782 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			782 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright (c) Facebook, Inc. and its affiliates.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/AlignedAllocator.h>
 | |
| #include <xnnpack/pack.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| #include <xnnpack/requantization.h>
 | |
| 
 | |
| 
 | |
| class DWConvMicrokernelTester {
 | |
|  public:
 | |
|   inline DWConvMicrokernelTester& width(uint32_t width) {
 | |
|     assert(width >= 1);
 | |
|     this->width_ = width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t width() const {
 | |
|     return this->width_;
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& step(uint32_t step) {
 | |
|     assert(step >= 1);
 | |
|     this->step_ = step;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t step() const {
 | |
|     return this->step_;
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& channels(uint32_t channels) {
 | |
|     assert(channels >= 1);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& cr(uint32_t cr) {
 | |
|     assert(cr != 0);
 | |
|     this->cr_ = cr;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t cr() const {
 | |
|     return this->cr_;
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& kr(uint32_t kr) {
 | |
|     assert(kr != 0);
 | |
|     this->kr_ = kr;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t kr() const {
 | |
|     return this->kr_;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t packed_channels() const {
 | |
|     return (channels() / cr() + !!(channels() % cr())) * cr();
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& output_stride(uint32_t output_stride) {
 | |
|     assert(output_stride != 0);
 | |
|     this->output_stride_ = output_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t output_stride() const {
 | |
|     if (this->output_stride_ == 0) {
 | |
|       return channels();
 | |
|     } else {
 | |
|       assert(this->output_stride_ >= channels());
 | |
|       return this->output_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& input_zero_point(uint8_t input_zero_point) {
 | |
|     this->input_zero_point_ = input_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t input_zero_point() const {
 | |
|     return this->input_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& kernel_zero_point(uint8_t kernel_zero_point) {
 | |
|     this->kernel_zero_point_ = kernel_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t kernel_zero_point() const {
 | |
|     return this->kernel_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& input_offset(size_t input_offset) {
 | |
|     this->input_offset_ = input_offset;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_offset() const {
 | |
|     return this->input_offset_;
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& zero_index(size_t zero_index) {
 | |
|     this->zero_index_ = zero_index;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t zero_index() const {
 | |
|     return this->zero_index_;
 | |
|   }
 | |
| 
 | |
|   inline DWConvMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(
 | |
|     xnn_qu8_dwconv_minmax_unipass_ukernel_function dwconv_minmax,
 | |
|     xnn_init_qu8_conv_minmax_params_fn init_params,
 | |
|     xnn_qu8_requantize_fn requantize) const
 | |
|   {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
 | |
|     auto u8rng = std::bind(
 | |
|       std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
 | |
| 
 | |
|     std::vector<const uint8_t*> indirection((width() - 1) * step() + kr());
 | |
|     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + indirection.size() * channels());
 | |
|     std::vector<uint8_t> kernel(channels() * kr());
 | |
|     std::vector<int32_t> bias(channels());
 | |
|     std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> packed_weights((kr() + sizeof(int32_t) / sizeof(uint8_t)) * packed_channels());
 | |
|     std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> output((width() - 1) * output_stride() + channels());
 | |
|     std::vector<int32_t> accumulators(width() * channels());
 | |
|     std::vector<uint8_t> output_ref(width() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       do {
 | |
|         std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend()));
 | |
|       do {
 | |
|         std::generate(kernel.begin(), kernel.end(), std::ref(u8rng));
 | |
|       } while (kernel.size() > 1 && *std::max_element(kernel.cbegin(), kernel.cend()) == *std::min_element(kernel.cbegin(), kernel.cend()));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(i32rng));
 | |
|       std::fill(zero.begin(), zero.end(), input_zero_point());
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       std::fill(packed_weights.begin(), packed_weights.end(), 0);
 | |
|       const xnn_qu8_packing_params packing_params = { input_zero_point(), kernel_zero_point() };
 | |
|       xnn_pack_qu8_dwconv_ghw_w(
 | |
|         kr(), 1, channels(), cr(),
 | |
|         kernel.data(), bias.data(), packed_weights.data(),
 | |
|         0 /* extra bytes */, &packing_params);
 | |
|       for (size_t i = 0; i < indirection.size(); i++) {
 | |
|         indirection[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirection.begin(), indirection.end(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         for (size_t i = 0; i < indirection.size(); i += kr()) {
 | |
|           indirection[i + zero_index()] = zero.data();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute reference results, without renormalization.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float acc = bias[c];
 | |
|           for (size_t k = 0; k < kr(); k++) {
 | |
|             if (indirection[x * step() + k] != zero.data()) {
 | |
|               acc +=
 | |
|                 (int32_t(indirection[x * step() + k][c + input_offset()]) - int32_t(input_zero_point())) *
 | |
|                 (int32_t(kernel[c * kr() + k]) - int32_t(kernel_zero_point()));
 | |
|             }
 | |
|           }
 | |
|           accumulators[x * channels() + c] = acc;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute renormalization parameters.
