249 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			249 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| 
 | |
| 
 | |
| class PReLUOperatorTester {
 | |
|  public:
 | |
|   enum class WeightsType {
 | |
|     Default,
 | |
|     FP32,
 | |
|   };
 | |
| 
 | |
|   inline PReLUOperatorTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline PReLUOperatorTester& channels(size_t channels) {
 | |
|     assert(channels != 0);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline PReLUOperatorTester& x_stride(size_t x_stride) {
 | |
|     assert(x_stride != 0);
 | |
|     this->x_stride_ = x_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t x_stride() const {
 | |
|     if (this->x_stride_ == 0) {
 | |
|       return this->channels_;
 | |
|     } else {
 | |
|       assert(this->x_stride_ >= this->channels_);
 | |
|       return this->x_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline PReLUOperatorTester& y_stride(size_t y_stride) {
 | |
|     assert(y_stride != 0);
 | |
|     this->y_stride_ = y_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t y_stride() const {
 | |
|     if (this->y_stride_ == 0) {
 | |
|       return this->channels_;
 | |
|     } else {
 | |
|       assert(this->y_stride_ >= this->channels_);
 | |
|       return this->y_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline PReLUOperatorTester& weights_type(WeightsType weights_type) {
 | |
|     this->weights_type_ = weights_type;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline WeightsType weights_type() const {
 | |
|     return this->weights_type_;
 | |
|   }
 | |
| 
 | |
|   inline PReLUOperatorTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void TestF16() const {
 | |
|     switch (weights_type()) {
 | |
|       case WeightsType::Default:
 | |
|         break;
 | |
|       case WeightsType::FP32:
 | |
|         break;
 | |
|       default:
 | |
|         GTEST_FAIL() << "unexpected weights type";
 | |
|     }
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32irng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
 | |
|     auto f16irng = std::bind(fp16_ieee_from_fp32_value, f32irng);
 | |
|     auto f32wrng = std::bind(std::uniform_real_distribution<float>(0.25f, 0.75f), rng);
 | |
|     auto f16wrng = std::bind(fp16_ieee_from_fp32_value, f32wrng);
 | |
| 
 | |
|     std::vector<uint16_t> x((batch_size() - 1) * x_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> w(channels());
 | |
|     std::vector<float> w_as_float(channels());
 | |
|     std::vector<uint16_t> y((batch_size() - 1) * y_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<float> y_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(x.begin(), x.end(), std::ref(f16irng));
 | |
|       std::generate(w.begin(), w.end(), std::ref(f16wrng));
 | |
|       std::transform(w.cbegin(), w.cend(), w_as_float.begin(), fp16_ieee_to_fp32_value);
 | |
|       std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           const float x_value = fp16_ieee_to_fp32_value(x[i * x_stride() + c]);
 | |
|           const float w_value = w_as_float[c];
 | |
|           y_ref[i * channels() + c] = signbit(x_value) ? x_value * w_value : x_value;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy PReLU operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t prelu_op = nullptr;
 | |
| 
 | |
|       const void* negative_slope_data = w.data();
 | |
|       if (weights_type() == WeightsType::FP32) {
 | |
|         negative_slope_data = w_as_float.data();
 | |
|       }
 | |
|       uint32_t flags = 0;
 | |
|       if (weights_type() == WeightsType::FP32) {
 | |
|         flags |= XNN_FLAG_FP32_STATIC_WEIGHTS;
 | |
|       }
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_prelu_nc_f16(
 | |
|           channels(), x_stride(), y_stride(),
 | |
|           negative_slope_data,
 | |
|           flags, &prelu_op));
 | |
|       ASSERT_NE(nullptr, prelu_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete prelu_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_prelu_op(prelu_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_prelu_nc_f16(
 | |
|           prelu_op,
 | |
|           batch_size(),
 | |
|           x.data(), y.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(prelu_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_NEAR(
 | |
|               fp16_ieee_to_fp32_value(y[i * y_stride() + c]),
 | |
|               y_ref[i * channels() + c],
 | |
|               std::max(1.0e-4f, std::abs(y_ref[i * channels() + c]) * 1.0e-4f))
 | |
|             << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestF32() const {
 | |
|     ASSERT_EQ(weights_type(), WeightsType::Default);
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32irng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
 | |
|     auto f32wrng = std::bind(std::uniform_real_distribution<float>(0.25f, 0.75f), rng);
 | |
| 
 | |
|     std::vector<float> x((batch_size() - 1) * x_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> w(channels());
 | |
|     std::vector<float> y((batch_size() - 1) * y_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(x.begin(), x.end(), std::ref(f32irng));
 | |
|       std::generate(w.begin(), w.end(), std::ref(f32wrng));
 | |
|       std::fill(y.begin(), y.end(), nanf(""));
 | |
| 
 | |
|       // Compute reference results, without clamping.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           y_ref[i * channels() + c] = std::signbit(x[i * x_stride() + c]) ? x[i * x_stride() + c] * w[c] : x[i * x_stride() + c];
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy PReLU operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t prelu_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_prelu_nc_f32(
 | |
|           channels(), x_stride(), y_stride(),
 | |
|           w.data(),
 | |
|           0, &prelu_op));
 | |
|       ASSERT_NE(nullptr, prelu_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete prelu_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_prelu_op(prelu_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_prelu_nc_f32(
 | |
|           prelu_op,
 | |
|           batch_size(),
 | |
|           x.data(), y.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(prelu_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_NEAR(
 | |
|               y[i * y_stride() + c],
 | |
|               y_ref[i * channels() + c],
 | |
|               std::max(1.0e-6f, std::abs(y_ref[i * channels() + c]) * 1.0e-6f))
 | |
|             << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t batch_size_{1};
 | |
|   size_t channels_{1};
 | |
|   size_t x_stride_{0};
 | |
|   size_t y_stride_{0};
 | |
|   WeightsType weights_type_{WeightsType::Default};
 | |
|   size_t iterations_{15};
 | |
| };
 |