670 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			670 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright (c) Facebook, Inc. and its affiliates.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/AlignedAllocator.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| #include <xnnpack/requantization.h>
 | |
| 
 | |
| 
 | |
| class GAvgPoolMicrokernelTester {
 | |
|  public:
 | |
|   inline GAvgPoolMicrokernelTester& rows(size_t rows) {
 | |
|     assert(rows != 0);
 | |
|     this->rows_ = rows;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t rows() const {
 | |
|     return this->rows_;
 | |
|   }
 | |
| 
 | |
|   inline GAvgPoolMicrokernelTester& channels(size_t channels) {
 | |
|     assert(channels != 0);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline GAvgPoolMicrokernelTester& channel_tile(size_t channel_tile) {
 | |
|     assert(channel_tile != 0);
 | |
|     this->channel_tile_ = channel_tile;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channel_tile() const {
 | |
|     return this->channel_tile_;
 | |
|   }
 | |
| 
 | |
|   inline GAvgPoolMicrokernelTester& input_stride(size_t input_stride) {
 | |
|     assert(input_stride != 0);
 | |
|     this->input_stride_ = input_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_stride() const {
 | |
|     if (this->input_stride_ == 0) {
 | |
|       return channels();
 | |
|     } else {
 | |
|       assert(this->input_stride_ >= channels());
 | |
|       return this->input_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline GAvgPoolMicrokernelTester& input_scale(float input_scale) {
 | |
|     assert(input_scale > 0.0f);
 | |
|     assert(std::isnormal(input_scale));
 | |
|     this->input_scale_ = input_scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float input_scale() const {
 | |
|     return this->input_scale_;
 | |
|   }
 | |
| 
 | |
|   inline GAvgPoolMicrokernelTester& input_zero_point(uint8_t input_zero_point) {
 | |
|     this->input_zero_point_ = input_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t input_zero_point() const {
 | |
|     return this->input_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline GAvgPoolMicrokernelTester& output_scale(float output_scale) {
 | |
|     assert(output_scale > 0.0f);
 | |
|     assert(std::isnormal(output_scale));
 | |
|     this->output_scale_ = output_scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float output_scale() const {
 | |
|     return this->output_scale_;
 | |
|   }
 | |
| 
 | |
|   inline GAvgPoolMicrokernelTester& output_zero_point(uint8_t output_zero_point) {
 | |
|     this->output_zero_point_ = output_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t output_zero_point() const {
 | |
|     return this->output_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline GAvgPoolMicrokernelTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline GAvgPoolMicrokernelTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline GAvgPoolMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(
 | |
|       xnn_qu8_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax,
 | |
|       xnn_init_qu8_avgpool_minmax_params_fn init_params,
 | |
|       xnn_qu8_requantize_fn requantize) const
 | |
|   {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
 | |
|       (rows() - 1) * input_stride() + channels());
 | |
|     std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> output(channels());
 | |
|     std::vector<uint8_t> output_ref(channels());
 | |
|     std::vector<float> output_fp(channels());
 | |
|     std::vector<int32_t> accumulators(channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_qu8_avgpool_minmax_params params;
 | |
|       init_params(
 | |
|         ¶ms,
 | |
|         -int32_t(input_zero_point()) * int32_t(rows()),
 | |
|         input_scale() / (output_scale() * float(rows())),
 | |
|         output_zero_point(), qmin(), qmax());
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         int32_t acc = 0;
 | |
|         for (size_t n = 0; n < rows(); n++) {
 | |
|           acc += int32_t(input[n * input_stride() + c]) - int32_t(input_zero_point());
 | |
|         }
 | |
|         accumulators[c] = acc;
 | |
|         output_ref[c] = requantize(
 | |
|           acc, input_scale() / (output_scale() * float(rows())), output_zero_point(), qmin(), qmax());
 | |
|         output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point());
 | |
|         output_fp[c] = std::min<float>(output_fp[c], float(qmax()));
 | |
|         output_fp[c] = std::max<float>(output_fp[c], float(qmin()));
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       gavgpool_minmax(rows(), channels(),
 | |
|         input.data(), input_stride() * sizeof(uint8_t),
 | |
|         zero.data(),
 | |
|         output.data(),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         ASSERT_LE(uint32_t(output[c]), uint32_t(qmax()))
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_GE(uint32_t(output[c]), uint32_t(qmin()))