 | |
|       const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
 | |
|       const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
 | |
|       const uint32_t accumulated_range = uint32_t(accumulated_max) - uint32_t(accumulated_min);
 | |
|       const double output_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001;
 | |
|       const uint8_t output_zero_point = uint8_t(std::max(std::min(
 | |
|         lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
 | |
|         long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min())));
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       const float requantization_scale = 1.0f / float(output_scale);
 | |
|       union xnn_qu8_conv_minmax_params quantization_params;
 | |
|       init_params(&quantization_params,
 | |
|         kernel_zero_point(), requantization_scale, output_zero_point, qmin(), qmax());
 | |
| 
 | |
|       // Renormalize reference results.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           output_ref[x * channels() + c] = requantize(
 | |
|             accumulators[x * channels() + c], requantization_scale, output_zero_point, qmin(), qmax());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       dwconv_minmax(
 | |
|         channels(), width(),
 | |
|         indirection.data(), packed_weights.data(), output.data(),
 | |
|         step() * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(uint8_t),
 | |
|         input_offset() * sizeof(uint8_t), zero.data(),
 | |
|         &quantization_params);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin()))
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|           ASSERT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax()))
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|           ASSERT_EQ(uint32_t(output[x * output_stride() + c]), uint32_t(output_ref[x * channels() + c]))
 | |
|             << "x = " << x << ", channel = " << c << ", accumulator = " << accumulators[x * channels() + c];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(
 | |
|     xnn_qc8_dwconv_minmax_unipass_ukernel_function dwconv_minmax,
 | |
|     xnn_init_qs8_minmax_params_fn init_params,
 | |
|     xnn_qs8_requantize_fn requantize) const
 | |
|   {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
 | |
|       std::ref(rng));
 | |
|     auto w8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()),
 | |
|       std::ref(rng));
 | |
| 
 | |
|     std::vector<const int8_t*> indirection((width() - 1) * step() + kr());
 | |
|     std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + indirection.size() * channels());
 | |
|     std::vector<int8_t> kernel(channels() * kr());
 | |
|     std::vector<int32_t> bias(channels());
 | |
|     std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_weights((kr() + (sizeof(int32_t) + sizeof(float)) / sizeof(int8_t)) * packed_channels());
 | |
|     std::vector<int8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> output((width() - 1) * output_stride() + channels());
 | |
|     std::vector<int32_t> accumulators(width() * channels());
 | |
|     std::vector<float> scale(channels());
 | |
|     std::vector<int8_t> output_ref(width() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       do {
 | |
|         std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend()));
 | |
|       do {
 | |
|         std::generate(kernel.begin(), kernel.end(), std::ref(w8rng));
 | |
|       } while (kernel.size() > 1 && *std::max_element(kernel.cbegin(), kernel.cend()) == *std::min_element(kernel.cbegin(), kernel.cend()));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(i32rng));
 | |
|       std::fill(zero.begin(), zero.end(), int8_t(input_zero_point() - 0x80));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       std::fill(packed_weights.begin(), packed_weights.end(), 0);
 | |
|       const xnn_qs8_packing_params packing_params = { int8_t(input_zero_point() - 0x80) };
 | |
|       xnn_pack_qs8_dwconv_ghw_w(
 | |
|         kr(), 1, channels(), cr(),
 | |
|         kernel.data(), bias.data(), packed_weights.data(), cr() * sizeof(float),
 | |
|         &packing_params);
 | |
|       for (size_t i = 0; i < indirection.size(); i++) {
 | |
|         indirection[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirection.begin(), indirection.end(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         for (size_t i = 0; i < indirection.size(); i += kr()) {
 | |
