653 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			653 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright (c) Facebook, Inc. and its affiliates.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| 
 | |
| 
 | |
| class FullyConnectedOperatorTester {
 | |
|  public:
 | |
|   enum class WeightsType {
 | |
|     Default,
 | |
|     FP32,
 | |
|   };
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& input_channels(size_t input_channels) {
 | |
|     assert(input_channels >= 1);
 | |
|     this->input_channels_ = input_channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_channels() const {
 | |
|     return this->input_channels_;
 | |
|   }
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& output_channels(size_t output_channels) {
 | |
|     assert(output_channels >= 1);
 | |
|     this->output_channels_ = output_channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_channels() const {
 | |
|     return this->output_channels_;
 | |
|   }
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size >= 1);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& input_stride(size_t input_stride) {
 | |
|     assert(input_stride >= 1);
 | |
|     this->input_stride_ = input_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_stride() const {
 | |
|     if (this->input_stride_ == 0) {
 | |
|       return input_channels();
 | |
|     } else {
 | |
|       assert(this->input_stride_ >= input_channels());
 | |
|       return this->input_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& output_stride(size_t output_stride) {
 | |
|     assert(output_stride >= 1);
 | |
|     this->output_stride_ = output_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_stride() const {
 | |
|     if (this->output_stride_ == 0) {
 | |
|       return output_channels();
 | |
|     } else {
 | |
|       assert(this->output_stride_ >= output_channels());
 | |
|       return this->output_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& transpose_weights(bool transpose_weights) {
 | |
|     this->transpose_weights_ = transpose_weights;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool transpose_weights() const {
 | |
|     return this->transpose_weights_;
 | |
|   }
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& has_bias(bool has_bias) {
 | |
|     this->has_bias_ = has_bias;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool has_bias() const {
 | |
|     return this->has_bias_;
 | |
|   }
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& weights_type(WeightsType weights_type) {
 | |
|     this->weights_type_ = weights_type;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline WeightsType weights_type() const {
 | |
|     return this->weights_type_;
 | |
|   }
 | |
| 
 | |
|   inline FullyConnectedOperatorTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void TestQS8() const {
 | |
|     ASSERT_EQ(weights_type(), WeightsType::Default);
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
 | |
|     auto i8rng = std::bind(std::uniform_int_distribution<int32_t>(
 | |
|       std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng));
 | |
|     auto w8rng = std::bind(std::uniform_int_distribution<int32_t>(
 | |
|       -std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()), std::ref(rng));
 | |
| 
 | |
|     std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) +
 | |
|       (batch_size() - 1) * input_stride() + input_channels());
 | |
|     std::vector<int8_t> kernel(output_channels() * input_channels());
 | |
|     std::vector<int32_t> bias(output_channels());
 | |
|     std::vector<int8_t> output((batch_size() - 1) * output_stride() + output_channels());
 | |
|     std::vector<int32_t> accumulators(batch_size() * output_channels());
 | |
|     std::vector<double> output_ref(batch_size() * output_channels());
 | |
| 
 | |
|     const int8_t input_zero_point = 127;
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::generate(kernel.begin(), kernel.end(), std::ref(w8rng));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(i32rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results, without renormalization.
 | |
|       if (has_bias()) {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             accumulators[i * output_channels() + oc] = bias[oc];
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         std::fill(accumulators.begin(), accumulators.end(), 0);
 | |
|       }
 | |
|       if (transpose_weights()) {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             for (size_t ic = 0; ic < input_channels(); ic++) {
 | |
|               accumulators[i * output_channels() + oc] +=
 | |
|                 (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) *
 | |
|                 int32_t(kernel[ic * output_channels() + oc]);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             for (size_t ic = 0; ic < input_channels(); ic++) {
 | |
|               accumulators[i * output_channels() + oc] +=
 | |
|                 (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) *
 | |
|                 int32_t(kernel[oc * input_channels() + ic]);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute renormalization parameters.
 | |
|       const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
 | |
|       const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
 | |
| 
 | |
|       const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
 | |
|       const int8_t output_zero_point = int8_t(std::max(std::min(
 | |
|         lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
 | |
|         long(std::numeric_limits<int8_t>::max())), long(std::numeric_limits<int8_t>::min())));
 | |
| 
 | |
|       // Renormalize reference results.
