1464 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1464 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright (c) Facebook, Inc. and its affiliates.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| 
 | |
| 
 | |
| class MaxPoolingOperatorTester {
 | |
|  public:
 | |
|   inline MaxPoolingOperatorTester& padding_tf_same(bool padding_same) {
 | |
|     if (padding_same) {
 | |
|       assert(padding_top() == 0);
 | |
|       assert(padding_left() == 0);
 | |
|       assert(padding_bottom() == 0);
 | |
|       assert(padding_right() == 0);
 | |
|     }
 | |
|     this->padding_tf_same_ = padding_same;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool padding_tf_same() const {
 | |
|     return this->padding_tf_same_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& padding(uint32_t padding) {
 | |
|     assert(!padding_tf_same());
 | |
|     this->padding_top_ = padding;
 | |
|     this->padding_right_ = padding;
 | |
|     this->padding_bottom_ = padding;
 | |
|     this->padding_left_ = padding;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& padding(uint32_t padding_height, uint32_t padding_width) {
 | |
|     assert(!padding_tf_same());
 | |
|     this->padding_top_ = padding_height;
 | |
|     this->padding_right_ = padding_width;
 | |
|     this->padding_bottom_ = padding_height;
 | |
|     this->padding_left_ = padding_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& padding_height(uint32_t padding_height) {
 | |
|     assert(!padding_tf_same());
 | |
|     this->padding_top_ = padding_height;
 | |
|     this->padding_bottom_ = padding_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& padding_width(uint32_t padding_width) {
 | |
|     assert(!padding_tf_same());
 | |
|     this->padding_right_ = padding_width;
 | |
|     this->padding_left_ = padding_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& padding_top(uint32_t padding_top) {
 | |
|     assert(!padding_tf_same());
 | |
|     this->padding_top_ = padding_top;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_top() const {
 | |
|     if (padding_tf_same()) {
 | |
|       const uint32_t total_padding_height =
 | |
|         (output_height() - 1) * stride_height() + dilated_pooling_height() - input_height();
 | |
|       return total_padding_height / 2;
 | |
|     } else {
 | |
|       return this->padding_top_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& padding_left(uint32_t padding_left) {
 | |
|     assert(!padding_tf_same());
 | |
|     this->padding_left_ = padding_left;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_left() const {
 | |
|     if (padding_tf_same()) {
 | |
|       const uint32_t total_padding_width =
 | |
|         (output_width() - 1) * stride_width() + dilated_pooling_width() - input_width();
 | |
|       return total_padding_width / 2;
 | |
|     } else {
 | |
|       return this->padding_left_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& padding_bottom(uint32_t padding_bottom) {
 | |
|     assert(!padding_tf_same());
 | |
|     this->padding_bottom_ = padding_bottom;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_bottom() const {
 | |
|     if (padding_tf_same()) {
 | |
|       const uint32_t total_padding_height =
 | |
|         (output_height() - 1) * stride_height() + dilated_pooling_height() - input_height();
 | |
|       return total_padding_height - total_padding_height / 2;
 | |
|     } else {
 | |
|       return this->padding_bottom_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& padding_right(uint32_t padding_right) {
 | |
|     assert(!padding_tf_same());
 | |
|     this->padding_right_ = padding_right;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t padding_right() const {
 | |
|     if (padding_tf_same()) {
 | |
|       const uint32_t total_padding_width =
 | |
|         (output_width() - 1) * stride_width() + dilated_pooling_width() - input_width();
 | |
|       return total_padding_width - total_padding_width / 2;
 | |
|     } else {
 | |
|       return this->padding_right_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& input_size(size_t input_height, size_t input_width) {
 | |
|     assert(input_height >= 1);
 | |
|     assert(input_width >= 1);
 | |
|     this->input_height_ = input_height;
 | |
|     this->input_width_ = input_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& input_height(size_t input_height) {
 | |
|     assert(input_height >= 1);
 | |
|     this->input_height_ = input_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_height() const {
 | |
|     return this->input_height_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& input_width(size_t input_width) {
 | |
|     assert(input_width >= 1);
 | |
|     this->input_width_ = input_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_width() const {
 | |
|     return this->input_width_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& channels(size_t channels) {
 | |
|     assert(channels != 0);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& pooling_size(uint32_t pooling_size) {
 | |
|     assert(pooling_size >= 1);
 | |
|     this->pooling_height_ = pooling_size;
 | |
|     this->pooling_width_ = pooling_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& pooling_size(uint32_t pooling_height, uint32_t pooling_width) {
 | |
