263 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright (c) Facebook, Inc. and its affiliates.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/AlignedAllocator.h>
 | |
| #include <xnnpack/math.h>
 | |
| #include <xnnpack/pack.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| 
 | |
| 
 | |
| class DWConv2DMicrokernelTester {
 | |
|  public:
 | |
|   enum class Variant {
 | |
|     Native,
 | |
|     Scalar,
 | |
|   };
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& padding_left(uint32_t padding_left) {
 | |
|     this->padding_left_ = padding_left;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_left() const {
 | |
|     return this->padding_left_;
 | |
|   }
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& padding_right(uint32_t padding_right) {
 | |
|     this->padding_right_ = padding_right;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_right() const {
 | |
|     return this->padding_right_;
 | |
|   }
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& padding_top(uint32_t padding_top) {
 | |
|     this->padding_top_ = padding_top;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_top() const {
 | |
|     return this->padding_top_;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& padding_bottom(uint32_t padding_bottom) {
 | |
|     this->padding_bottom_ = padding_bottom;
 | |
|     return *this;
 | |
|   }
 | |
|   inline uint32_t padding_bottom() const {
 | |
|     return this->padding_bottom_;
 | |
|   }
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& input_height(uint32_t input_height) {
 | |
|     assert(input_height >= 1);
 | |
|     this->input_height_ = input_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t input_height() const {
 | |
|     return this->input_height_;
 | |
|   }
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& input_width(uint32_t input_width) {
 | |
|     assert(input_width >= 1);
 | |
|     this->input_width_ = input_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t input_width() const {
 | |
|     return this->input_width_;
 | |
|   }
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& subsampling(uint32_t subsampling) {
 | |
|     assert(subsampling >= 1);
 | |
|     this->subsampling_ = subsampling;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t subsampling() const {
 | |
|     return this->subsampling_;
 | |
|   }
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& kernel_height(uint32_t kernel_height) {
 | |
|     assert(kernel_height != 0);
 | |
|     this->kernel_height_ = kernel_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t kernel_height() const {
 | |
|     return this->kernel_height_;
 | |
|   }
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& kernel_width(uint32_t kernel_width) {
 | |
|     assert(kernel_width != 0);
 | |
|     this->kernel_width_ = kernel_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t kernel_width() const {
 | |
|     return this->kernel_width_;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t kernel_size() const {
 | |
|     return kernel_height() * kernel_width();
 | |
|   }
 | |
| 
 | |
|   inline uint32_t output_height() const {
 | |
|     const uint32_t padded_input_height = padding_top() + input_height() + padding_bottom();
 | |
|     if (padded_input_height <= kernel_height()) {
 | |
|       return 1;
 | |
|     } else {
 | |
|       return (padded_input_height - kernel_height()) / subsampling() + 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline uint32_t output_width() const {
 | |
|     const uint32_t padded_input_width = padding_left() + input_width() + padding_right();
 | |
|     if (padded_input_width <= kernel_width()) {
 | |
|       return 1;
 | |
|     } else {
 | |
|       return (padded_input_width - kernel_width()) / subsampling() + 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline DWConv2DMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_dwconv2d_chw_ukernel_function dwconv, Variant variant = Variant::Native) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float, AlignedAllocator<float, 64>> input(input_height() * input_width() + 2 * XNN_EXTRA_BYTES);
 | |
|     std::vector<float> zero(input_width() + 2 * XNN_EXTRA_BYTES);
 | |
|     std::vector<float> packed_weights(kernel_size() + 1);
 | |
|     std::vector<float, AlignedAllocator<float, 64>> output(output_height() * output_width());
 | |
|     std::vector<float> output_ref(output_height() * output_width());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::generate(packed_weights.begin(), packed_weights.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       for (size_t oy = 0; oy < output_height(); oy++) {
 | |
|         for (size_t ox = 0; ox < output_width(); ox++) {
 | |
|           float acc = packed_weights[0];
 | |
|           for (size_t ky = 0; ky < kernel_height(); ky++) {
 | |
|             const size_t iy = oy * subsampling() + ky - padding_top();
 | |
|             for (size_t kx = 0; kx < kernel_width(); kx++) {
 | |
|               const size_t ix = ox * subsampling() + kx - padding_left();
 | |
|               if (ix < input_width() && iy < input_height()) {
 | |
|                 const float input_val = input[iy * input_width() + ix];
 | |
|                 const float kernel_val = packed_weights[1 + ky * kernel_width() + kx];
 | |
|                 acc += input_val * kernel_val;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           output_ref[oy * output_width() + ox] = acc;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin());
 | |
|       const float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_chw_params chw_params;
 | |
|       switch (variant) {
 | |
|         case Variant::Native:
 | |
|           xnn_init_f32_chw_params(&chw_params, input_width(), output_min, output_max);
 | |
|           break;
 | |
|         case Variant::Scalar:
 | |
|           xnn_init_scalar_f32_chw_params(&chw_params, input_width(), output_min, output_max);
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_val : output_ref) {
 | |
|         output_val = std::max(std::min(output_val, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       dwconv(
 | |
|         input_height(), input_width() * sizeof(float),
 | |
|         input.data(), packed_weights.data(), zero.data(), output.data(),
 | |
|         padding_top(),
 | |
|         &chw_params);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t y = 0; y < output_height(); y++) {
 | |
|         for (size_t x = 0; x < output_width(); x++) {
 | |
|           ASSERT_NEAR(
 | |
|               output_ref[y * output_width() + x],
 | |
|               output[y * output_width() + x],
 | |
|               std::abs(output_ref[y * output_width() + x]) * 1.0e-5)
 | |
|             << "x = " << x << ", y = " << y;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   uint32_t padding_left_{0};
 | |
|   uint32_t padding_right_{0};
 | |
|   uint32_t padding_top_{0};
 | |
|   uint32_t padding_bottom_{0};
 | |
|   uint32_t input_height_{1};
 | |
|   uint32_t input_width_{1};
 | |
|   uint32_t subsampling_{1};
 | |
|   uint32_t kernel_height_{1};
 | |
|   uint32_t kernel_width_{1};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{1};
 | |
| };
 |