203 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| 
 | |
| 
 | |
| class HardSwishOperatorTester {
 | |
|  public:
 | |
|   inline HardSwishOperatorTester& channels(size_t channels) {
 | |
|     assert(channels != 0);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline HardSwishOperatorTester& input_stride(size_t input_stride) {
 | |
|     assert(input_stride != 0);
 | |
|     this->input_stride_ = input_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_stride() const {
 | |
|     if (this->input_stride_ == 0) {
 | |
|       return this->channels_;
 | |
|     } else {
 | |
|       assert(this->input_stride_ >= this->channels_);
 | |
|       return this->input_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline HardSwishOperatorTester& output_stride(size_t output_stride) {
 | |
|     assert(output_stride != 0);
 | |
|     this->output_stride_ = output_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_stride() const {
 | |
|     if (this->output_stride_ == 0) {
 | |
|       return this->channels_;
 | |
|     } else {
 | |
|       assert(this->output_stride_ >= this->channels_);
 | |
|       return this->output_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline HardSwishOperatorTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline HardSwishOperatorTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void TestF16() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-4.0f, 4.0f), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) +
 | |
|       (batch_size() - 1) * input_stride() + channels());
 | |
|     std::vector<uint16_t> output((batch_size() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           const float x = fp16_ieee_to_fp32_value(input[i * input_stride() + c]);
 | |
|           const float y = x * std::min(std::max(x + 3.0f, 0.0f), 6.0f) / 6.0f;
 | |
|           output_ref[i * channels() + c] = y;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy HardSwish operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t hardswish_op = nullptr;
 | |
|       xnn_status status = xnn_create_hardswish_nc_f16(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           0, &hardswish_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_NE(nullptr, hardswish_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete hardswish_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_hardswish_op(hardswish_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_hardswish_nc_f16(
 | |
|           hardswish_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(hardswish_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_NEAR(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_ref[i * channels() + c], std::max(1.0e-3f, std::abs(output_ref[i * channels() + c]) * 1.0e-2f))
 | |
|             << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestF32() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-4.0f, 4.0f), rng);
 | |
| 
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
 | |
|       (batch_size() - 1) * input_stride() + channels());
 | |
|     std::vector<float> output((batch_size() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           const float x = input[i * input_stride() + c];
 | |
|           const float y = x * std::min(std::max(x + 3.0f, 0.0f), 6.0f) / 6.0f;
 | |
|           output_ref[i * channels() + c] = y;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy HardSwish operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t hardswish_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_hardswish_nc_f32(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           0, &hardswish_op));
 | |
|       ASSERT_NE(nullptr, hardswish_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete hardswish_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_hardswish_op(hardswish_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_hardswish_nc_f32(
 | |
|           hardswish_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(hardswish_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_NEAR(output_ref[i * channels() + c], output[i * output_stride() + c], std::max(1.0e-7f, std::abs(output[i * output_stride() + c]) * 1.0e-6f))
 | |
|             << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t batch_size_{1};
 | |
|   size_t channels_{1};
 | |
|   size_t input_stride_{0};
 | |
|   size_t output_stride_{0};
 | |
|   size_t iterations_{15};
 | |
| };
 |