779 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			779 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright (c) Facebook, Inc. and its affiliates.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cfloat>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack/params.h>
 | |
| #include <xnnpack/requantization-stubs.h>
 | |
| #include <xnnpack/requantization.h>
 | |
| 
 | |
| 
 | |
| class RequantizationTester {
 | |
|  public:
 | |
|   inline RequantizationTester& s(uint32_t s) {
 | |
|     this->s_ = s;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint32_t s() const {
 | |
|     return this->s_;
 | |
|   }
 | |
| 
 | |
|   inline float scale() const {
 | |
|     return ldexpf(1.0f, -s());
 | |
|   }
 | |
| 
 | |
|   inline RequantizationTester& zero_point(int32_t zero_point) {
 | |
|     this->zero_point_ = zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline int32_t zero_point() const {
 | |
|     return this->zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline RequantizationTester& qmin(int16_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline int16_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline RequantizationTester& qmax(int16_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline int16_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline RequantizationTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Test that requantization of numbers ((i - zero point) * 2**s) with
 | |
|    * - scale = exp2(-s)
 | |
|    * - zero point in [0, 255]
 | |
|    * - no output clamping
 | |
|    * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
 | |
|    */
 | |
|   void TestExactDivideByPO2(xnn_qu8_requantization_function requantize) const {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
 | |
|     ASSERT_GE(s(), 1);
 | |
|     ASSERT_LT(s(), 32);
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<uint8_t> outputs(inputs.size());
 | |
|     const int32_t max_i = (uint32_t(std::numeric_limits<int32_t>::max()) >> s()) + zero_point();
 | |
|     const int32_t min_i = -(-uint32_t(std::numeric_limits<int32_t>::min()) >> s()) + zero_point();
 | |
|     for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
 | |
|       const int32_t clamped_i = std::max(min_i, std::min(max_i, i));
 | |
|       inputs[i] = int32_t(uint32_t(clamped_i - zero_point()) << s());
 | |
|     }
 | |
|     requantize(inputs.size(), inputs.data(),
 | |
|         scale(), zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
|     for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
 | |
|       const int32_t clamped_i = std::max(min_i, std::min(max_i, i));
 | |
|       ASSERT_EQ(uint32_t(clamped_i), uint32_t(outputs[i]))
 | |
|         << "i = " << i << ", clamped i = " << clamped_i << ", input = " << inputs[i]
 | |
|         << ", min i = " << min_i << ", max i = " << max_i
 | |
|         << ", s = " << s() << ", zero point = " << zero_point();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Test that requantization of numbers ((i - zero point) * 2**s) with
 | |
|    * - scale = exp2(-s)
 | |
|    * - zero point in [-128, 127]
 | |
|    * - no output clamping
 | |
|    * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
 | |
|    */
 | |
|   void TestExactDivideByPO2(xnn_qs8_requantization_function requantize) const {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
 | |
|     ASSERT_GE(s(), 1);
 | |
|     ASSERT_LT(s(), 32);
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<int8_t> outputs(inputs.size());
 | |
|     const int32_t max_i = (uint32_t(std::numeric_limits<int32_t>::max()) >> s()) + zero_point();
 | |
|     const int32_t min_i = -(-uint32_t(std::numeric_limits<int32_t>::min()) >> s()) + zero_point();
 | |
|     for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
 | |
|       const int32_t clamped_i = std::max(min_i, std::min(max_i, i));
 | |
|       inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(uint32_t(clamped_i - zero_point()) << s());
 | |
|     }
 | |
|     requantize(inputs.size(), inputs.data(),
 | |
|         scale(), zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
|     for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
 | |
|       const int32_t clamped_i = std::max(min_i, std::min(max_i, i));
 | |
|       ASSERT_EQ(clamped_i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()]))
 | |
|         << "i = " << i << ", clamped i = " << clamped_i