|           indirection[i + zero_index()] = zero.data();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute reference results, without renormalization.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float acc = bias[c];
 | |
|           for (size_t k = 0; k < kr(); k++) {
 | |
|             if (indirection[x * step() + k] != zero.data()) {
 | |
|               acc +=
 | |
|                 (int32_t(indirection[x * step() + k][c + input_offset()]) - int32_t(input_zero_point() - 0x80)) *
 | |
|                 int32_t(kernel[c * kr() + k]);
 | |
|             }
 | |
|           }
 | |
|           accumulators[x * channels() + c] = acc;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute renormalization parameters.
 | |
|       const int8_t output_zero_point = -1;
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         int32_t accumulated_min = accumulators[c];
 | |
|         int32_t accumulated_max = accumulators[c];
 | |
|         for (size_t x = 0; x < width(); x++) {
 | |
|           accumulated_min = std::min(accumulated_min, accumulators[x * channels() + c]);
 | |
|           accumulated_max = std::max(accumulated_max, accumulators[x * channels() + c]);
 | |
|         }
 | |
|         const uint32_t accumulated_range = uint32_t(accumulated_max - accumulated_min);
 | |
|         const float output_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001;
 | |
|         scale[c] = 1.0f / output_scale;
 | |
|       }
 | |
|       xnn_init_qc8_scale_fp32_params(
 | |
|         channels(), cr(),
 | |
|         cr() * (kr() * sizeof(int8_t) + sizeof(int32_t) + sizeof(float)), scale.data(),
 | |
|         (void*) ((uintptr_t) packed_weights.data() + cr() * (kr() * sizeof(int8_t) + sizeof(int32_t))));
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_qs8_minmax_params minmax_params;
 | |
|       init_params(&minmax_params,
 | |
|         output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
| 
 | |
|       // Renormalize reference results.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           output_ref[x * channels() + c] = requantize(
 | |
|             accumulators[x * channels() + c], scale[c], output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       dwconv_minmax(
 | |
|         channels(), width(),
 | |
|         indirection.data(), packed_weights.data(), output.data(),
 | |
|         step() * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(int8_t),
 | |
|         input_offset() * sizeof(int8_t), zero.data(),
 | |
|         &minmax_params);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(int32_t(output[x * output_stride() + c]), int32_t(qmin()) - 0x80)
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|           ASSERT_LE(int32_t(output[x * output_stride() + c]), int32_t(qmax()) - 0x80)
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|           ASSERT_EQ(int32_t(output[x * output_stride() + c]), int32_t(output_ref[x * channels() + c]))
 | |
|             << "x = " << x << ", channel = " << c << ", accumulator = " << accumulators[x * channels() + c];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(
 | |
|     xnn_qs8_dwconv_minmax_unipass_ukernel_function dwconv_minmax,
 | |
|     xnn_init_qs8_conv_minmax_params_fn init_params,
 | |
|     xnn_qs8_requantize_fn requantize) const
 | |
|   {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
 | |
|       std::ref(rng));
 | |
|     auto w8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()),
 | |
|       std::ref(rng));
 | |
| 
 | |
|     std::vector<const int8_t*> indirection((width() - 1) * step() + kr());
 | |
|     std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + indirection.size() * channels());
 | |
|     std::vector<int8_t> kernel(channels() * kr());
 | |
|     std::vector<int32_t> bias(channels());
 | |
|     std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_weights((kr() + sizeof(int32_t) / sizeof(int8_t)) * packed_channels());
 | |
|     std::vector<int8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> output((width() - 1) * output_stride() + channels());
 | |
|     std::vector<int32_t> accumulators(width() * channels());
 | |
|     std::vector<int8_t> output_ref(width() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       do {
 | |
|         std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend()));
 | |
|       do {
 | |
|         std::generate(kernel.begin(), kernel.end(), std::ref(w8rng));
 | |