 | |
|       std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(),
 | |
|         [this, output_scale, output_zero_point](int32_t x) -> double {
 | |
|           return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax() - 0x80) - output_zero_point), double(qmin() - 0x80) - output_zero_point);
 | |
|         });
 | |
| 
 | |
|       // Create, setup, run, and destroy Fully Connected operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t fully_connected_op = nullptr;
 | |
| 
 | |
|       const xnn_status status = xnn_create_fully_connected_nc_qs8(
 | |
|           input_channels(), output_channels(),
 | |
|           input_stride(), output_stride(),
 | |
|           input_zero_point, 1.0f /* input scale */,
 | |
|           1.0f /* kernel scale */,
 | |
|           kernel.data(), has_bias() ? bias.data() : nullptr,
 | |
|           output_zero_point, output_scale, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80),
 | |
|           transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0,
 | |
|           &fully_connected_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
|       ASSERT_NE(nullptr, fully_connected_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete fully_connected_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_fully_connected_nc_qs8(
 | |
|           fully_connected_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(fully_connected_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < output_channels(); c++) {
 | |
|           ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax() - 0x80))
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|           ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin() - 0x80))
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|           ASSERT_NEAR(
 | |
|               output_ref[i * output_channels() + c],
 | |
|               double(output[i * output_stride() + c]) - double(output_zero_point),
 | |
|               0.9)
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestQU8() const {
 | |
|     ASSERT_EQ(weights_type(), WeightsType::Default);
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
 | |
|     auto u8rng = std::bind(
 | |
|       std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
 | |
| 
 | |
|     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
 | |
|       (batch_size() - 1) * input_stride() + input_channels());
 | |
|     std::vector<uint8_t> kernel(output_channels() * input_channels());
 | |
|     std::vector<int32_t> bias(output_channels());
 | |
|     std::vector<uint8_t> output((batch_size() - 1) * output_stride() + output_channels());
 | |
|     std::vector<int32_t> accumulators(batch_size() * output_channels());
 | |
|     std::vector<double> output_ref(batch_size() * output_channels());
 | |
| 
 | |
|     const uint8_t input_zero_point = 127;
 | |
|     const uint8_t kernel_zero_point = 127;
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::generate(kernel.begin(), kernel.end(), std::ref(u8rng));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(i32rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results, without renormalization.
 | |
|       if (has_bias()) {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             accumulators[i * output_channels() + oc] = bias[oc];
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         std::fill(accumulators.begin(), accumulators.end(), 0);
 | |
|       }
 | |
|       if (transpose_weights()) {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             for (size_t ic = 0; ic < input_channels(); ic++) {
 | |
|               accumulators[i * output_channels() + oc] +=
 | |
|                 (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) *
 | |
|                 (int32_t(kernel[ic * output_channels() + oc]) - int32_t(kernel_zero_point));
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             for (size_t ic = 0; ic < input_channels(); ic++) {
 | |
|               accumulators[i * output_channels() + oc] +=
 | |
|                 (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) *
 | |
|                 (int32_t(kernel[oc * input_channels() + ic]) - int32_t(kernel_zero_point));
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute renormalization parameters.
 | |
|       const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
 | |
|       const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
 | |
| 
 | |
|       const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
 | |
|       const uint8_t output_zero_point = uint8_t(std::max(std::min(
 | |
|         lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
 | |
|         long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min())));
 | |
| 
 | |
|       // Renormalize reference results.