|     assert(pooling_height >= 1);
 | |
|     assert(pooling_width >= 1);
 | |
|     this->pooling_height_ = pooling_height;
 | |
|     this->pooling_width_ = pooling_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& pooling_height(uint32_t pooling_height) {
 | |
|     assert(pooling_height >= 1);
 | |
|     this->pooling_height_ = pooling_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t pooling_height() const {
 | |
|     return this->pooling_height_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& pooling_width(uint32_t pooling_width) {
 | |
|     assert(pooling_width >= 1);
 | |
|     this->pooling_width_ = pooling_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t pooling_width() const {
 | |
|     return this->pooling_width_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& stride(uint32_t stride) {
 | |
|     assert(stride >= 1);
 | |
|     this->stride_height_ = stride;
 | |
|     this->stride_width_ = stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& stride(uint32_t stride_height, uint32_t stride_width) {
 | |
|     assert(stride_height >= 1);
 | |
|     assert(stride_width >= 1);
 | |
|     this->stride_height_ = stride_height;
 | |
|     this->stride_width_ = stride_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& stride_height(uint32_t stride_height) {
 | |
|     assert(stride_height >= 1);
 | |
|     this->stride_height_ = stride_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t stride_height() const {
 | |
|     return this->stride_height_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& stride_width(uint32_t stride_width) {
 | |
|     assert(stride_width >= 1);
 | |
|     this->stride_width_ = stride_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t stride_width() const {
 | |
|     return this->stride_width_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& dilation(uint32_t dilation) {
 | |
|     assert(dilation >= 1);
 | |
|     this->dilation_height_ = dilation;
 | |
|     this->dilation_width_ = dilation;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& dilation(uint32_t dilation_height, uint32_t dilation_width) {
 | |
|     assert(dilation_height >= 1);
 | |
|     assert(dilation_width >= 1);
 | |
|     this->dilation_height_ = dilation_height;
 | |
|     this->dilation_width_ = dilation_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& dilation_height(uint32_t dilation_height) {
 | |
|     assert(dilation_height >= 1);
 | |
|     this->dilation_height_ = dilation_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t dilation_height() const {
 | |
|     return this->dilation_height_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& dilation_width(uint32_t dilation_width) {
 | |
|     assert(dilation_width >= 1);
 | |
|     this->dilation_width_ = dilation_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t dilation_width() const {
 | |
|     return this->dilation_width_;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t dilated_pooling_height() const {
 | |
|     return (pooling_height() - 1) * dilation_height() + 1;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t dilated_pooling_width() const {
 | |
|     return (pooling_width() - 1) * dilation_width() + 1;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_height() const {
 | |
|     if (padding_tf_same()) {
 | |
|       return (input_height() + stride_height() - 1) / stride_height();
 | |
|     } else {
 | |
|       const size_t padded_input_height = padding_top() + input_height() + padding_bottom();
 | |
|       if (padded_input_height <= dilated_pooling_height()) {
 | |
|         return 1;
 | |
|       } else {
 | |
|         return (padded_input_height - dilated_pooling_height()) / stride_height() + 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline size_t output_width() const {
 | |
|     if (padding_tf_same()) {
 | |
|       return (input_width() + stride_width() - 1) / stride_width();
 | |
|     } else {
 | |
|       const size_t padded_input_width = padding_left() + input_width() + padding_right();
 | |
|       if (padded_input_width <= dilated_pooling_width()) {
 | |
|         return 1;
 | |
|       } else {
 | |
|         return (padded_input_width - dilated_pooling_width()) / stride_width() + 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& input_pixel_stride(size_t input_pixel_stride) {
 | |
|     assert(input_pixel_stride != 0);
 | |
|     this->input_pixel_stride_ = input_pixel_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_pixel_stride() const {
 | |
|     if (this->input_pixel_stride_ == 0) {
 | |
|       return channels();
 | |
|     } else {
 | |
|       assert(this->input_pixel_stride_ >= channels());
 | |
|       return this->input_pixel_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& output_pixel_stride(size_t output_pixel_stride) {
 | |
|     assert(output_pixel_stride != 0);
 | |
|     this->output_pixel_stride_ = output_pixel_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_pixel_stride() const {
 | |
|     if (this->output_pixel_stride_ == 0) {
 | |
|       return channels();
 | |
|     } else {
 | |
|       assert(this->output_pixel_stride_ >= channels());
 | |
|       return this->output_pixel_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) {
 | |
|     assert(next_input_height >= 1);
 | |
|     assert(next_input_width >= 1);