 | |
|         << ", input = " << inputs[i - std::numeric_limits<int8_t>::min()]
 | |
|         << ", min i = " << min_i << ", max i = " << max_i
 | |
|         << ", s = " << s() << ", zero point = " << zero_point();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Test that requantization of numbers ((i - zero point) * 2**s - 2**(s-1) + 1) with
 | |
|    * - scale = exp2(-s)
 | |
|    * - zero point in [1, 255]
 | |
|    * - no output clamping
 | |
|    * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
 | |
|    */
 | |
|   void TestDivideByPO2WithRoundingUp(xnn_qu8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
 | |
|     ASSERT_GE(s(), 1);
 | |
|     ASSERT_LT(s(), 32);
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<uint8_t> outputs(inputs.size());
 | |
|     for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
 | |
|       const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) -
 | |
|         (INT64_C(1) << (s() - 1)) + 1;
 | |
|       inputs[i] = int32_t(input);
 | |
|     }
 | |
|     requantize(inputs.size(), inputs.data(),
 | |
|         scale(), zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
|     for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
 | |
|       const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) -
 | |
|         (INT64_C(1) << (s() - 1)) + 1;
 | |
|       if (int32_t(input) == input) {
 | |
|         ASSERT_EQ(i, int32_t(outputs[i]))
 | |
|           << "i = " << i << ", input = " << input
 | |
|           << ", s = " << s() << ", zero point = " << zero_point();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Test that requantization of numbers ((i - zero point) * 2**s - 2**(s-1) + 1) with
 | |
|    * - scale = exp2(-s)
 | |
|    * - zero point in [-128, 127]
 | |
|    * - no output clamping
 | |
|    * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
 | |
|    */
 | |
|   void TestDivideByPO2WithRoundingUp(xnn_qs8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
 | |
|     ASSERT_GE(s(), 1);
 | |
|     ASSERT_LT(s(), 32);
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<int8_t> outputs(inputs.size());
 | |
|     for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
 | |
|       const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) -
 | |
|         (INT64_C(1) << (s() - 1)) + 1;
 | |
|       inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input);
 | |
|     }
 | |
|     requantize(inputs.size(), inputs.data(),
 | |
|         scale(), zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
|     for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
 | |
|       const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) -
 | |
|         (INT64_C(1) << (s() - 1)) + 1;
 | |
|       if (int32_t(input) == input) {
 | |
|         ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()]))
 | |
|           << "i = " << i << ", input = " << input
 | |
|           << ", s = " << s() << ", zero point = " << zero_point();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Test that requantization of numbers ((i - zero point) * 2**s + 2**(s-1) - 1) with
 | |
|    * - scale = exp2(-s)
 | |
|    * - zero point in [1, 255]
 | |
|    * - no output clamping
 | |
|    * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
 | |
|    */
 | |
|   void TestDivideByPO2WithRoundingDown(xnn_qu8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
 | |
|     ASSERT_GE(s(), 1);
 | |
|     ASSERT_LT(s(), 32);
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<uint8_t> outputs(inputs.size());
 | |
|     for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
 | |
|       const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) +
 | |
|         (INT64_C(1) << (s() - 1)) - 1;
 | |
|       inputs[i] = int32_t(input);
 | |
|     }
 | |
|     requantize(inputs.size(), inputs.data(),
 | |
|         scale(), zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
|     for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
 | |
|       const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) +
 | |
|         (INT64_C(1) << (s() - 1)) - 1;
 | |
|       if (int32_t(input) == input) {
 | |
|         ASSERT_EQ(i, int32_t(outputs[i]))
 | |
|           << "i = " << i << ", input = " << input
 | |
|           << ", s = " << s() << ", zero point = " << zero_point();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Test that requantization of numbers ((i - zero point) * 2**s + 2**(s-1) - 1) with