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels()
 | |
|           << ", acc = " << accumulators[c];
 | |
|         ASSERT_EQ(uint32_t(output_ref[c]), uint32_t(output[c]))
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels()
 | |
|           << ", acc = " << accumulators[c];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(
 | |
|       xnn_qu8_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax,
 | |
|       xnn_init_qu8_avgpool_minmax_params_fn init_params,
 | |
|       xnn_qu8_requantize_fn requantize) const
 | |
|   {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
 | |
|       (rows() - 1) * input_stride() + channels());
 | |
|     std::vector<int32_t, AlignedAllocator<int32_t, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> output(channels());
 | |
|     std::vector<uint8_t> output_ref(channels());
 | |
|     std::vector<float> output_fp(channels());
 | |
|     std::vector<int32_t> accumulators(channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_qu8_avgpool_minmax_params params;
 | |
|       init_params(
 | |
|         ¶ms,
 | |
|         -int32_t(input_zero_point()) * int32_t(rows()),
 | |
|         input_scale() / (output_scale() * float(rows())),
 | |
|         output_zero_point(), qmin(), qmax());
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         int32_t acc = 0;
 | |
|         for (size_t n = 0; n < rows(); n++) {
 | |
|           acc += int32_t(input[n * input_stride() + c]) - int32_t(input_zero_point());
 | |
|         }
 | |
| 
 | |
|         accumulators[c] = acc;
 | |
|         output_ref[c] = requantize(
 | |
|           acc, input_scale() / (output_scale() * float(rows())), output_zero_point(), qmin(), qmax());
 | |
|         output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point());
 | |
|         output_fp[c] = std::min<float>(output_fp[c], float(qmax()));
 | |
|         output_fp[c] = std::max<float>(output_fp[c], float(qmin()));
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       gavgpool_minmax(rows(), channels(),
 | |
|         input.data(), input_stride() * sizeof(uint8_t),
 | |
|         zero.data(),
 | |
|         buffer.data(),
 | |
|         output.data(),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         ASSERT_LE(uint32_t(output[c]), uint32_t(qmax()))
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_GE(uint32_t(output[c]), uint32_t(qmin()))
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels()
 | |
|           << ", acc = " << accumulators[c];
 | |
|         ASSERT_EQ(uint32_t(output_ref[c]), uint32_t(output[c]))
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels()
 | |
|           << ", acc = " << accumulators[c];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(
 | |
|       xnn_qs8_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax,
 | |
|       xnn_init_qs8_avgpool_minmax_params_fn init_params,
 | |
|       xnn_qs8_requantize_fn requantize) const
 | |
|   {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) +
 | |
|       (rows() - 1) * input_stride() + channels());
 | |
|     std::vector<int8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> output(channels());
 | |
|     std::vector<int8_t> output_ref(channels());
 | |
|     std::vector<float> output_fp(channels());
 | |
|     std::vector<int32_t> accumulators(channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_qs8_avgpool_minmax_params params;
 | |
|       init_params(
 | |
|         ¶ms,
 | |
|         -int32_t(input_zero_point() - 0x80) * int32_t(rows()),
 | |
|         input_scale() / (output_scale() * float(rows())),
 | |
|         int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         int32_t acc = 0;
 | |
|         for (size_t n = 0; n < rows(); n++) {
 | |
|           acc += int32_t(input[n * input_stride() + c]) - int32_t(input_zero_point() - 0x80);
 | |
|         }
 | |
|         accumulators[c] = acc;
 | |
|         output_ref[c] = requantize(
 | |
|           acc, input_scale() / (output_scale() * float(rows())), int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
|         output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point() - 0x80);
 | |
|         output_fp[c] = std::min<float>(output_fp[c], float(qmax() - 0x80));
 | |
|         output_fp[c] = std::max<float>(output_fp[c], float(qmin() - 0x80));
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       gavgpool_minmax(rows(), channels(),
 | |
|         input.data(), input_stride() * sizeof(int8_t),
 | |
|         zero.data(),
 | |
|         output.data(),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         ASSERT_LE(int32_t(output[c]), int32_t(qmax() - 0x80))
 | |
|           << "at channel " << c << " / " << channels() << ", rows = " << rows();
 | |
|         ASSERT_GE(int32_t(output[c]), int32_t(qmin() - 0x80))
 | |
|           << "at channel " << c << " / " << channels() << ", rows = " << rows();
 | |
|         ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f)
 | |