 | |
|     this->next_input_height_ = next_input_height;
 | |
|     this->next_input_width_ = next_input_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& next_input_height(uint32_t next_input_height) {
 | |
|     assert(next_input_height >= 1);
 | |
|     this->next_input_height_ = next_input_height;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t next_input_height() const {
 | |
|     if (this->next_input_height_ == 0) {
 | |
|       return input_height();
 | |
|     } else {
 | |
|       return this->next_input_height_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& next_input_width(uint32_t next_input_width) {
 | |
|     assert(next_input_width >= 1);
 | |
|     this->next_input_width_ = next_input_width;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t next_input_width() const {
 | |
|     if (this->next_input_width_ == 0) {
 | |
|       return input_width();
 | |
|     } else {
 | |
|       return this->next_input_width_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline size_t next_output_height() const {
 | |
|     const size_t padded_next_input_height = padding_top() + next_input_height() + padding_bottom();
 | |
|     if (padded_next_input_height <= dilated_pooling_height()) {
 | |
|       return 1;
 | |
|     } else {
 | |
|       return (padded_next_input_height - dilated_pooling_height()) / stride_height() + 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline size_t next_output_width() const {
 | |
|     const size_t padded_next_input_width = padding_left() + next_input_width() + padding_right();
 | |
|     if (padded_next_input_width <= dilated_pooling_width()) {
 | |
|       return 1;
 | |
|     } else {
 | |
|       return (padded_next_input_width - dilated_pooling_width()) / stride_width() + 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& next_batch_size(size_t next_batch_size) {
 | |
|     assert(next_batch_size >= 1);
 | |
|     this->next_batch_size_ = next_batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t next_batch_size() const {
 | |
|     if (this->next_batch_size_ == 0) {
 | |
|       return batch_size();
 | |
|     } else {
 | |
|       return this->next_batch_size_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline MaxPoolingOperatorTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void TestS8() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
 | |
|       std::ref(rng));
 | |
| 
 | |
|     std::vector<int8_t> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> output_ref(batch_size() * output_height() * output_width() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               int8_t max_value = std::numeric_limits<int8_t>::min();
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < input_width() && iy < input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               max_value = std::min(max_value, int8_t(qmax() - 0x80));
 | |
|               max_value = std::max(max_value, int8_t(qmin() - 0x80));
 | |
|               output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Max Pooling operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t max_pooling_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_max_pooling2d_nhwc_s8(
 | |
|           padding_tf_same() ? 0 : padding_top(), padding_tf_same() ? 0 : padding_right(),
 | |
|           padding_tf_same() ? 0 : padding_bottom(), padding_tf_same() ? 0 : padding_left(),
 | |
|           pooling_height(), pooling_width(),
 | |
|           stride_height(), stride_width(),
 | |
|           dilation_height(), dilation_width(),
 | |
|           channels(), input_pixel_stride(), output_pixel_stride(),
 | |
|           int8_t(qmin() - 0x80), int8_t(qmax() - 0x80),
 | |
|           padding_tf_same() ? XNN_FLAG_TENSORFLOW_SAME_PADDING : 0,
 | |
|           &max_pooling_op));
 | |
|       ASSERT_NE(nullptr, max_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete max_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_max_pooling_op(max_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_s8(
 | |
|           max_pooling_op,
 | |
|           batch_size(), input_height(), input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t y = 0; y < output_height(); y++) {
 | |
|           for (size_t x = 0; x < output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), int32_t(qmax() - 0x80));
 | |
|               ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), int32_t(qmin() - 0x80));
 | |
|               ASSERT_EQ(int32_t(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]),
 | |
|                 int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c])) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestU8() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<uint8_t> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> output_ref(batch_size() * output_height() * output_width() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               uint8_t max_value = 0;
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < input_width() && iy < input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               max_value = std::min(max_value, qmax());
 | |
|               max_value = std::max(max_value, qmin());
 | |