 | |
|    * - scale = exp2(-s)
 | |
|    * - zero point in [-128, 127]
 | |
|    * - no output clamping
 | |
|    * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
 | |
|    */
 | |
|   void TestDivideByPO2WithRoundingDown(xnn_qs8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
 | |
|     ASSERT_GE(s(), 1);
 | |
|     ASSERT_LT(s(), 32);
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<int8_t> outputs(inputs.size());
 | |
|     for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
 | |
|       const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) +
 | |
|         (INT64_C(1) << (s() - 1)) - 1;
 | |
|       inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input);
 | |
|     }
 | |
|     requantize(inputs.size(), inputs.data(),
 | |
|         scale(), zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
|     for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
 | |
|       const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) +
 | |
|         (INT64_C(1) << (s() - 1)) - 1;
 | |
|       if (int32_t(input) == input) {
 | |
|         ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()]))
 | |
|           << "i = " << i << ", input = " << input
 | |
|           << ", s = " << s() << ", zero point = " << zero_point();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestDivideByPO2WithRoundingTiesAway(xnn_qu8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
 | |
|     ASSERT_GE(s(), 1);
 | |
|     ASSERT_LT(s(), 32);
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<uint8_t> outputs(inputs.size());
 | |
|     for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
 | |
|       int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
 | |
|       if (input > 0) {
 | |
|         input -= INT64_C(1) << (s() - 1);
 | |
|       } else if (input < 0) {
 | |
|         input += INT64_C(1) << (s() - 1);
 | |
|       }
 | |
|       inputs[i] = int32_t(input);
 | |
|     }
 | |
|     requantize(inputs.size(), inputs.data(),
 | |
|         scale(), zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
|     for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
 | |
|       int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
 | |
|       if (input > 0) {
 | |
|         input -= INT64_C(1) << (s() - 1);
 | |
|       } else if (input < 0) {
 | |
|         input += INT64_C(1) << (s() - 1);
 | |
|       }
 | |
|       if (int32_t(input) == input) {
 | |
|         ASSERT_EQ(i, int32_t(outputs[i]))
 | |
|           << "i = " << i << ", input = " << input
 | |
|           << ", s = " << s() << ", zero point = " << zero_point();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestDivideByPO2WithRoundingTiesAway(xnn_qs8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
 | |
|     ASSERT_GE(s(), 1);
 | |
|     ASSERT_LT(s(), 32);
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<int8_t> outputs(inputs.size());
 | |
|     for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
 | |
|       int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
 | |
|       if (input > 0) {
 | |
|         input -= INT64_C(1) << (s() - 1);
 | |
|       } else if (input < 0) {
 | |
|         input += INT64_C(1) << (s() - 1);
 | |
|       }
 | |
|       inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input);
 | |
|     }
 | |
|     requantize(inputs.size(), inputs.data(),
 | |
|         scale(), zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
|     for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
 | |
|       int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
 | |
|       if (input > 0) {
 | |
|         input -= INT64_C(1) << (s() - 1);
 | |
|       } else if (input < 0) {
 | |
|         input += INT64_C(1) << (s() - 1);
 | |
|       }
 | |
|       if (int32_t(input) == input) {
 | |
|         ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()]))
 | |
|           << "i = " << i << ", input = " << input
 | |
|           << ", s = " << s() << ", zero point = " << zero_point();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestDivideByPO2WithRoundingTiesUp(xnn_qs8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
 | |
|     ASSERT_GE(s(), 1);
 | |
|     ASSERT_LT(s(), 32);
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<int8_t> outputs(inputs.size());
 | |
|     for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
 | |
