489 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			489 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2021 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| 
 | |
| 
 | |
| class ConvertOperatorTester {
 | |
|  public:
 | |
|   inline ConvertOperatorTester& channels(size_t channels) {
 | |
|     assert(channels != 0);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline ConvertOperatorTester& input_stride(size_t input_stride) {
 | |
|     assert(input_stride != 0);
 | |
|     this->input_stride_ = input_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_stride() const {
 | |
|     if (this->input_stride_ == 0) {
 | |
|       return this->channels_;
 | |
|     } else {
 | |
|       assert(this->input_stride_ >= this->channels_);
 | |
|       return this->input_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline ConvertOperatorTester& output_stride(size_t output_stride) {
 | |
|     assert(output_stride != 0);
 | |
|     this->output_stride_ = output_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_stride() const {
 | |
|     if (this->output_stride_ == 0) {
 | |
|       return this->channels_;
 | |
|     } else {
 | |
|       assert(this->output_stride_ >= this->channels_);
 | |
|       return this->output_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline ConvertOperatorTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline ConvertOperatorTester& scale(float scale) {
 | |
|     assert(scale >= 0.0f);
 | |
|     assert(std::isnormal(scale));
 | |
|     this->scale_ = scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float scale() const {
 | |
|     return this->scale_;
 | |
|   }
 | |
| 
 | |
|   inline ConvertOperatorTester& zero_point(int16_t zero_point) {
 | |
|     this->zero_point_ = zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline int16_t zero_point() const {
 | |
|     return this->zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline ConvertOperatorTester& qmin(int16_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline int16_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline ConvertOperatorTester& qmax(int16_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline int16_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline ConvertOperatorTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void TestF16toF32() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) +
 | |
|       (batch_size() - 1) * input_stride() + channels());
 | |
|     std::vector<float> output((batch_size() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           output_ref[i * channels() + c] = fp16_ieee_to_fp32_value(input[i * input_stride() + c]);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Convert operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t convert_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_convert_nc_f16_f32(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           0, &convert_op));
 | |
|       ASSERT_NE(nullptr, convert_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete convert op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_convert_nc_f16_f32(
 | |
|           convert_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(convert_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
 | |
|             << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestF32toF16() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       (batch_size() - 1) * input_stride() + channels());
 | |
|     std::vector<uint16_t> output((batch_size() - 1) * output_stride() + channels());
 | |
|     std::vector<uint16_t> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E));
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           output_ref[i * channels() + c] = fp16_ieee_from_fp32_value(input[i * input_stride() + c]);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Convert operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t convert_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_convert_nc_f32_f16(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           0, &convert_op));
 | |
|       ASSERT_NE(nullptr, convert_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete convert op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_convert_nc_f32_f16(
 | |
|           convert_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(convert_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
 | |
|             << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestF32toQS8() const {
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       (batch_size() - 1) * input_stride() + channels());
 | |
|     std::vector<int8_t> output((batch_size() - 1) * output_stride() + channels());
 | |
|     std::vector<int8_t> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E));
 | |
| 
 | |
|       // Compute reference results.
 | |
|       const float inv_scale = 1.0f / scale();
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float scaled_input = input[i * input_stride() + c] * inv_scale;
 | |
|           scaled_input = std::min<float>(scaled_input, float(qmax() - zero_point()));
 | |
|           scaled_input = std::max<float>(scaled_input, float(qmin() - zero_point()));
 | |
|           output_ref[i * channels() + c] = int8_t(std::lrintf(scaled_input) + long(zero_point()));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Convert operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t convert_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_convert_nc_f32_qs8(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           scale(), int8_t(zero_point()), int8_t(qmin()), int8_t(qmax()),
 | |
|           0, &convert_op));
 | |
|       ASSERT_NE(nullptr, convert_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete convert op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_convert_nc_f32_qs8(
 | |
|           convert_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(convert_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_EQ(int32_t(output_ref[i * channels() + c]), int32_t(output[i * output_stride() + c]))
 | |
|             << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestF32toQU8() const {
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       (batch_size() - 1) * input_stride() + channels());
 | |
|     std::vector<uint8_t> output((batch_size() - 1) * output_stride() + channels());
 | |
|     std::vector<uint8_t> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E));
 | |
| 
 | |
|       // Compute reference results.
 | |
|       const float inv_scale = 1.0f / scale();
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float scaled_input = input[i * input_stride() + c] * inv_scale;
 | |
|           scaled_input = std::min<float>(scaled_input, float(qmax() - zero_point()));
 | |
|           scaled_input = std::max<float>(scaled_input, float(qmin() - zero_point()));
 | |
|           output_ref[i * channels() + c] = uint8_t(std::lrintf(scaled_input) + long(zero_point()));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Convert operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t convert_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_convert_nc_f32_qu8(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           scale(), uint8_t(zero_point()), uint8_t(qmin()), uint8_t(qmax()),
 | |
|           0, &convert_op));
 | |
|       ASSERT_NE(nullptr, convert_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete convert op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_convert_nc_f32_qu8(
 | |
|           convert_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(convert_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_EQ(uint32_t(output_ref[i * channels() + c]), uint32_t(output[i * output_stride() + c]))
 | |
|             << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestQS8toF32() const {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
 | |
|       std::ref(rng));
 | |
| 
 | |
|     std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) +
 | |
|       (batch_size() - 1) * input_stride() + channels());
 | |
|     std::vector<float> output((batch_size() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           output_ref[i * channels() + c] = float(input[i * input_stride() + c] - zero_point()) * scale();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Convert operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t convert_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_convert_nc_qs8_f32(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           scale(), int8_t(zero_point()),
 | |
|           0, &convert_op));
 | |
|       ASSERT_NE(nullptr, convert_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete convert op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_convert_nc_qs8_f32(
 | |
|           convert_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(convert_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
 | |
|             << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestQU8toF32() const {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()),
 | |
|       std::ref(rng));
 | |
| 
 | |
|     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
 | |
|       (batch_size() - 1) * input_stride() + channels());
 | |
|     std::vector<float> output((batch_size() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           output_ref[i * channels() + c] = float(input[i * input_stride() + c] - zero_point()) * scale();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Convert operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t convert_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_convert_nc_qu8_f32(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           scale(), uint8_t(zero_point()),
 | |
|           0, &convert_op));
 | |
|       ASSERT_NE(nullptr, convert_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete convert op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_convert_nc_qu8_f32(
 | |
|           convert_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(convert_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
 | |
|             << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t batch_size_{1};
 | |
|   size_t channels_{1};
 | |
|   size_t input_stride_{0};
 | |
|   size_t output_stride_{0};
 | |
|   float scale_{150.0f};
 | |
|   int16_t zero_point_{1};
 | |
|   int16_t qmin_{std::numeric_limits<int16_t>::min()};
 | |
|   int16_t qmax_{std::numeric_limits<int16_t>::max()};
 | |
|   size_t iterations_{15};
 | |
| };
 |