|               output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Max Pooling operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t max_pooling_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_max_pooling2d_nhwc_u8(
 | |
|           padding_tf_same() ? 0 : padding_top(), padding_tf_same() ? 0 : padding_right(),
 | |
|           padding_tf_same() ? 0 : padding_bottom(), padding_tf_same() ? 0 : padding_left(),
 | |
|           pooling_height(), pooling_width(),
 | |
|           stride_height(), stride_width(),
 | |
|           dilation_height(), dilation_width(),
 | |
|           channels(), input_pixel_stride(), output_pixel_stride(),
 | |
|           qmin(), qmax(),
 | |
|           padding_tf_same() ? XNN_FLAG_TENSORFLOW_SAME_PADDING : 0,
 | |
|           &max_pooling_op));
 | |
|       ASSERT_NE(nullptr, max_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete max_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_max_pooling_op(max_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_u8(
 | |
|           max_pooling_op,
 | |
|           batch_size(), input_height(), input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t y = 0; y < output_height(); y++) {
 | |
|           for (size_t x = 0; x < output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(uint32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), uint32_t(qmax()));
 | |
|               ASSERT_GE(uint32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), uint32_t(qmin()));
 | |
|               ASSERT_EQ(uint32_t(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]),
 | |
|                 uint32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c])) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestF16() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     // Note: we need to avoid FP16 denormals in the generated tensor because they might be processed differently in
 | |
|     // native vs emulated arithmetics, and we use exact comparison to verify the results against reference.
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.001f, 1.0f), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               float max_value = -std::numeric_limits<float>::infinity();
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < input_width() && iy < input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       fp16_ieee_to_fp32_value(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]));
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin());
 | |
|       float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
 | |
|       output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min));
 | |
|       output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_max));
 | |
|       if (accumulated_range == 0.0f) {
 | |
|         output_min = -std::numeric_limits<float>::infinity();
 | |
|         output_max = +std::numeric_limits<float>::infinity();
 | |
|       }
 | |
|       if (qmin() == std::numeric_limits<uint8_t>::min()) {
 | |
|         output_min = -std::numeric_limits<float>::infinity();
 | |
|       }
 | |
|       if (qmax() == std::numeric_limits<uint8_t>::max()) {
 | |
|         output_max = +std::numeric_limits<float>::infinity();
 | |
|       }
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& value : output_ref) {
 | |
|         value = std::max(std::min(value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Max Pooling operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t max_pooling_op = nullptr;
 | |
| 
 | |
|       const xnn_status status = xnn_create_max_pooling2d_nhwc_f16(
 | |
|           padding_tf_same() ? 0 : padding_top(), padding_tf_same() ? 0 : padding_right(),
 | |
|           padding_tf_same() ? 0 : padding_bottom(), padding_tf_same() ? 0 : padding_left(),
 | |
|           pooling_height(), pooling_width(),
 | |
|           stride_height(), stride_width(),
 | |
|           dilation_height(), dilation_width(),
 | |
|           channels(), input_pixel_stride(), output_pixel_stride(),
 | |
|           output_min, output_max,
 | |
|           padding_tf_same() ? XNN_FLAG_TENSORFLOW_SAME_PADDING : 0,
 | |
|           &max_pooling_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
|       ASSERT_NE(nullptr, max_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete max_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_max_pooling_op(max_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_f16(
 | |
|           max_pooling_op,
 | |
|           batch_size(), input_height(), input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t y = 0; y < output_height(); y++) {
 | |
|           for (size_t x = 0; x < output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), output_max);
 | |
|               ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), output_min);
 | |
|               ASSERT_EQ(
 | |
|                   fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]),
 | |
|                   output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c
 | |
|                 << ", min = " << output_min << ", max = " << output_max;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestF32() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               float max_value = -std::numeric_limits<float>::infinity();
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < input_width() && iy < input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_range == 0.0f ?