|       int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
 | |
|       input -= INT64_C(1) << (s() - 1);
 | |
|       inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input);
 | |
|     }
 | |
|     requantize(inputs.size(), inputs.data(),
 | |
|         scale(), zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
|     for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
 | |
|       int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
 | |
|       input -= INT64_C(1) << (s() - 1);
 | |
|       if (int32_t(input) == input) {
 | |
|         ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()]))
 | |
|           << "i = " << i << ", input = " << input
 | |
|           << ", s = " << s() << ", zero point = " << zero_point();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestSpecialCases(xnn_qu8_requantization_function requantize) {
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<uint8_t> outputs(inputs.size());
 | |
| 
 | |
|     std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::min());
 | |
|     for (int32_t zero_point = 0; zero_point <= std::numeric_limits<uint8_t>::max(); zero_point++) {
 | |
|       requantize(
 | |
|           inputs.size(),
 | |
|           inputs.data(),
 | |
|           ldexpf(1.0f, -32) /* scale */,
 | |
|           zero_point /* zero point */,
 | |
|           std::numeric_limits<uint8_t>::min(),
 | |
|           std::numeric_limits<uint8_t>::max(),
 | |
|           outputs.data());
 | |
|       for (size_t i = 0; i < outputs.size(); i++) {
 | |
|         ASSERT_EQ(std::max(int32_t(int32_t(std::numeric_limits<uint8_t>::min())), zero_point - 1), int32_t(outputs[i]));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::max());
 | |
|     requantize(
 | |
|         inputs.size(),
 | |
|         inputs.data(),
 | |
|         0x1.FFFFFEp-1f /* scale */,
 | |
|         std::numeric_limits<uint8_t>::max() /* zero point */,
 | |
|         std::numeric_limits<uint8_t>::min(),
 | |
|         std::numeric_limits<uint8_t>::max(),
 | |
|         outputs.data());
 | |
|     for (size_t i = 0; i < outputs.size(); i++) {
 | |
|       ASSERT_EQ(std::numeric_limits<uint8_t>::max(), int32_t(outputs[i]));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestSpecialCases(xnn_qs8_requantization_function requantize) {
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     std::vector<int32_t> inputs(256);
 | |
|     std::vector<int8_t> outputs(inputs.size());
 | |
| 
 | |
|     std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::min());
 | |
|     for (int32_t zero_point = std::numeric_limits<int8_t>::min();
 | |
|          zero_point <= std::numeric_limits<int8_t>::max();
 | |
|          zero_point++)
 | |
|     {
 | |
|       requantize(
 | |
|           inputs.size(),
 | |
|           inputs.data(),
 | |
|           ldexpf(1.0f, -32) /* scale */,
 | |
|           zero_point,
 | |
|           std::numeric_limits<int8_t>::min(),
 | |
|           std::numeric_limits<int8_t>::max(),
 | |
|           outputs.data());
 | |
|       for (size_t i = 0; i < outputs.size(); i++) {
 | |
|         ASSERT_EQ(std::max(int32_t(std::numeric_limits<int8_t>::min()), zero_point - 1), int32_t(outputs[i]));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::max());
 | |
|     requantize(
 | |
|         inputs.size(),
 | |
|         inputs.data(),
 | |
|         0x1.FFFFFEp-1f /* scale */,
 | |
|         std::numeric_limits<int8_t>::max() /* zero point */,
 | |
|         std::numeric_limits<int8_t>::min(),
 | |
|         std::numeric_limits<int8_t>::max(),
 | |
|         outputs.data());
 | |
|     for (size_t i = 0; i < outputs.size(); i++) {
 | |
|       ASSERT_EQ(std::numeric_limits<int8_t>::max(), int32_t(outputs[i]));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestRandomCasesRoundToNearestTiesAway(xnn_qu8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     std::mt19937 rng(random_device());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       auto u8rng =
 | |
|         std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
 | |
| 
 | |
|       std::vector<int32_t> inputs(4096);
 | |
|       std::vector<uint8_t> outputs(inputs.size());
 | |
| 
 | |
|       std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
 | |
|       const float scale = scale_distribution(rng);
 | |
|       for (size_t i = 0; i < inputs.size(); i++) {
 | |