|       } while (kernel.size() > 1 && *std::max_element(kernel.cbegin(), kernel.cend()) == *std::min_element(kernel.cbegin(), kernel.cend()));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(i32rng));
 | |
|       std::fill(zero.begin(), zero.end(), int8_t(input_zero_point() - 0x80));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       std::fill(packed_weights.begin(), packed_weights.end(), 0);
 | |
|       const xnn_qs8_packing_params packing_params = { int8_t(input_zero_point() - 0x80) };
 | |
|       xnn_pack_qs8_dwconv_ghw_w(
 | |
|         kr(), 1, channels(), cr(),
 | |
|         kernel.data(), bias.data(), packed_weights.data(),
 | |
|         0 /* extra bytes */, &packing_params);
 | |
|       for (size_t i = 0; i < indirection.size(); i++) {
 | |
|         indirection[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirection.begin(), indirection.end(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         for (size_t i = 0; i < indirection.size(); i += kr()) {
 | |
|           indirection[i + zero_index()] = zero.data();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute reference results, without renormalization.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float acc = bias[c];
 | |
|           for (size_t k = 0; k < kr(); k++) {
 | |
|             if (indirection[x * step() + k] != zero.data()) {
 | |
|               acc +=
 | |
|                 (int32_t(indirection[x * step() + k][c + input_offset()]) - int32_t(input_zero_point() - 0x80)) *
 | |
|                 int32_t(kernel[c * kr() + k]);
 | |
|             }
 | |
|           }
 | |
|           accumulators[x * channels() + c] = acc;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute renormalization parameters.
 | |
|       const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
 | |
|       const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
 | |
|       const uint32_t accumulated_range = uint32_t(accumulated_max) - uint32_t(accumulated_min);
 | |
|       const double output_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001;
 | |
|       const int8_t output_zero_point = int8_t(std::max(std::min(
 | |
|         lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
 | |
|         long(std::numeric_limits<int8_t>::max())), long(std::numeric_limits<int8_t>::min())));
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       const float requantization_scale = 1.0f / float(output_scale);
 | |
|       union xnn_qs8_conv_minmax_params quantization_params;
 | |
|       init_params(&quantization_params,
 | |
|         requantization_scale, output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
| 
 | |
|       // Renormalize reference results.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           output_ref[x * channels() + c] = requantize(
 | |
|             accumulators[x * channels() + c], requantization_scale, output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       dwconv_minmax(
 | |
|         channels(), width(),
 | |
|         indirection.data(), packed_weights.data(), output.data(),
 | |
|         step() * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(int8_t),
 | |
|         input_offset() * sizeof(int8_t), zero.data(),
 | |
|         &quantization_params);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(int32_t(output[x * output_stride() + c]), int32_t(qmin()) - 0x80)
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|           ASSERT_LE(int32_t(output[x * output_stride() + c]), int32_t(qmax()) - 0x80)
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|           ASSERT_EQ(int32_t(output[x * output_stride() + c]), int32_t(output_ref[x * channels() + c]))
 | |
|             << "x = " << x << ", channel = " << c << ", accumulator = " << accumulators[x * channels() + c];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_dwconv_minmax_unipass_ukernel_function dwconv_minmax, xnn_init_f16_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<const uint16_t*> indirection((width() - 1) * step() + kr());
 | |
|     std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + indirection.size() * channels());
 | |
|     std::vector<uint16_t> kernel(channels() * kr());
 | |
|     std::vector<uint16_t> bias(channels());
 | |
|     std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_weights((kr() + 1) * packed_channels());
 | |