 | |
|         -std::numeric_limits<float>::infinity() :
 | |
|         accumulated_min + accumulated_range / 255.0f * float(qmin());
 | |
|       const float output_max = accumulated_range == 0.0f ?
 | |
|         +std::numeric_limits<float>::infinity() :
 | |
|         accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& value : output_ref) {
 | |
|         value = std::max(std::min(value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Max Pooling operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t max_pooling_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_max_pooling2d_nhwc_f32(
 | |
|           padding_tf_same() ? 0 : padding_top(), padding_tf_same() ? 0 : padding_right(),
 | |
|           padding_tf_same() ? 0 : padding_bottom(), padding_tf_same() ? 0 : padding_left(),
 | |
|           pooling_height(), pooling_width(),
 | |
|           stride_height(), stride_width(),
 | |
|           dilation_height(), dilation_width(),
 | |
|           channels(), input_pixel_stride(), output_pixel_stride(),
 | |
|           output_min, output_max,
 | |
|           padding_tf_same() ? XNN_FLAG_TENSORFLOW_SAME_PADDING : 0,
 | |
|           &max_pooling_op));
 | |
|       ASSERT_NE(nullptr, max_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete max_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_max_pooling_op(max_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_f32(
 | |
|           max_pooling_op,
 | |
|           batch_size(), input_height(), input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t y = 0; y < output_height(); y++) {
 | |
|           for (size_t x = 0; x < output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_max);
 | |
|               ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_min);
 | |
|               ASSERT_EQ(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c],
 | |
|                 output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c
 | |
|                 << ", min = " << output_min << ", max = " << output_max;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestSetupS8() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
 | |
|       std::ref(rng));
 | |
| 
 | |
|     std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + std::max(
 | |
|       (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(),
 | |
|       (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels()));
 | |
|     std::vector<int8_t> output(XNN_EXTRA_BYTES / sizeof(int8_t) + std::max(
 | |
|       (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(),
 | |
|       (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + channels()));
 | |
|     std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels());
 | |
|     std::vector<float> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               int8_t max_value = std::numeric_limits<int8_t>::min();
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < input_width() && iy < input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               max_value = std::min(max_value, int8_t(qmax() - 0x80));
 | |
|               max_value = std::max(max_value, int8_t(qmin() - 0x80));
 | |
|               output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, and run Max Pooling operator once.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t max_pooling_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_max_pooling2d_nhwc_s8(
 | |
|           padding_top(), padding_right(), padding_bottom(), padding_left(),
 | |
|           pooling_height(), pooling_width(),
 | |
|           stride_height(), stride_width(),
 | |
|           dilation_height(), dilation_width(),
 | |
|           channels(), input_pixel_stride(), output_pixel_stride(),
 | |
|           int8_t(qmin() - 0x80), int8_t(qmax() - 0x80),
 | |
|           0, &max_pooling_op));
 | |
|       ASSERT_NE(nullptr, max_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete max_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_max_pooling_op(max_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_s8(
 | |
|           max_pooling_op,
 | |
|           batch_size(), input_height(), input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results of the first run.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t y = 0; y < output_height(); y++) {
 | |
|           for (size_t x = 0; x < output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), int32_t(qmax() - 0x80));
 | |
|               ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), int32_t(qmin() - 0x80));
 | |
|               ASSERT_EQ(int32_t(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]),
 | |
|                 int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c])) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Re-generate data for the second run.
