420 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			420 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack/AlignedAllocator.h>
 | |
| #include <xnnpack/pack.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| #include <xnnpack.h>
 | |
| 
 | |
| 
 | |
| class ConvHWCMicrokernelTester {
 | |
| public:
 | |
|   enum class Variant {
 | |
|     Native,
 | |
|     Scalar,
 | |
|   };
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& output_channels_tile(uint32_t output_channels_tile) {
 | |
|     this->output_channels_tile_ = output_channels_tile;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t output_channels_tile() const {
 | |
|     return this->output_channels_tile_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& padding(uint32_t padding) {
 | |
|     this->padding_top_ = padding;
 | |
|     this->padding_right_ = padding;
 | |
|     this->padding_bottom_ = padding;
 | |
|     this->padding_left_ = padding;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& padding_height(uint32_t padding_height) {
 | |
|     this->padding_top_ = padding_height;
 | |
|     this->padding_bottom_ = padding_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& padding_width(uint32_t padding_width) {
 | |
|     this->padding_right_ = padding_width;
 | |
|     this->padding_left_ = padding_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& padding_top(uint32_t padding_top) {
 | |
|     this->padding_top_ = padding_top;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_top() const {
 | |
|     return this->padding_top_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& padding_right(uint32_t padding_right) {
 | |
|     this->padding_right_ = padding_right;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_right() const {
 | |
|     return this->padding_right_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& padding_bottom(uint32_t padding_bottom) {
 | |
|     this->padding_bottom_ = padding_bottom;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_bottom() const {
 | |
|     return this->padding_bottom_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& padding_left(uint32_t padding_left) {
 | |
|     this->padding_left_ = padding_left;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_left() const {
 | |
|     return this->padding_left_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& input_size(uint32_t input_height, uint32_t input_width) {
 | |
|     assert(input_height >= 1);
 | |
|     assert(input_width >= 1);
 | |
|     this->input_height_ = input_height;
 | |
|     this->input_width_ = input_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& input_height(uint32_t input_height) {
 | |
|     assert(input_height >= 1);
 | |
|     this->input_height_ = input_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t input_height() const {
 | |
|     return this->input_height_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& input_width(uint32_t input_width) {
 | |
|     assert(input_width >= 1);
 | |
|     this->input_width_ = input_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t input_width() const {
 | |
|     return this->input_width_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& input_channels(size_t input_channels) {
 | |
|     assert(input_channels >= 1);
 | |
|     this->input_channels_ = input_channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_channels() const {
 | |
|     return this->input_channels_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& output_channels(size_t output_channels) {
 | |
|     assert(output_channels >= 1);
 | |
|     this->output_channels_ = output_channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_channels() const {
 | |
|     return this->output_channels_;
 | |
|   }
 | |
| 
 | |
|   inline size_t packed_output_channels() const {
 | |
|     return output_channels() % output_channels_tile() == 0 ? output_channels() : output_channels() / output_channels_tile() * output_channels_tile() + output_channels_tile();
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size >= 1);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& kernel_size(uint32_t kernel_size) {
 | |
|     assert(kernel_size >= 1);
 | |
|     this->kernel_height_ = kernel_size;
 | |
|     this->kernel_width_ = kernel_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& kernel_height(uint32_t kernel_height) {
 | |
|     assert(kernel_height >= 1);
 | |
|     this->kernel_height_ = kernel_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t kernel_height() const {
 | |
|     return this->kernel_height_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& kernel_width(uint32_t kernel_width) {
 | |
|     assert(kernel_width >= 1);
 | |
|     this->kernel_width_ = kernel_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t kernel_width() const {
 | |
|     return this->kernel_width_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& subsampling(uint32_t subsampling) {
 | |
|     assert(subsampling >= 1);
 | |
|     this->subsampling_height_ = subsampling;
 | |
|     this->subsampling_width_ = subsampling;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& subsampling_height(uint32_t subsampling_height) {
 | |
|     assert(subsampling_height >= 1);
 | |
|     this->subsampling_height_ = subsampling_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t subsampling_height() const {
 | |
|     return this->subsampling_height_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& subsampling_width(uint32_t subsampling_width) {
 | |
|     assert(subsampling_width >= 1);
 | |
|     this->subsampling_width_ = subsampling_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t subsampling_width() const {
 | |
|     return this->subsampling_width_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& output_y_start(uint32_t output_y_start) {
 | |
|     this->output_y_start_ = output_y_start;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t output_y_start() const {
 | |
|     return this->output_y_start_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& output_y_end(uint32_t output_y_end) {
 | |
|     this->output_y_end_ = output_y_end;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t output_y_end() const {
 | |
|     if (this->output_y_end_ == std::numeric_limits<uint32_t>::max()) {
 | |
|       return output_height();
 | |
|     } else {
 | |
|       return this->output_y_end_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline size_t input_pixel_stride() const {