|     std::vector<uint16_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> output((width() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(width() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::generate(kernel.begin(), kernel.end(), std::ref(f16rng));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(f16rng));
 | |
|       std::fill(zero.begin(), zero.end(), 0);
 | |
|       std::fill(output_ref.begin(), output_ref.end(), 0.0f);
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
 | |
| 
 | |
|       std::fill(packed_weights.begin(), packed_weights.end(), 0);
 | |
|       xnn_pack_f16_dwconv_ghw_w(
 | |
|         kr(), 1, channels(), cr(),
 | |
|         kernel.data(), bias.data(), packed_weights.data(),
 | |
|         0 /* extra bytes */, nullptr);
 | |
|       for (size_t i = 0; i < indirection.size(); i++) {
 | |
|         indirection[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirection.begin(), indirection.end(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         for (size_t i = 0; i < indirection.size(); i += kr()) {
 | |
|           indirection[i + zero_index()] = zero.data();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float acc = fp16_ieee_to_fp32_value(bias[c]);
 | |
|           for (size_t k = 0; k < kr(); k++) {
 | |
|             if (indirection[x * step() + k] != zero.data()) {
 | |
|               acc += fp16_ieee_to_fp32_value(indirection[x * step() + k][c + input_offset()]) * fp16_ieee_to_fp32_value(kernel[c * kr() + k]);
 | |
|             }
 | |
|           }
 | |
|           output_ref[x * channels() + c] = acc;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin())));
 | |
|       const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())));
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f16_minmax_params params;
 | |
|       init_params(¶ms,
 | |
|         fp16_ieee_from_fp32_value(output_min),
 | |
|         fp16_ieee_from_fp32_value(output_max));
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_val : output_ref) {
 | |
|         output_val = std::max(std::min(output_val, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       dwconv_minmax(
 | |
|         channels(), width(),
 | |
|         reinterpret_cast<const void**>(indirection.data()), packed_weights.data(), output.data(),
 | |
|         step() * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(uint16_t),
 | |
|         input_offset() * sizeof(uint16_t), zero.data(),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(fp16_ieee_to_fp32_value(output[x * output_stride() + c]), output_min)
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|           ASSERT_LE(fp16_ieee_to_fp32_value(output[x * output_stride() + c]), output_max)
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|           ASSERT_NEAR(output_ref[x * channels() + c], fp16_ieee_to_fp32_value(output[x * output_stride() + c]), std::max(1.0e-4f, std::abs(output_ref[x * channels() + c]) * 1.0e-2f))
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_dwconv_unipass_ukernel_function dwconv) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<const float*> indirection((width() - 1) * step() + kr());
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + indirection.size() * channels());
 | |
|     std::vector<float> kernel(channels() * kr());
 | |
|     std::vector<float> bias(channels());
 | |
|     std::vector<float, AlignedAllocator<float, 64>> packed_weights((kr() + 1) * packed_channels());
 | |
|     std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output((width() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(width() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(f32rng));
 | |
|       std::fill(zero.begin(), zero.end(), 0.0f);
 | |
|       std::fill(output_ref.begin(), output_ref.end(), nanf(""));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
 | |
|       xnn_pack_f32_dwconv_ghw_w(
 | |
|         kr(), 1, channels(), cr(),
 | |
|         kernel.data(), bias.data(), packed_weights.data(),
 | |
|         0 /* extra bytes */, nullptr);
 | |
|       for (size_t i = 0; i < indirection.size(); i++) {
 | |
|         indirection[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirection.begin(), indirection.end(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         for (size_t i = 0; i < indirection.size(); i += kr()) {
 | |
|           indirection[i + zero_index()] = zero.data();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float acc = bias[c];
 | |
|           for (size_t k = 0; k < kr(); k++) {
 | |