 | |
|       std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(),
 | |
|         [this, output_scale, output_zero_point](int32_t x) -> double {
 | |
|           return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point);
 | |
|         });
 | |
| 
 | |
|       // Create, setup, run, and destroy Fully Connected operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t fully_connected_op = nullptr;
 | |
| 
 | |
|       const xnn_status status = xnn_create_fully_connected_nc_qu8(
 | |
|           input_channels(), output_channels(),
 | |
|           input_stride(), output_stride(),
 | |
|           input_zero_point, 1.0f /* input scale */,
 | |
|           kernel_zero_point, 1.0f /* kernel scale */,
 | |
|           kernel.data(), has_bias() ? bias.data() : nullptr,
 | |
|           output_zero_point, output_scale, qmin(), qmax(),
 | |
|           transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0,
 | |
|           &fully_connected_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
|       ASSERT_NE(nullptr, fully_connected_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete fully_connected_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_fully_connected_nc_qu8(
 | |
|           fully_connected_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(fully_connected_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < output_channels(); c++) {
 | |
|           ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax()))
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|           ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin()))
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|           ASSERT_NEAR(
 | |
|               output_ref[i * output_channels() + c],
 | |
|               double(output[i * output_stride() + c]) - double(output_zero_point),
 | |
|               0.9)
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestF32() const {
 | |
|     ASSERT_EQ(weights_type(), WeightsType::Default);
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       (batch_size() - 1) * input_stride() + input_channels());
 | |
|     std::vector<float> kernel(output_channels() * input_channels());
 | |
|     std::vector<float> bias(output_channels());
 | |
|     std::vector<float> output((batch_size() - 1) * output_stride() + output_channels());
 | |
|     std::vector<float> output_ref(batch_size() * output_channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       // Compute reference results, without renormalization.
 | |
|       if (has_bias()) {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             output_ref[i * output_channels() + oc] = bias[oc];
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         std::fill(output_ref.begin(), output_ref.end(), 0.0f);
 | |
|       }
 | |
|       if (transpose_weights()) {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             for (size_t ic = 0; ic < input_channels(); ic++) {
 | |
|               output_ref[i * output_channels() + oc] +=
 | |
|                 input[i * input_stride() + ic] * kernel[ic * output_channels() + oc];
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             for (size_t ic = 0; ic < input_channels(); ic++) {
 | |
|               output_ref[i * output_channels() + oc] +=
 | |
|                 input[i * input_stride() + ic] * kernel[oc * input_channels() + ic];
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
| 
 | |
|       const float output_min = qmin() == 0 ? -std::numeric_limits<float>::infinity() :
 | |
|         accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
 | |
|       const float output_max = qmax() == 255 ? std::numeric_limits<float>::infinity() :
 | |
|         accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& value : output_ref) {
 | |
|         value = std::max(std::min(value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Fully Connected operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t fully_connected_op = nullptr;
 | |
| 
 | |
|       const xnn_status status = xnn_create_fully_connected_nc_f32(
 | |
|           input_channels(), output_channels(),
 | |
|           input_stride(), output_stride(),
 | |
|           kernel.data(), has_bias() ? bias.data() : nullptr,
 | |
|           output_min, output_max,
 | |
|           transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0,
 | |
|           &fully_connected_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
|       ASSERT_NE(nullptr, fully_connected_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete fully_connected_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_fully_connected_nc_f32(
 | |
|           fully_connected_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(fully_connected_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < output_channels(); c++) {
 | |
|           ASSERT_LE(output[i * output_stride() + c], output_max)
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|           ASSERT_GE(output[i * output_stride() + c], output_min)
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|           ASSERT_NEAR(
 | |
|               output_ref[i * output_channels() + c],
 | |
|               output[i * output_stride() + c],
 | |
|               1.0e-4 * std::abs(output_ref[i * output_channels() + c]))
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestF16() const {
 | |
|     switch (weights_type()) {
 | |
|       case WeightsType::Default:
 | |
|         break;
 | |
|       case WeightsType::FP32:
 | |
|         break;
 | |
|       default:
 | |
|         GTEST_FAIL() << "unexpected weights type";
 | |
|     }
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), std::ref(rng));
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) +
 | |
|       (batch_size() - 1) * input_stride() + input_channels());
 | |
|     std::vector<uint16_t> kernel(output_channels() * input_channels());
 | |
|     std::vector<float> kernel_as_float(kernel.size());
 | |
|     std::vector<uint16_t> bias(output_channels());
 | |
|     std::vector<float> bias_as_float(bias.size());
 | |
|     std::vector<uint16_t> output((batch_size() - 1) * output_stride() + output_channels());
 | |
|     std::vector<float> output_ref(batch_size() * output_channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::generate(kernel.begin(), kernel.end(), std::ref(f16rng));
 | |
|       std::transform(kernel.cbegin(), kernel.cend(), kernel_as_float.begin(), fp16_ieee_to_fp32_value);
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(f16rng));
 | |
|       std::transform(bias.cbegin(), bias.cend(), bias_as_float.begin(), fp16_ieee_to_fp32_value);
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7C00));
 | |
| 
 | |
|       // Compute reference results, without renormalization.