 | |
|     return input_channels();
 | |
|   }
 | |
| 
 | |
|   inline size_t output_pixel_stride() const {
 | |
|     return output_channels();
 | |
|   }
 | |
| 
 | |
|   inline size_t output_height() const {
 | |
|     const size_t padded_input_height = padding_top() + input_height() + padding_bottom();
 | |
|     return (std::max<size_t>(padded_input_height + subsampling_height(), kernel_height()) - kernel_height())
 | |
|       / subsampling_height();
 | |
|   }
 | |
| 
 | |
|   inline size_t output_width() const {
 | |
|     const size_t padded_input_width = padding_left() + input_width() + padding_right();
 | |
|     return (std::max<size_t>(padded_input_width + subsampling_width(), kernel_width()) - kernel_width())
 | |
|       / subsampling_width();
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline ConvHWCMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_conv_hwc_ukernel_function conv, Variant variant = Variant::Native) const {
 | |
|     ASSERT_LT(output_y_start(), output_height());
 | |
|     ASSERT_LE(output_y_end(), output_height());
 | |
|     ASSERT_GT(output_y_end(), output_y_start());
 | |
|     ASSERT_GE(output_width(), 1);
 | |
|     ASSERT_GE(output_height(), 1);
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       batch_size() * ((input_height() * input_width() - 1) * input_pixel_stride() + input_channels()));
 | |
|     std::vector<float> zero(XNN_EXTRA_BYTES / sizeof(float) + input_width() * input_channels());
 | |
|     std::vector<float> kernel(output_channels() * kernel_height() * kernel_width() * input_channels());
 | |
|     std::vector<float> bias(output_channels());
 | |
|     std::vector<float> output(batch_size() * ((output_height() * output_width() - 1) * output_pixel_stride() + output_channels()));
 | |
|     std::vector<float> output_ref(batch_size() * output_height() * output_width() * output_channels());
 | |
|     std::vector<float, AlignedAllocator<float, 64>> packed_weights((input_channels() * kernel_height() * kernel_width() + 1) * packed_output_channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
|       std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
 | |
| 
 | |
|       xnn_pack_f32_dconv_oki_w(
 | |
|         output_channels(),
 | |
|         input_channels(),
 | |
|         output_channels_tile(),
 | |
|         kernel_height(), kernel_width(),
 | |
|         kernel.data(), bias.data(), packed_weights.data(), nullptr);
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < output_width(); ox++) {
 | |
|             for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|               float acc = bias[oc];
 | |
|               for (size_t ky = 0; ky < kernel_height(); ky++) {
 | |
|                 const size_t iy = oy * subsampling_height() + ky - padding_top();
 | |
|                 if (iy < input_height()) {
 | |
|                   for (size_t kx = 0; kx < kernel_width(); kx++) {
 | |
|                     const size_t ix = ox * subsampling_width() + kx - padding_left();
 | |
|                     if (ix < input_width()) {
 | |
|                       for (size_t ic = 0; ic < input_channels(); ic++) {
 | |
|                         acc +=
 | |
|                           input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + ic] *
 | |
|                           kernel[((oc * kernel_height() + ky) * kernel_width() + kx) * input_channels() + ic];
 | |
|                       }
 | |
|                     }
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               output_ref[((i * output_height() + oy) * output_width() + ox) * output_channels() + oc] = acc;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
| 
 | |
|       const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
 | |
|       const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& value : output_ref) {
 | |
|         value = std::max(std::min(value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_minmax_params params;
 | |
|       switch (variant) {
 | |
|         case Variant::Native:
 | |
|           xnn_init_f32_minmax_params(¶ms, output_min, output_max);
 | |
|           break;
 | |
|         case Variant::Scalar:
 | |
|           xnn_init_f32_minmax_scalar_params(¶ms, output_min, output_max);
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       conv(
 | |
|         input_height(), input_width(),
 | |
|         output_y_start(), output_y_end(),
 | |
|         input.data(), zero.data(), packed_weights.data(), output.data(),
 | |
|         padding_top(), output_channels(),
 | |
|         output_pixel_stride() * output_width() * sizeof(float),
 | |
|         output_pixel_stride() * sizeof(float),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t y = output_y_start(); y < output_y_end(); y++) {
 | |
|           for (size_t x = 0; x < output_width(); x++) {
 | |
|             for (size_t c = 0; c < output_channels(); c++) {
 | |
|               ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_min)
 | |
|                 << "(x, y) = (" << x << ", " << y << "), channel = " << c;
 | |
|               ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_max)
 | |
|                 << "(x, y) = (" << x << ", " << y << "), channel = " << c;
 | |
|               ASSERT_NEAR(
 | |
|                   output_ref[((i * output_height() + y) * output_width() + x) * output_channels() + c],
 | |
|                   output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c],
 | |
|                   1.0e-4 * std::abs(output_ref[((i * output_height() + y) * output_width() + x) * output_channels() + c]))
 | |
|                 << "(x, y) = (" << x << ", " << y << "), channel = " << c;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   uint32_t padding_top_{0};
 | |
|   uint32_t padding_right_{0};
 | |
|   uint32_t padding_bottom_{0};
 | |
|   uint32_t padding_left_{0};
 | |
|   size_t input_height_{1};
 | |
|   size_t input_width_{1};
 | |
|   size_t input_channels_{1};
 | |
|   size_t output_channels_{1};
 | |
|   uint32_t output_channels_tile_{1};
 | |
|   size_t batch_size_{1};
 | |
|   uint32_t kernel_height_{1};
 | |
|   uint32_t kernel_width_{1};
 | |
|   uint32_t subsampling_height_{1};
 | |
|   uint32_t subsampling_width_{1};
 | |
|   uint32_t output_y_start_{0};
 | |
|   uint32_t output_y_end_{std::numeric_limits<uint32_t>::max()};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{1};
 | |
| };
 |