|         const uint8_t approximate_output = std::min(std::max(uint8_t(u8rng()), uint8_t(qmin())), uint8_t(qmax()));
 | |
|         const int32_t input = int32_t(double(approximate_output) / double(scale));
 | |
|         inputs[i] = input;
 | |
|       }
 | |
| 
 | |
|       requantize(
 | |
|         inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
| 
 | |
|       /* Ensure that outputs are not all identical, as in this case the test doesn't validate much */
 | |
|       ASSERT_NE(
 | |
|         *std::max_element(outputs.cbegin(), outputs.cend()),
 | |
|         *std::min_element(outputs.cbegin(), outputs.cend()));
 | |
| 
 | |
|       for (size_t i = 0; i < inputs.size(); i++) {
 | |
|         const uint8_t reference_output = xnn_qu8_requantize_rndna(
 | |
|           inputs[i], scale, zero_point(), qmin(), qmax());
 | |
|         ASSERT_EQ(uint32_t(reference_output), uint32_t(outputs[i]));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestRandomCasesRoundToNearestTiesAway(xnn_qs8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     std::mt19937 rng(random_device());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       auto i8rng = std::bind(
 | |
|         std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng));
 | |
| 
 | |
|       std::vector<int32_t> inputs(4096);
 | |
|       std::vector<int8_t> outputs(inputs.size());
 | |
| 
 | |
|       std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
 | |
|       const float scale = scale_distribution(rng);
 | |
|       for (size_t i = 0; i < inputs.size(); i++) {
 | |
|         const int8_t approximate_output = std::min(std::max(int8_t(i8rng()), int8_t(qmin())), int8_t(qmax()));
 | |
|         const int32_t input = int32_t(double(approximate_output) / double(scale));
 | |
|         inputs[i] = input;
 | |
|       }
 | |
| 
 | |
|       requantize(
 | |
|         inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
| 
 | |
|       /* Ensure that outputs are not all identical, as in this case the test doesn't validate much */
 | |
|       ASSERT_NE(
 | |
|         *std::max_element(outputs.cbegin(), outputs.cend()),
 | |
|         *std::min_element(outputs.cbegin(), outputs.cend()));
 | |
| 
 | |
|       for (size_t i = 0; i < inputs.size(); i++) {
 | |
|         const int8_t reference_output = xnn_qs8_requantize_rndna(
 | |
|           inputs[i], scale, zero_point(), qmin(), qmax());
 | |
|         ASSERT_EQ(int32_t(reference_output), int32_t(outputs[i]));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestRandomCasesRoundToNearestTiesUp(xnn_qs8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     std::mt19937 rng(random_device());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       auto i8rng = std::bind(
 | |
|         std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng));
 | |
| 
 | |
|       std::vector<int32_t> inputs(4096);
 | |
|       std::vector<int8_t> outputs(inputs.size());
 | |
| 
 | |
|       std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
 | |
|       const float scale = scale_distribution(rng);
 | |
|       for (size_t i = 0; i < inputs.size(); i++) {
 | |
|         const int8_t approximate_output = std::min(std::max(int8_t(i8rng()), int8_t(qmin())), int8_t(qmax()));
 | |
|         const int32_t input = int32_t(double(approximate_output) / double(scale));
 | |
|         inputs[i] = input;
 | |
|       }
 | |
| 
 | |
|       requantize(
 | |
|         inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
| 
 | |
|       /* Ensure that outputs are not all identical, as in this case the test doesn't validate much */
 | |
|       ASSERT_NE(
 | |
|         *std::max_element(outputs.cbegin(), outputs.cend()),
 | |
|         *std::min_element(outputs.cbegin(), outputs.cend()));
 | |
| 
 | |
|       for (size_t i = 0; i < inputs.size(); i++) {
 | |
|         const int8_t reference_output = xnn_qs8_requantize_rndnu(
 | |
|           inputs[i], scale, zero_point(), qmin(), qmax());
 | |
|         ASSERT_EQ(int32_t(reference_output), int32_t(outputs[i]));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestRandomCasesApproximate(xnn_qu8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     std::mt19937 rng(random_device());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       auto u8rng =
 | |
|         std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
 | |
| 
 | |
|       std::vector<int32_t> inputs(4096);
 | |
