328 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <functional>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/AlignedAllocator.h>
 | |
| #include <xnnpack/math.h>
 | |
| #include <xnnpack/params.h>
 | |
| 
 | |
| 
 | |
| class IBilinearMicrokernelTester {
 | |
|  public:
 | |
|   inline IBilinearMicrokernelTester& pixels(uint32_t pixels) {
 | |
|     assert(pixels >= 1);
 | |
|     this->pixels_ = pixels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t pixels() const {
 | |
|     return this->pixels_;
 | |
|   }
 | |
| 
 | |
|   inline IBilinearMicrokernelTester& channels(uint32_t channels) {
 | |
|     assert(channels >= 1);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline IBilinearMicrokernelTester& input_offset(uint32_t input_offset) {
 | |
|     this->input_offset_ = input_offset;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t input_offset() const {
 | |
|     return this->input_offset_;
 | |
|   }
 | |
| 
 | |
|   inline IBilinearMicrokernelTester& output_stride(uint32_t output_stride) {
 | |
|     assert(output_stride != 0);
 | |
|     this->output_stride_ = output_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t output_stride() const {
 | |
|     if (this->output_stride_ == 0) {
 | |
|       return channels();
 | |
|     } else {
 | |
|       assert(this->output_stride_ >= channels());
 | |
|       return this->output_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline IBilinearMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   inline IBilinearMicrokernelTester& input_stride(uint32_t input_stride) {
 | |
|     assert(input_stride != 0);
 | |
|     this->input_stride_ = input_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t input_stride() const {
 | |
|     if (this->input_stride_ == 0) {
 | |
|       return 4 * pixels();
 | |
|     } else {
 | |
|       assert(this->input_stride_ >= 4 * pixels());
 | |
|       return this->input_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_ibilinear_ukernel_function ibilinear) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<const float*> indirection(pixels() * 4);
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + indirection.size() * channels());
 | |
|     std::vector<float, AlignedAllocator<float, 64>> packed_weights(pixels() * 2);
 | |
|     std::vector<float> output((pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(pixels() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::generate(packed_weights.begin(), packed_weights.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       for (size_t i = 0; i < indirection.size(); i++) {
 | |
|         indirection[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirection.begin(), indirection.end(), rng);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < pixels(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           const float alpha_h = packed_weights[i * 2 + 0];
 | |
|           const float alpha_v = packed_weights[i * 2 + 1];
 | |
|           output_ref[i * channels() + c] =
 | |
|             indirection[i * 4 + 0][c + input_offset()] * (1.0f - alpha_h) * (1.0f - alpha_v) +
 | |
|             indirection[i * 4 + 1][c + input_offset()] * alpha_h * (1.0f - alpha_v) +
 | |
|             indirection[i * 4 + 2][c + input_offset()] * (1.0f - alpha_h) * alpha_v +
 | |
|             indirection[i * 4 + 3][c + input_offset()] * alpha_h * alpha_v;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       ibilinear(
 | |
|         pixels(), channels() * sizeof(float),
 | |
|         indirection.data(), input_offset() * sizeof(float),
 | |
|         packed_weights.data(), output.data(),
 | |
|         (output_stride() - channels()) * sizeof(float));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < pixels(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_NEAR(
 | |
|               output_ref[i * channels() + c],
 | |
|               output[i * output_stride() + c],
 | |
|               std::abs(output_ref[i * channels() + c]) * 1.0e-4)
 | |
|             << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_s8_ibilinear_ukernel_function ibilinear) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int16_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
 | |
|       std::ref(rng));
 | |
|     auto w11rng = std::bind(std::uniform_int_distribution<int16_t>(0, 2047), std::ref(rng));
 | |
| 
 | |
|     std::vector<const int8_t*> indirection(pixels() * 4);
 | |
|     std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + indirection.size() * channels());
 | |
|     std::vector<int16_t, AlignedAllocator<int16_t, 64>> packed_weights(pixels() * 2);
 | |
|     std::vector<int8_t> output((pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<int8_t> output_ref(pixels() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::generate(packed_weights.begin(), packed_weights.end(), std::ref(w11rng));
 | |
|       std::fill(output.begin(), output.end(), INT8_C(0xFA));
 | |
| 
 | |
|       for (size_t i = 0; i < indirection.size(); i++) {
 | |
|         indirection[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirection.begin(), indirection.end(), rng);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < pixels(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           const int32_t alpha_h = packed_weights[i * 2 + 0];
 | |
|           const int32_t alpha_v = packed_weights[i * 2 + 1];
 | |
|           const int32_t acc = asr_s32(
 | |
|             int32_t(indirection[i * 4 + 0][c + input_offset()]) * (2048 - alpha_h) * (2048 - alpha_v) +
 | |
|             int32_t(indirection[i * 4 + 1][c + input_offset()]) * alpha_h * (2048 - alpha_v) +
 | |
|             int32_t(indirection[i * 4 + 2][c + input_offset()]) * (2048 - alpha_h) * alpha_v +
 | |
|             int32_t(indirection[i * 4 + 3][c + input_offset()]) * alpha_h * alpha_v +
 | |
|             2097152, 22);
 | |
|           ASSERT_GE(acc, std::numeric_limits<int8_t>::min());
 | |
|           ASSERT_LE(acc, std::numeric_limits<int8_t>::max());
 | |