|           << "at channel " << c << " / " << channels() << ", rows = " << rows()
 | |
|           << ", accumulator = " << accumulators[c];
 | |
|         ASSERT_EQ(int32_t(output_ref[c]), int32_t(output[c]))
 | |
|           << "at channel " << c << " / " << channels() << ", rows = " << rows()
 | |
|           << ", accumulator = " << accumulators[c];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(
 | |
|       xnn_qs8_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax,
 | |
|       xnn_init_qs8_avgpool_minmax_params_fn init_params,
 | |
|       xnn_qs8_requantize_fn requantize) const
 | |
|   {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) +
 | |
|       (rows() - 1) * input_stride() + channels());
 | |
|     std::vector<int32_t, AlignedAllocator<int32_t, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> output(channels());
 | |
|     std::vector<int8_t> output_ref(channels());
 | |
|     std::vector<float> output_fp(channels());
 | |
|     std::vector<int32_t> accumulators(channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_qs8_avgpool_minmax_params params;
 | |
|       init_params(
 | |
|         ¶ms,
 | |
|         -int32_t(input_zero_point() - 0x80) * int32_t(rows()),
 | |
|         input_scale() / (output_scale() * float(rows())),
 | |
|         int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         int32_t acc = 0;
 | |
|         for (size_t n = 0; n < rows(); n++) {
 | |
|           acc += int32_t(input[n * input_stride() + c]) - int32_t(input_zero_point() - 0x80);
 | |
|         }
 | |
|         accumulators[c] = acc;
 | |
|         output_ref[c] = requantize(
 | |
|           acc, input_scale() / (output_scale() * float(rows())), int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
|         output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point() - 0x80);
 | |
|         output_fp[c] = std::min<float>(output_fp[c], float(qmax() - 0x80));
 | |
|         output_fp[c] = std::max<float>(output_fp[c], float(qmin() - 0x80));
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       gavgpool_minmax(rows(), channels(),
 | |
|         input.data(), input_stride() * sizeof(int8_t),
 | |
|         zero.data(),
 | |
|         buffer.data(),
 | |
|         output.data(),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         ASSERT_LE(int32_t(output[c]), int32_t(qmax() - 0x80))
 | |
|           << "at channel " << c << " / " << channels() << ", rows = " << rows();
 | |
|         ASSERT_GE(int32_t(output[c]), int32_t(qmin() - 0x80))
 | |
|           << "at channel " << c << " / " << channels() << ", rows = " << rows();
 | |
|         ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f)
 | |
|           << "at channel " << c << " / " << channels() << ", rows = " << rows()
 | |
|           << ", accumulator = " << accumulators[c];
 | |
|         ASSERT_EQ(int32_t(output_ref[c]), int32_t(output[c]))
 | |
|           << "at channel " << c << " / " << channels() << ", rows = " << rows()
 | |
|           << ", accumulator = " << accumulators[c];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, xnn_init_f16_scaleminmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> output(channels());
 | |
|     std::vector<float> output_ref(channels());
 | |
| 
 | |
|     std::fill(zero.begin(), zero.end(), 0);
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         float acc = 0.0f;
 | |
|         for (size_t n = 0; n < rows(); n++) {
 | |
|           acc += fp16_ieee_to_fp32_value(input[n * input_stride() + c]);
 | |
|         }
 | |
|         output_ref[c] = acc / float(rows());
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + float(qmin()) / 255.0f * accumulated_range));
 | |
|       const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range));
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_values : output_ref) {
 | |
|         output_values = std::max(std::min(output_values, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f16_scaleminmax_params params;
 | |
|       init_params(¶ms,
 | |
|         fp16_ieee_from_fp32_value(1.0f / float(rows())),
 | |
|         fp16_ieee_from_fp32_value(output_min),
 | |
|         fp16_ieee_from_fp32_value(output_max));
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       gavgpool_minmax(rows(), channels(),
 | |
|         input.data(), input_stride() * sizeof(uint16_t),
 | |
|         zero.data(),
 | |
|         output.data(),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         ASSERT_LE(fp16_ieee_to_fp32_value(output[c]), output_max)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_GE(fp16_ieee_to_fp32_value(output[c]), output_min)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_NEAR(fp16_ieee_to_fp32_value(output[c]), output_ref[c], std::max(1.0e-4f, std::abs(output_ref[c]) * 1.0e-2f))
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, xnn_init_f16_scaleminmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> output(channels());
 | |
|     std::vector<float> output_ref(channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         float acc = 0.0f;