|       std::vector<uint8_t> outputs(inputs.size());
 | |
| 
 | |
|       std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
 | |
|       const float scale = scale_distribution(rng);
 | |
|       for (size_t i = 0; i < inputs.size(); i++) {
 | |
|         const uint8_t approximate_output = std::min(std::max(uint8_t(u8rng()), uint8_t(qmin())), uint8_t(qmax()));
 | |
|         const int32_t input = int32_t(double(approximate_output) / double(scale));
 | |
|         inputs[i] = input;
 | |
|       }
 | |
| 
 | |
|       requantize(
 | |
|         inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
| 
 | |
|       /* Ensure that outputs are not all identical, as in this case Test doesn't validate much */
 | |
|       ASSERT_NE(
 | |
|         *std::max_element(outputs.cbegin(), outputs.cend()),
 | |
|         *std::min_element(outputs.cbegin(), outputs.cend()));
 | |
| 
 | |
|       for (size_t i = 0; i < inputs.size(); i++) {
 | |
|         const double reference_output = RequantizationTester::RequantizeApproximate(
 | |
|           inputs[i], scale, uint8_t(zero_point()), uint8_t(qmin()), uint8_t(qmax()));
 | |
|         ASSERT_LE(std::abs(reference_output - double(outputs[i])), 0.55)
 | |
|           << "input = " << inputs[i] << ", output = " << int32_t(outputs[i])
 | |
|           << ", reference output = " << reference_output;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestRandomCasesApproximate(xnn_qs8_requantization_function requantize) {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     std::mt19937 rng(random_device());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       auto i8rng = std::bind(
 | |
|         std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng));
 | |
| 
 | |
|       std::vector<int32_t> inputs(4096);
 | |
|       std::vector<int8_t> outputs(inputs.size());
 | |
| 
 | |
|       std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
 | |
|       const float scale = scale_distribution(rng);
 | |
|       for (size_t i = 0; i < inputs.size(); i++) {
 | |
|         const int8_t approximate_output = std::min(std::max(int8_t(i8rng()), int8_t(qmin())), int8_t(qmax()));
 | |
|         const int32_t input = int32_t(double(approximate_output) / double(scale));
 | |
|         inputs[i] = input;
 | |
|       }
 | |
| 
 | |
|       requantize(
 | |
|         inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(),
 | |
|         outputs.data());
 | |
| 
 | |
|       /* Ensure that outputs are not all identical, as in this case Test doesn't validate much */
 | |
|       ASSERT_NE(
 | |
|         *std::max_element(outputs.cbegin(), outputs.cend()),
 | |
|         *std::min_element(outputs.cbegin(), outputs.cend()));
 | |
| 
 | |
|       for (size_t i = 0; i < inputs.size(); i++) {
 | |
|         const double reference_output = RequantizationTester::RequantizeApproximate(
 | |
|           inputs[i], scale, int8_t(zero_point()), int8_t(qmin()), int8_t(qmax()));
 | |
|         ASSERT_LE(std::abs(reference_output - double(outputs[i])), 0.55)
 | |
|           << "input = " << inputs[i] << ", output = " << int32_t(outputs[i])
 | |
|           << ", reference output = " << reference_output;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static inline int64_t ShiftLeft(int64_t w, uint32_t n) {
 | |
|     return (int64_t) ((uint64_t) w << n);
 | |
|   }
 | |
| 
 | |
|   static inline double RequantizeApproximate(
 | |
|     int32_t value,
 | |
|     float scale,
 | |
|     uint8_t zero_point,
 | |
|     uint8_t qmin,
 | |
|     uint8_t qmax)
 | |
|   {
 | |
|     assert(scale < 1.0f);
 | |
|     assert(scale >= 0x1.0p-32f);
 | |
| 
 | |
|     return std::min(std::max(double(value) * double(scale) + double(zero_point), double(qmin)), double(qmax));
 | |
|   }
 | |
| 
 | |
|   static inline double RequantizeApproximate(
 | |
|     int32_t value,
 | |
|     float scale,
 | |
|     int8_t zero_point,
 | |
|     int8_t qmin,
 | |
|     int8_t qmax)
 | |
|   {
 | |
|     assert(scale < 1.0f);
 | |
|     assert(scale >= 0x1.0p-32f);
 | |
| 
 | |
|     return std::min(std::max(double(value) * double(scale) + double(zero_point), double(qmin)), double(qmax));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   uint32_t s_{1};
 | |
|   int32_t zero_point_{0};
 | |
|   int16_t qmin_{std::numeric_limits<int16_t>::min()};
 | |
|   int16_t qmax_{std::numeric_limits<int16_t>::max()};
 | |
|   size_t iterations_{1};
 | |
| };
 |