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results for the second run.
 | |
|       for (size_t i = 0; i < next_batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < next_output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < next_output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               int8_t max_value = std::numeric_limits<int8_t>::min();
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < next_input_width() && iy < next_input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               max_value = std::min(max_value, int8_t(qmax() - 0x80));
 | |
|               max_value = std::max(max_value, int8_t(qmin() - 0x80));
 | |
|               next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Setup and run Max Pooling operator the second time, and destroy the operator.
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_s8(
 | |
|           max_pooling_op,
 | |
|           next_batch_size(), next_input_height(), next_input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results of the second run.
 | |
|       for (size_t i = 0; i < next_batch_size(); i++) {
 | |
|         for (size_t y = 0; y < next_output_height(); y++) {
 | |
|           for (size_t x = 0; x < next_output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), int32_t(qmax() - 0x80));
 | |
|               ASSERT_GE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), int32_t(qmin() - 0x80));
 | |
|               ASSERT_EQ(int32_t(next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c]),
 | |
|                 int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c])) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestSetupU8() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + std::max(
 | |
|       (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(),
 | |
|       (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels()));
 | |
|     std::vector<uint8_t> output(XNN_EXTRA_BYTES / sizeof(uint8_t) + std::max(
 | |
|       (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(),
 | |
|       (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + channels()));
 | |
|     std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels());
 | |
|     std::vector<float> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               uint8_t max_value = 0;
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < input_width() && iy < input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               max_value = std::min(max_value, qmax());
 | |
|               max_value = std::max(max_value, qmin());
 | |
|               output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, and run Max Pooling operator once.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t max_pooling_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_max_pooling2d_nhwc_u8(
 | |
|           padding_top(), padding_right(), padding_bottom(), padding_left(),
 | |
|           pooling_height(), pooling_width(),
 | |
|           stride_height(), stride_width(),
 | |
|           dilation_height(), dilation_width(),
 | |
|           channels(), input_pixel_stride(), output_pixel_stride(),
 | |
|           qmin(), qmax(),
 | |
|           0, &max_pooling_op));
 | |
|       ASSERT_NE(nullptr, max_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete max_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_max_pooling_op(max_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_u8(
 | |
|           max_pooling_op,
 | |
|           batch_size(), input_height(), input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results of the first run.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t y = 0; y < output_height(); y++) {
 | |
|           for (size_t x = 0; x < output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(uint32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), uint32_t(qmax()));
 | |
|               ASSERT_GE(uint32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), uint32_t(qmin()));
 | |
|               ASSERT_EQ(uint32_t(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]),
 | |
|                 uint32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c])) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Re-generate data for the second run.
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results for the second run.
 | |
|       for (size_t i = 0; i < next_batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < next_output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < next_output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               uint8_t max_value = 0;
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < next_input_width() && iy < next_input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               max_value = std::min(max_value, qmax());
 | |
|               max_value = std::max(max_value, qmin());
 | |
|               next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Setup and run Max Pooling operator the second time, and destroy the operator.
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_u8(
 | |
|           max_pooling_op,
 | |
|           next_batch_size(), next_input_height(), next_input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results of the second run.
 | |
|       for (size_t i = 0; i < next_batch_size(); i++) {
 | |
|         for (size_t y = 0; y < next_output_height(); y++) {
 | |
|           for (size_t x = 0; x < next_output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(uint32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), uint32_t(qmax()));
 | |
|               ASSERT_GE(uint32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), uint32_t(qmin()));
 | |
|               ASSERT_EQ(uint32_t(next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c]),
 | |
|                 uint32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c])) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestSetupF16() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     // Note: we need to avoid FP16 denormals in the generated tensor because they might be processed differently in
 | |
|     // native vs emulated arithmetics, and we use exact comparison to verify the results against reference.
