541 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			541 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright (c) Facebook, Inc. and its affiliates.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| 
 | |
| 
 | |
| class GlobalAveragePoolingOperatorTester {
 | |
|  public:
 | |
|   inline GlobalAveragePoolingOperatorTester& channels(size_t channels) {
 | |
|     assert(channels != 0);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& width(size_t width) {
 | |
|     assert(width != 0);
 | |
|     this->width_ = width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t width() const {
 | |
|     return this->width_;
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& input_stride(size_t input_stride) {
 | |
|     assert(input_stride != 0);
 | |
|     this->input_stride_ = input_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_stride() const {
 | |
|     if (this->input_stride_ == 0) {
 | |
|       return channels();
 | |
|     } else {
 | |
|       assert(this->input_stride_ >= channels());
 | |
|       return this->input_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& output_stride(size_t output_stride) {
 | |
|     assert(output_stride != 0);
 | |
|     this->output_stride_ = output_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_stride() const {
 | |
|     if (this->output_stride_ == 0) {
 | |
|       return channels();
 | |
|     } else {
 | |
|       assert(this->output_stride_ >= channels());
 | |
|       return this->output_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& input_scale(float input_scale) {
 | |
|     assert(input_scale > 0.0f);
 | |
|     assert(std::isnormal(input_scale));
 | |
|     this->input_scale_ = input_scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float input_scale() const {
 | |
|     return this->input_scale_;
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& input_zero_point(uint8_t input_zero_point) {
 | |
|     this->input_zero_point_ = input_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t input_zero_point() const {
 | |
|     return this->input_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& output_scale(float output_scale) {
 | |
|     assert(output_scale > 0.0f);
 | |
|     assert(std::isnormal(output_scale));
 | |
|     this->output_scale_ = output_scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float output_scale() const {
 | |
|     return this->output_scale_;
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& output_zero_point(uint8_t output_zero_point) {
 | |
|     this->output_zero_point_ = output_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t output_zero_point() const {
 | |
|     return this->output_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline GlobalAveragePoolingOperatorTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void TestNWCxQU8() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<uint8_t> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> output(batch_size() * output_stride());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       const double scale = double(input_scale()) / (double(width()) * double(output_scale()));
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t j = 0; j < channels(); j++) {
 | |
|           double acc = 0.0f;
 | |
|           for (size_t k = 0; k < width(); k++) {
 | |
|             acc += double(int32_t(input[(i * width() + k) * input_stride() + j]) - int32_t(input_zero_point()));
 | |
|           }
 | |
|           output_ref[i * channels() + j] = float(acc * scale + double(output_zero_point()));
 | |
|           output_ref[i * channels() + j] = std::min<float>(output_ref[i * channels() + j], float(qmax()));
 | |
|           output_ref[i * channels() + j] = std::max<float>(output_ref[i * channels() + j], float(qmin()));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Global Average Pooling operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t global_average_pooling_op = nullptr;
 | |
| 
 | |
|       xnn_status status = xnn_create_global_average_pooling_nwc_qu8(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           input_zero_point(), input_scale(),
 | |
|           output_zero_point(), output_scale(),
 | |
|           qmin(), qmax(),
 | |
|           0, &global_average_pooling_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
|       ASSERT_NE(nullptr, global_average_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete global_average_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_global_average_pooling_nwc_qu8(
 | |
|           global_average_pooling_op,
 | |
|           batch_size(), width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_LE(uint32_t(output[i * output_stride() + c]), uint32_t(qmax()));
 | |
|           ASSERT_GE(uint32_t(output[i * output_stride() + c]), uint32_t(qmin()));
 | |
|           ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.80f)
 | |
|             << "at batch index " << i << " / " << batch_size()
 | |
|             << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestNWCxQS8() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<int8_t> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> output(batch_size() * output_stride());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       const double scale = double(input_scale()) / (double(width()) * double(output_scale()));
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t j = 0; j < channels(); j++) {
 | |
|           double acc = 0.0f;
 | |
|           for (size_t k = 0; k < width(); k++) {
 | |
|             acc += double(int32_t(input[(i * width() + k) * input_stride() + j]) - int32_t(input_zero_point() - 0x80));
 | |
|           }
 | |
|           output_ref[i * channels() + j] = float(acc * scale + double(output_zero_point() - 0x80));
 | |
|           output_ref[i * channels() + j] = std::min<float>(output_ref[i * channels() + j], float(qmax() - 0x80));
 | |
|           output_ref[i * channels() + j] = std::max<float>(output_ref[i * channels() + j], float(qmin() - 0x80));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Global Average Pooling operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t global_average_pooling_op = nullptr;
 | |
| 
 | |
|       xnn_status status = xnn_create_global_average_pooling_nwc_qs8(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           int8_t(input_zero_point() - 0x80), input_scale(),
 | |
|           int8_t(output_zero_point() - 0x80), output_scale(),
 | |
|           int8_t(qmin() - 0x80), int8_t(qmax() - 0x80),
 | |
|           0, &global_average_pooling_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
|       ASSERT_NE(nullptr, global_average_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete global_average_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_global_average_pooling_nwc_qs8(
 | |
|           global_average_pooling_op,
 | |
|           batch_size(), width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax() - 0x80));
 | |
|           ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin() - 0x80));
 | |
|           ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.80f)