|             if (indirection[x * step() + k] != zero.data()) {
 | |
|               acc += indirection[x * step() + k][c + input_offset()] * kernel[c * kr() + k];
 | |
|             }
 | |
|           }
 | |
|           output_ref[x * channels() + c] = acc;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       dwconv(
 | |
|         channels(), width(),
 | |
|         indirection.data(), packed_weights.data(), output.data(),
 | |
|         step() * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(float),
 | |
|         input_offset() * sizeof(float), zero.data(),
 | |
|         nullptr);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_NEAR(
 | |
|               output_ref[x * channels() + c],
 | |
|               output[x * output_stride() + c],
 | |
|               std::abs(output_ref[x * channels() + c]) * 1.0e-5)
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_dwconv_minmax_unipass_ukernel_function dwconv_minmax, xnn_init_f32_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<const float*> indirection((width() - 1) * step() + kr());
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + indirection.size() * channels());
 | |
|     std::vector<float> kernel(channels() * kr());
 | |
|     std::vector<float> bias(channels());
 | |
|     std::vector<float, AlignedAllocator<float, 64>> packed_weights((kr() + 1) * packed_channels());
 | |
|     std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output((width() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(width() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(f32rng));
 | |
|       std::fill(zero.begin(), zero.end(), 0.0f);
 | |
|       std::fill(output_ref.begin(), output_ref.end(), nanf(""));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
 | |
|       xnn_pack_f32_dwconv_ghw_w(
 | |
|         kr(), 1, channels(), cr(),
 | |
|         kernel.data(), bias.data(), packed_weights.data(),
 | |
|         0 /* extra bytes */, nullptr);
 | |
|       for (size_t i = 0; i < indirection.size(); i++) {
 | |
|         indirection[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirection.begin(), indirection.end(), rng);
 | |
|       if (zero_index() != SIZE_MAX) {
 | |
|         for (size_t i = 0; i < indirection.size(); i += kr()) {
 | |
|           indirection[i + zero_index()] = zero.data();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           float acc = bias[c];
 | |
|           for (size_t k = 0; k < kr(); k++) {
 | |
|             if (indirection[x * step() + k] != zero.data()) {
 | |
|               acc += indirection[x * step() + k][c + input_offset()] * kernel[c * kr() + k];
 | |
|             }
 | |
|           }
 | |
|           output_ref[x * channels() + c] = acc;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin());
 | |
|       const float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_minmax_params params;
 | |
|       init_params(¶ms, output_min, output_max);
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_val : output_ref) {
 | |
|         output_val = std::max(std::min(output_val, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       dwconv_minmax(
 | |
|         channels(), width(),
 | |
|         indirection.data(), packed_weights.data(), output.data(),
 | |
|         step() * sizeof(void*),
 | |
|         (output_stride() - channels()) * sizeof(float),
 | |
|         input_offset() * sizeof(float), zero.data(),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t x = 0; x < width(); x++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_GE(output[x * output_stride() + c], output_min)
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|           ASSERT_LE(output[x * output_stride() + c], output_max)
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|           ASSERT_NEAR(
 | |
|               output_ref[x * channels() + c],
 | |
|               output[x * output_stride() + c],
 | |
|               std::abs(output_ref[x * channels() + c]) * 1.0e-5)
 | |
|             << "x = " << x << ", channel = " << c;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   uint32_t channels_{1};
 | |
|   uint32_t cr_{1};
 | |
|   uint32_t kr_{1};
 | |
|   uint32_t width_{1};
 | |
|   uint32_t step_{1};
 | |
|   uint32_t output_stride_{0};
 | |
|   uint8_t input_zero_point_{127};
 | |
|   uint8_t kernel_zero_point_{127};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t input_offset_{0};
 | |
|   size_t zero_index_{SIZE_MAX};
 | |
|   size_t iterations_{3};
 | |
| };
 |