output_elements());
 | |
|     std::vector<uint32_t> output_ref(num_output_elements());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u32rng));
 | |
|       std::fill(output.begin(), output.end(), UINT32_C(0xDEADBEEF));
 | |
|       const uint32_t padding_value = u32rng();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       std::fill(output_ref.begin(), output_ref.end(), padding_value);
 | |
|       for (size_t i = 0; i < input_dims[0]; i++) {
 | |
|         for (size_t j = 0; j < input_dims[1]; j++) {
 | |
|           for (size_t k = 0; k < input_dims[2]; k++) {
 | |
|             for (size_t l = 0; l < input_dims[3]; l++) {
 | |
|               for (size_t m = 0; m < input_dims[4]; m++) {
 | |
|                 for (size_t n = 0; n < input_dims[5]; n++) {
 | |
|                   const size_t output_index =
 | |
|                     (i + input_pre_paddings[0]) * output_strides[0] +
 | |
|                     (j + input_pre_paddings[1]) * output_strides[1] +
 | |
|                     (k + input_pre_paddings[2]) * output_strides[2] +
 | |
|                     (l + input_pre_paddings[3]) * output_strides[3] +
 | |
|                     (m + input_pre_paddings[4]) * output_strides[4] +
 | |
|                     (n + input_pre_paddings[5]) * output_strides[5];
 | |
|                   const size_t input_index =
 | |
|                     i * input_strides[0] + j * input_strides[1] + k * input_strides[2] +
 | |
|                     l * input_strides[3] + m * input_strides[4] + n * input_strides[5];
 | |
|                   output_ref[output_index] = input[input_index];
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy a binary elementwise operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t pad_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_constant_pad_nd_x32(
 | |
|           &padding_value, 0, &pad_op));
 | |
|       ASSERT_NE(nullptr, pad_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete pad_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_pad_op(pad_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_constant_pad_nd_x32(
 | |
|           pad_op,
 | |
|           num_dims(),
 | |
|           input_shape().data(), pre_paddings().data(), post_paddings().data(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(pad_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < output_dims[0]; i++) {
 | |
|         for (size_t j = 0; j < output_dims[1]; j++) {
 | |
|           for (size_t k = 0; k < output_dims[2]; k++) {
 | |
|             for (size_t l = 0; l < output_dims[3]; l++) {
 | |
|               for (size_t m = 0; m < output_dims[4]; m++) {
 | |
|                 for (size_t n = 0; n < output_dims[5]; n++) {
 | |
|                   const size_t index =
 | |
|                     i * output_strides[0] + j * output_strides[1] + k * output_strides[2] +
 | |
|                     l * output_strides[3] + m * output_strides[4] + n * output_strides[5];
 | |
|                   ASSERT_EQ(output[index], output_ref[index])
 | |
|                     << "(i, j, k, l, m, n) = ("
 | |
|                     << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")"
 | |
|                     << ", padding value = " << padding_value;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   std::vector<size_t> input_shape_;
 | |
|   std::vector<size_t> pre_paddings_;
 | |
|   std::vector<size_t> post_paddings_;
 | |
|   size_t iterations_{3};
 | |
| };
 |