 | |
|         for (size_t n = 0; n < rows(); n++) {
 | |
|           acc += fp16_ieee_to_fp32_value(input[n * input_stride() + c]);
 | |
|         }
 | |
|         output_ref[c] = acc / float(rows());
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + float(qmin()) / 255.0f * accumulated_range));
 | |
|       const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range));
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f16_scaleminmax_params params;
 | |
|       init_params(¶ms,
 | |
|         fp16_ieee_from_fp32_value(1.0f / float(rows())),
 | |
|         fp16_ieee_from_fp32_value(output_min),
 | |
|         fp16_ieee_from_fp32_value(output_max));
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_values : output_ref) {
 | |
|         output_values = std::max(std::min(output_values, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       gavgpool_minmax(rows(), channels(),
 | |
|         input.data(), input_stride() * sizeof(uint16_t),
 | |
|         zero.data(),
 | |
|         buffer.data(),
 | |
|         output.data(),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         ASSERT_LE(fp16_ieee_to_fp32_value(output[c]), output_max)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_GE(fp16_ieee_to_fp32_value(output[c]), output_min)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_NEAR(fp16_ieee_to_fp32_value(output[c]), output_ref[c], std::abs(output_ref[c]) * 1.0e-0f)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, xnn_init_f32_scaleminmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
 | |
| 
 | |
|     std::vector<float> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output(channels());
 | |
|     std::vector<float> output_ref(channels());
 | |
| 
 | |
|     std::fill(zero.begin(), zero.end(), 0.0f);
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         float acc = 0.0f;
 | |
|         for (size_t n = 0; n < rows(); n++) {
 | |
|           acc += input[n * input_stride() + c];
 | |
|         }
 | |
|         output_ref[c] = acc / float(rows());
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
 | |
|       const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_values : output_ref) {
 | |
|         output_values = std::max(std::min(output_values, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_scaleminmax_params params;
 | |
|       init_params(¶ms, 1.0f / float(rows()), output_min, output_max);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       gavgpool_minmax(rows(), channels(),
 | |
|         input.data(), input_stride() * sizeof(float),
 | |
|         zero.data(),
 | |
|         output.data(),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         ASSERT_LE(output[c], output_max)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_GE(output[c], output_min)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_NEAR(output[c], output_ref[c], std::abs(output_ref[c]) * 1.0e-6f)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, xnn_init_f32_scaleminmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
 | |
| 
 | |
|     std::vector<float> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float, AlignedAllocator<float, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output(channels());
 | |
|     std::vector<float> output_ref(channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         float acc = 0.0f;
 | |
|         for (size_t n = 0; n < rows(); n++) {
 | |
|           acc += input[n * input_stride() + c];
 | |
|         }
 | |
|         output_ref[c] = acc / float(rows());
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
 | |
|       const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_scaleminmax_params params;
 | |
|       init_params(¶ms, 1.0f / float(rows()), output_min, output_max);
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& output_values : output_ref) {
 | |
|         output_values = std::max(std::min(output_values, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       gavgpool_minmax(rows(), channels(),
 | |
|         input.data(), input_stride() * sizeof(float),
 | |
|         zero.data(),
 | |
|         buffer.data(),
 | |
|         output.data(),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         ASSERT_LE(output[c], output_max)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_GE(output[c], output_min)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|         ASSERT_NEAR(output[c], output_ref[c], std::abs(output_ref[c]) * 1.0e-6f)
 | |
|           << "at position " << c << ", rows = " << rows() << ", channels = " << channels();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t rows_{1};
 | |
|   size_t channels_{1};
 | |
|   size_t channel_tile_{1};
 | |
|   size_t input_stride_{0};
 | |
|   float input_scale_{1.25f};
 | |
|   float output_scale_{0.75f};
 | |
|   uint8_t input_zero_point_{121};
 | |
|   uint8_t output_zero_point_{133};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{15};
 | |
| };
 |