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.001f, 1.0f), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + std::max(
 | |
|       (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(),
 | |
|       (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels()));
 | |
|     std::vector<uint16_t> output(XNN_EXTRA_BYTES / sizeof(uint16_t) + std::max(
 | |
|       (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(),
 | |
|       (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + channels()));
 | |
|     std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels());
 | |
|     std::vector<float> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               float max_value = -std::numeric_limits<float>::infinity();
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < input_width() && iy < input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       fp16_ieee_to_fp32_value(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]));
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin());
 | |
|       float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
 | |
|       output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min));
 | |
|       output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_max));
 | |
|       if (accumulated_range == 0.0f) {
 | |
|         output_min = -std::numeric_limits<float>::infinity();
 | |
|         output_max = +std::numeric_limits<float>::infinity();
 | |
|       }
 | |
|       if (qmin() == std::numeric_limits<uint8_t>::min()) {
 | |
|         output_min = -std::numeric_limits<float>::infinity();
 | |
|       }
 | |
|       if (qmax() == std::numeric_limits<uint8_t>::max()) {
 | |
|         output_max = +std::numeric_limits<float>::infinity();
 | |
|       }
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& value : output_ref) {
 | |
|         value = std::max(std::min(value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Create, setup, and run Max Pooling operator once.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t max_pooling_op = nullptr;
 | |
| 
 | |
|       const xnn_status status = xnn_create_max_pooling2d_nhwc_f16(
 | |
|           padding_top(), padding_right(), padding_bottom(), padding_left(),
 | |
|           pooling_height(), pooling_width(),
 | |
|           stride_height(), stride_width(),
 | |
|           dilation_height(), dilation_width(),
 | |
|           channels(), input_pixel_stride(), output_pixel_stride(),
 | |
|           output_min, output_max,
 | |
|           0, &max_pooling_op);
 | |
|       if (status == xnn_status_unsupported_hardware) {
 | |
|         GTEST_SKIP();
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success, status);
 | |
|       ASSERT_NE(nullptr, max_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete max_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_max_pooling_op(max_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_f16(
 | |
|           max_pooling_op,
 | |
|           batch_size(), input_height(), input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results of the first run.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t y = 0; y < output_height(); y++) {
 | |
|           for (size_t x = 0; x < output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), output_max);
 | |
|               ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), output_min);
 | |
|               ASSERT_EQ(
 | |
|                   fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]),
 | |
|                   output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c
 | |
|                 << ", min = " << output_min << ", max = " << output_max;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Re-generate data for the second run.
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
 | |
| 
 | |
|       // Compute reference results for the second run, including clamping.
 | |
|       for (size_t i = 0; i < next_batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < next_output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < next_output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               float max_value = -std::numeric_limits<float>::infinity();
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < next_input_width() && iy < next_input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       fp16_ieee_to_fp32_value(input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c]));
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               max_value = std::min(max_value, output_max);
 | |
|               max_value = std::max(max_value, output_min);
 | |
|               next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Setup and run Max Pooling operator the second time, and destroy the operator.
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_f16(
 | |
|           max_pooling_op,
 | |
|           next_batch_size(), next_input_height(), next_input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results of the second run.
 | |
|       for (size_t i = 0; i < next_batch_size(); i++) {
 | |
|         for (size_t y = 0; y < next_output_height(); y++) {
 | |
|           for (size_t x = 0; x < next_output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), output_max);
 | |
|               ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), output_min);
 | |
|               ASSERT_EQ(
 | |
|                   fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]),
 | |
|                   next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c]) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c
 | |
|                 << ", min = " << output_min << ", max = " << output_max;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestSetupF32() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + std::max(
 | |
|       (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(),
 | |
|       (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels()));
 | |
|     std::vector<float> output(XNN_EXTRA_BYTES / sizeof(float) + std::max(
 | |
|       (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(),
 | |
|       (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + channels()));
 | |
|     std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels());
 | |
|     std::vector<float> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               float max_value = -std::numeric_limits<float>::infinity();
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < input_width() && iy < input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute clamping parameters.
 | |
|       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float output_min = accumulated_range == 0.0f ?
 | |
|         -std::numeric_limits<float>::infinity() :
 | |
|         accumulated_min + accumulated_range / 255.0f * float(qmin());
 | |
|       const float output_max = accumulated_range == 0.0f ?