|           output_ref[i * channels() + c] = (int8_t) acc;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       ibilinear(
 | |
|         pixels(), channels() * sizeof(int8_t),
 | |
|         indirection.data(), input_offset() * sizeof(int8_t),
 | |
|         packed_weights.data(), output.data(),
 | |
|         (output_stride() - channels()) * sizeof(int8_t));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < pixels(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_EQ(int32_t(output_ref[i * channels() + c]), int32_t(output[i * output_stride() + c]))
 | |
|             << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_u8_ibilinear_ukernel_function ibilinear) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(
 | |
|       std::uniform_int_distribution<uint16_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
 | |
|     auto w11rng = std::bind(std::uniform_int_distribution<uint16_t>(0, 2047), std::ref(rng));
 | |
| 
 | |
|     std::vector<const uint8_t*> indirection(pixels() * 4);
 | |
|     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + indirection.size() * channels());
 | |
|     std::vector<int16_t, AlignedAllocator<int16_t, 64>> packed_weights(pixels() * 2);
 | |
|     std::vector<uint8_t> output((pixels() - 1) * output_stride() + channels());
 | |
|     std::vector<uint8_t> output_ref(pixels() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::generate(packed_weights.begin(), packed_weights.end(), std::ref(w11rng));
 | |
|       std::fill(output.begin(), output.end(), UINT8_C(0xFA));
 | |
| 
 | |
|       for (size_t i = 0; i < indirection.size(); i++) {
 | |
|         indirection[i] = input.data() + i * channels() - input_offset();
 | |
|       }
 | |
|       std::shuffle(indirection.begin(), indirection.end(), rng);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < pixels(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           const uint32_t alpha_h = uint32_t(int32_t(packed_weights[i * 2 + 0]));
 | |
|           const uint32_t alpha_v = uint32_t(int32_t(packed_weights[i * 2 + 1]));
 | |
|           const uint32_t acc = (2097152 +
 | |
|             int32_t(indirection[i * 4 + 0][c + input_offset()]) * (2048 - alpha_h) * (2048 - alpha_v) +
 | |
|             int32_t(indirection[i * 4 + 1][c + input_offset()]) * alpha_h * (2048 - alpha_v) +
 | |
|             int32_t(indirection[i * 4 + 2][c + input_offset()]) * (2048 - alpha_h) * alpha_v +
 | |
|             int32_t(indirection[i * 4 + 3][c + input_offset()]) * alpha_h * alpha_v) >> 22;
 | |
|           ASSERT_LE(acc, std::numeric_limits<uint8_t>::max());
 | |
|           output_ref[i * channels() + c] = (uint8_t) acc;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       ibilinear(
 | |
|         pixels(), channels() * sizeof(uint8_t),
 | |
|         indirection.data(), input_offset() * sizeof(uint8_t),
 | |
|         packed_weights.data(), output.data(),
 | |
|         (output_stride() - channels()) * sizeof(uint8_t));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < pixels(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_EQ(uint32_t(output_ref[i * channels() + c]), uint32_t(output[i * output_stride() + c]))
 | |
|             << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestCHW(xnn_f32_ibilinear_chw_ukernel_function ibilinear) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<const float*> indirection(pixels() * 2);
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + (channels() - 1) * input_stride() + 4 * pixels());
 | |
|     std::vector<float, AlignedAllocator<float, 64>> packed_weights(pixels() * 2);
 | |
|     std::vector<float> output(pixels() * channels());
 | |
|     std::vector<float> output_ref(pixels() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::generate(packed_weights.begin(), packed_weights.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       // Indirection will point to the even ("left") pixels of the input.
 | |
|       // The kernels will expect "right" pixels to be placed right next to them.
 | |
|       for (size_t i = 0; i < indirection.size(); i++) {
 | |
|         const float* left_corner = input.data() + 2 * i - input_offset();
 | |
|         indirection[i] = left_corner;
 | |
|       }
 | |
|       std::shuffle(indirection.begin(), indirection.end(), rng);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < pixels(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           const float alpha_h = packed_weights[i * 2 + 0];
 | |
|           const float alpha_v = packed_weights[i * 2 + 1];
 | |
|           // `c * pixels() + i` because the output is NCHW.
 | |
|           output_ref[c * pixels() + i] =
 | |
|             // `c * indirection.size()` because the input is NCHW.
 | |
|             (indirection[i * 2 + 0] + 0)[c * input_stride() + input_offset()] * (1.0f - alpha_h) * (1.0f - alpha_v) +
 | |
|             (indirection[i * 2 + 0] + 1)[c * input_stride() + input_offset()] * alpha_h * (1.0f - alpha_v) +
 | |
|             (indirection[i * 2 + 1] + 0)[c * input_stride() + input_offset()] * (1.0f - alpha_h) * alpha_v +
 | |
|             (indirection[i * 2 + 1] + 1)[c * input_stride() + input_offset()] * alpha_h * alpha_v;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       ibilinear(
 | |
|         pixels(), channels(),
 | |
|         indirection.data(), input_offset() * sizeof(float),
 | |
|         packed_weights.data(), output.data(), input_stride() * sizeof(float));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t c = 0; c < channels(); c++) {
 | |
|         for (size_t i = 0; i < pixels(); i++) {
 | |
|           ASSERT_NEAR(
 | |
|               output_ref[c * pixels() + i],
 | |
|               output[c * pixels() + i],
 | |
|               std::abs(output_ref[c * pixels() + i]) * 1.0e-4)
 | |
|             << "i = " << i << ", channel = " << c;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   uint32_t channels_{1};
 | |
|   uint32_t pixels_{1};
 | |
|   uint32_t output_stride_{0};
 | |
|   uint32_t input_stride_{0};
 | |
|   uint32_t input_offset_{0};
 | |
|   size_t iterations_{3};
 | |
| };
 |