 | |
|       if (has_bias()) {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             output_ref[i * output_channels() + oc] = fp16_ieee_to_fp32_value(bias[oc]);
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         std::fill(output_ref.begin(), output_ref.end(), 0.0f);
 | |
|       }
 | |
|       if (transpose_weights()) {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             for (size_t ic = 0; ic < input_channels(); ic++) {
 | |
|               output_ref[i * output_channels() + oc] +=
 | |
|                 fp16_ieee_to_fp32_value(input[i * input_stride() + ic]) * fp16_ieee_to_fp32_value(kernel[ic * output_channels() + oc]);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         for (size_t i = 0; i < batch_size(); i++) {
 | |
|           for (size_t oc = 0; oc < output_channels(); oc++) {
 | |
|             for (size_t ic = 0; ic < input_channels(); ic++) {
 | |
|               output_ref[i * output_channels() + oc] +=
 | |
|                 fp16_ieee_to_fp32_value(input[i * input_stride() + ic]) * fp16_ieee_to_fp32_value(kernel[oc * input_channels() + ic]);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin())));
 | |
|       const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())));
 | |
|       const float output_min = scaled_min == scaled_max ? -std::numeric_limits<float>::infinity() : scaled_min;
 | |
|       const float output_max = scaled_min == scaled_max ? +std::numeric_limits<float>::infinity() : scaled_max;
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& value : output_ref) {
 | |
|         value = std::max(std::min(value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Fully Connected operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t fully_connected_op = nullptr;
 | |
| 
 | |
|       const void* kernel_data = kernel.data();
 | |
|       const void* bias_data = bias.data();
 | |
|       if (weights_type() == WeightsType::FP32) {
 | |
|         kernel_data = kernel_as_float.data();
 | |
|         bias_data = bias_as_float.data();
 | |
|       }
 | |
|       uint32_t flags = 0;
 | |
|       if (transpose_weights()) {
 | |
|         flags |= XNN_FLAG_TRANSPOSE_WEIGHTS;
 | |
|       }
 | |
|       if (weights_type() == WeightsType::FP32) {
 | |
|         flags |= XNN_FLAG_FP32_STATIC_WEIGHTS;
 | |
|       }
 | |
|       const xnn_status status = xnn_create_fully_connected_nc_f16(
 | |
|           input_channels(), output_channels(),
 | |
|           input_stride(), output_stride(),
 | |
|           kernel_data, has_bias() ? bias_data : nullptr,
 | |
|           output_min, output_max,
 | |
|           flags,
 | |
|           &fully_connected_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
|       ASSERT_NE(nullptr, fully_connected_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete fully_connected_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_fully_connected_nc_f16(
 | |
|           fully_connected_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(fully_connected_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < output_channels(); c++) {
 | |
|           ASSERT_LE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_max)
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|           ASSERT_GE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_min)
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|           ASSERT_NEAR(
 | |
|               output_ref[i * output_channels() + c],
 | |
|               fp16_ieee_to_fp32_value(output[i * output_stride() + c]),
 | |
|               1.0e-2f * std::abs(output_ref[i * output_channels() + c]))
 | |
|             << "batch index = " << i << ", channel = " << c;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t input_channels_{1};
 | |
|   size_t input_stride_{0};
 | |
|   size_t output_channels_{1};
 | |
|   size_t output_stride_{0};
 | |
|   size_t batch_size_{1};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   bool transpose_weights_{false};
 | |
|   bool has_bias_{true};
 | |
|   WeightsType weights_type_{WeightsType::Default};
 | |
|   size_t iterations_{1};
 | |
| };
 |