265 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2021 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| 
 | |
| 
 | |
| class TanhOperatorTester {
 | |
|  public:
 | |
|   inline TanhOperatorTester& channels(size_t channels) {
 | |
|     assert(channels != 0);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline TanhOperatorTester& input_stride(size_t input_stride) {
 | |
|     assert(input_stride != 0);
 | |
|     this->input_stride_ = input_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_stride() const {
 | |
|     if (this->input_stride_ == 0) {
 | |
|       return this->channels_;
 | |
|     } else {
 | |
|       assert(this->input_stride_ >= this->channels_);
 | |
|       return this->input_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline TanhOperatorTester& output_stride(size_t output_stride) {
 | |
|     assert(output_stride != 0);
 | |
|     this->output_stride_ = output_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_stride() const {
 | |
|     if (this->output_stride_ == 0) {
 | |
|       return this->channels_;
 | |
|     } else {
 | |
|       assert(this->output_stride_ >= this->channels_);
 | |
|       return this->output_stride_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline TanhOperatorTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline TanhOperatorTester& input_scale(float input_scale) {
 | |
|     assert(input_scale > 0.0f);
 | |
|     assert(std::isnormal(input_scale));
 | |
|     this->input_scale_ = input_scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float input_scale() const {
 | |
|     return this->input_scale_;
 | |
|   }
 | |
| 
 | |
|   inline TanhOperatorTester& input_zero_point(uint8_t input_zero_point) {
 | |
|     this->input_zero_point_ = input_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t input_zero_point() const {
 | |
|     return this->input_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline float output_scale() const {
 | |
|     return 1.0f / 128.0f;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t output_zero_point() const {
 | |
|     return 128;
 | |
|   }
 | |
| 
 | |
|   inline TanhOperatorTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline TanhOperatorTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline TanhOperatorTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void TestQS8() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
 | |
|       std::ref(rng));
 | |
| 
 | |
|     std::vector<int8_t> input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> output((batch_size() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           const float x = input_scale() *
 | |
|             (int32_t(input[i * input_stride() + c]) - int32_t(input_zero_point() - 0x80));
 | |
|           const float tanh_x = std::tanh(x);
 | |
|           const float scaled_tanh_x = tanh_x / output_scale();
 | |
|           float y = scaled_tanh_x;
 | |
|           y = std::min<float>(y, int32_t(qmax() - 0x80) - int32_t(output_zero_point() - 0x80));
 | |
|           y = std::max<float>(y, int32_t(qmin() - 0x80) - int32_t(output_zero_point() - 0x80));
 | |
|           output_ref[i * channels() + c] = y + int32_t(output_zero_point() - 0x80);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Sigmoid operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t tanh_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_tanh_nc_qs8(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           int8_t(input_zero_point() - 0x80), input_scale(),
 | |
|           int8_t(output_zero_point() - 0x80), output_scale(),
 | |
|           int8_t(qmin() - 0x80), int8_t(qmax() - 0x80),
 | |
|           0, &tanh_op));
 | |
|       ASSERT_NE(nullptr, tanh_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete tanh_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_tanh_op(tanh_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_tanh_nc_qs8(
 | |
|           tanh_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(tanh_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void TestQU8() const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<uint8_t> input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> output((batch_size() - 1) * output_stride() + channels());
 | |
|     std::vector<float> output_ref(batch_size() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::fill(output.begin(), output.end(), 0xA5);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           const float x = input_scale() *
 | |
|             (int32_t(input[i * input_stride() + c]) - int32_t(input_zero_point()));
 | |
|           const float tanh_x = std::tanh(x);
 | |
|           const float scaled_tanh_x = tanh_x / output_scale();
 | |
|           float y = scaled_tanh_x;
 | |
|           y = std::min<float>(y, int32_t(qmax()) - int32_t(output_zero_point()));
 | |
|           y = std::max<float>(y, int32_t(qmin()) - int32_t(output_zero_point()));
 | |
|           output_ref[i * channels() + c] = y + int32_t(output_zero_point());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create, setup, run, and destroy Sigmoid operator.
 | |
|       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
 | |
|       xnn_operator_t tanh_op = nullptr;
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_create_tanh_nc_qu8(
 | |
|           channels(), input_stride(), output_stride(),
 | |
|           input_zero_point(), input_scale(),
 | |
|           output_zero_point(), output_scale(),
 | |
|           qmin(), qmax(),
 | |
|           0, &tanh_op));
 | |
|       ASSERT_NE(nullptr, tanh_op);
 | |
| 
 | |
|       // Smart pointer to automatically delete tanh_op.
 | |
|       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_tanh_op(tanh_op, xnn_delete_operator);
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_setup_tanh_nc_qu8(
 | |
|           tanh_op,
 | |
|           batch_size(),
 | |
|           input.data(), output.data(),
 | |
|           nullptr /* thread pool */));
 | |
| 
 | |
|       ASSERT_EQ(xnn_status_success,
 | |
|         xnn_run_operator(tanh_op, nullptr /* thread pool */));
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         for (size_t c = 0; c < channels(); c++) {
 | |
|           ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t batch_size_{1};
 | |
|   size_t channels_{1};
 | |
|   size_t input_stride_{0};
 | |
|   size_t output_stride_{0};
 | |
|   float input_scale_{0.75f};
 | |
|   uint8_t input_zero_point_{121};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{15};
 | |
| };
 |