 | |
|         +std::numeric_limits<float>::infinity() :
 | |
|         accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
 | |
| 
 | |
|       // Clamp reference results.
 | |
|       for (float& value : output_ref) {
 | |
|         value = std::max(std::min(value, output_max), output_min);
 | |
|       }
 | |
| 
 | |
|       // Create, setup, and run Max Pooling operator once.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t max_pooling_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_max_pooling2d_nhwc_f32(
 | |
|           padding_top(), padding_right(), padding_bottom(), padding_left(),
 | |
|           pooling_height(), pooling_width(),
 | |
|           stride_height(), stride_width(),
 | |
|           dilation_height(), dilation_width(),
 | |
|           channels(), input_pixel_stride(), output_pixel_stride(),
 | |
|           output_min, output_max,
 | |
|           0, &max_pooling_op));
 | |
|       ASSERT_NE(nullptr, max_pooling_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete max_pooling_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_max_pooling_op(max_pooling_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_f32(
 | |
|           max_pooling_op,
 | |
|           batch_size(), input_height(), input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results of the first run.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t y = 0; y < output_height(); y++) {
 | |
|           for (size_t x = 0; x < output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_max);
 | |
|               ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_min);
 | |
|               ASSERT_EQ(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c],
 | |
|                 output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Re-generate data for the second run.
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results for the second run, including clamping.
 | |
|       for (size_t i = 0; i < next_batch_size(); i++) {
 | |
|         for (size_t oy = 0; oy < next_output_height(); oy++) {
 | |
|           for (size_t ox = 0; ox < next_output_width(); ox++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               float max_value = -std::numeric_limits<float>::infinity();
 | |
|               for (size_t py = 0; py < pooling_height(); py++) {
 | |
|                 const size_t iy = oy * stride_height() + py * dilation_height() - padding_top();
 | |
|                 for (size_t px = 0; px < pooling_width(); px++) {
 | |
|                   const size_t ix = ox * stride_width() + px * dilation_width() - padding_left();
 | |
|                   if (ix < next_input_width() && iy < next_input_height()) {
 | |
|                     max_value = std::max(max_value,
 | |
|                       input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               max_value = std::min(max_value, output_max);
 | |
|               max_value = std::max(max_value, output_min);
 | |
|               next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] = max_value;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Setup and run Max Pooling operator the second time, and destroy the operator.
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_max_pooling2d_nhwc_f32(
 | |
|           max_pooling_op,
 | |
|           next_batch_size(), next_input_height(), next_input_width(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(max_pooling_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results of the second run.
 | |
|       for (size_t i = 0; i < next_batch_size(); i++) {
 | |
|         for (size_t y = 0; y < next_output_height(); y++) {
 | |
|           for (size_t x = 0; x < next_output_width(); x++) {
 | |
|             for (size_t c = 0; c < channels(); c++) {
 | |
|               ASSERT_LE(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c], output_max);
 | |
|               ASSERT_GE(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c], output_min);
 | |
|               ASSERT_EQ(next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c],
 | |
|                 output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]) <<
 | |
|                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   uint32_t padding_top_{0};
 | |
|   uint32_t padding_right_{0};
 | |
|   uint32_t padding_bottom_{0};
 | |
|   uint32_t padding_left_{0};
 | |
|   bool padding_tf_same_{false};
 | |
|   size_t input_height_{1};
 | |
|   size_t input_width_{1};
 | |
|   size_t channels_{1};
 | |
|   size_t batch_size_{1};
 | |
|   size_t input_pixel_stride_{0};
 | |
|   size_t output_pixel_stride_{0};
 | |
|   uint32_t pooling_height_{1};
 | |
|   uint32_t pooling_width_{1};
 | |
|   uint32_t stride_height_{1};
 | |
|   uint32_t stride_width_{1};
 | |
|   uint32_t dilation_height_{1};
 | |
|   uint32_t dilation_width_{1};
 | |
|   size_t next_input_height_{0};
 | |
|   size_t next_input_width_{0};
 | |
|   size_t next_batch_size_{0};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{1};
 | |
| };
 |