 | |
|             << "at batch index " << i << " / " << batch_size()
 | |
|             << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestNWCxF16() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(1.0e-3f, 1.0f), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> output(batch_size() * output_stride());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t j = 0; j < channels(); j++) {
 | |
|           float acc = 0.0f;
 | |
|           for (size_t k = 0; k < width(); k++) {
 | |
|             acc += fp16_ieee_to_fp32_value(input[(i * width() + k) * input_stride() + j]);
 | |
|           }
 | |
|           output_ref[i * channels() + j] = acc / float(width());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin())));
 | |
|       const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())));
 | |
|       const float output_min = scaled_min == scaled_max ? -std::numeric_limits<float>::infinity() : scaled_min;
 | |
|       const float output_max = scaled_min == scaled_max ? +std::numeric_limits<float>::infinity() : scaled_max;
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& value : output_ref) {
 | |
|         value = std::max(std::min(value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Global Average Pooling operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t global_average_pooling_op = nullptr;
 | |
| 
 | |
|       xnn_status status = xnn_create_global_average_pooling_nwc_f16(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           output_min, output_max,
 | |
|           0, &global_average_pooling_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
|       ASSERT_NE(nullptr, global_average_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete global_average_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_global_average_pooling_nwc_f16(
 | |
|           global_average_pooling_op,
 | |
|           batch_size(), width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_LE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_max);
 | |
|           ASSERT_GE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_min);
 | |
|           ASSERT_NEAR(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_ref[i * channels() + c], std::max(1.0e-4f, std::abs(output_ref[i * channels() + c]) * 1.0e-2f))
 | |
|             << "at batch index " << i << " / " << batch_size()
 | |
|             << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestNWCxF32() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
 | |
| 
 | |
|     std::vector<float> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output(batch_size() * output_stride());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t j = 0; j < channels(); j++) {
 | |
|           float acc = 0.0f;
 | |
|           for (size_t k = 0; k < width(); k++) {
 | |
|             acc += input[(i * width() + k) * input_stride() + j];
 | |
|           }
 | |
|           output_ref[i * channels() + j] = acc / float(width());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_range == 0.0f ?
 | |
|         -std::numeric_limits<float>::infinity() :
 | |
|         accumulated_min + accumulated_range / 255.0f * float(qmin());
 | |
|       const float output_max = accumulated_range == 0.0f ?
 | |
|         +std::numeric_limits<float>::infinity() :
 | |
|         accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& value : output_ref) {
 | |
|         value = std::max(std::min(value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Global Average Pooling operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t global_average_pooling_op = nullptr;
 | |
| 
 | |
|       xnn_status status = xnn_create_global_average_pooling_nwc_f32(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           output_min, output_max,
 | |
|           0, &global_average_pooling_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
|       ASSERT_NE(nullptr, global_average_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete global_average_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_global_average_pooling_nwc_f32(
 | |
|           global_average_pooling_op,
 | |
|           batch_size(), width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_LE(output[i * output_stride() + c], output_max);
 | |
|           ASSERT_GE(output[i * output_stride() + c], output_min);
 | |
|           ASSERT_NEAR(output[i * output_stride() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-6f)
 | |
|             << "at batch index " << i << " / " << batch_size()
 | |
|             << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestNCWxF32() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
 | |
| 
 | |
|     std::vector<float> input(batch_size() * channels() * width() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output(batch_size() * channels());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t j = 0; j < channels(); j++) {
 | |
|           float acc = 0.0f;
 | |
|           for (size_t k = 0; k < width(); k++) {
 | |
|             acc += input[(i * channels() + j) * width() + k];
 | |
|           }
 | |
|           output_ref[i * channels() + j] = acc / float(width());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_range == 0.0f ?
 | |
|         -std::numeric_limits<float>::infinity() :
 | |
|         accumulated_min + accumulated_range / 255.0f * float(qmin());
 | |
|       const float output_max = accumulated_range == 0.0f ?
 | |
|         +std::numeric_limits<float>::infinity() :
 | |
|         accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& value : output_ref) {
 | |
|         value = std::max(std::min(value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Global Average Pooling operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t global_average_pooling_op = nullptr;
 | |
| 
 | |
|       xnn_status status = xnn_create_global_average_pooling_ncw_f32(
 | |
|         channels(), output_min, output_max,
 | |
|         0, &global_average_pooling_op);
 | |
|       if (status == xnn_status_unsupported_parameter) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
| 
 | |
|       // Smart pointer to automatically delete global_average_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_global_average_pooling_ncw_f32(
 | |
|           global_average_pooling_op,
 | |
|           batch_size(), width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_LE(output[i * channels() + c], output_max);
 | |
|           ASSERT_GE(output[i * channels() + c], output_min);
 | |
|           ASSERT_NEAR(output[i * channels() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-5f)
 | |
|             << "at batch index " << i << " / " << batch_size()
 | |
|             << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t batch_size_{1};
 | |
|   size_t width_{1};
 | |
|   size_t channels_{1};
 | |
|   size_t input_stride_{0};
 | |
|   size_t output_stride_{0};
 | |
|   float input_scale_{1.0f};
 | |
|   float output_scale_{1.0f};
 | |
|   uint8_t input_zero_point_{121};
 | |
|   uint8_t output_zero_point_{133};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{1};
 | |
| };
 |