284 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			284 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright (c) Facebook, Inc. and its affiliates.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| #include <xnnpack/requantization.h>
 | |
| 
 | |
| 
 | |
| class VAddMicrokernelTester {
 | |
|  public:
 | |
|   inline VAddMicrokernelTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& inplace_a(bool inplace_a) {
 | |
|     this->inplace_a_ = inplace_a;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool inplace_a() const {
 | |
|     return this->inplace_a_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& inplace_b(bool inplace_b) {
 | |
|     this->inplace_b_ = inplace_b;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool inplace_b() const {
 | |
|     return this->inplace_b_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& a_scale(float a_scale) {
 | |
|     assert(a_scale > 0.0f);
 | |
|     assert(std::isnormal(a_scale));
 | |
|     this->a_scale_ = a_scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float a_scale() const {
 | |
|     return this->a_scale_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& a_zero_point(uint8_t a_zero_point) {
 | |
|     this->a_zero_point_ = a_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t a_zero_point() const {
 | |
|     return this->a_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& b_scale(float b_scale) {
 | |
|     assert(b_scale > 0.0f);
 | |
|     assert(std::isnormal(b_scale));
 | |
|     this->b_scale_ = b_scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float b_scale() const {
 | |
|     return this->b_scale_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& b_zero_point(uint8_t b_zero_point) {
 | |
|     this->b_zero_point_ = b_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t b_zero_point() const {
 | |
|     return this->b_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& y_scale(float y_scale) {
 | |
|     assert(y_scale > 0.0f);
 | |
|     assert(std::isnormal(y_scale));
 | |
|     this->y_scale_ = y_scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float y_scale() const {
 | |
|     return this->y_scale_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& y_zero_point(uint8_t y_zero_point) {
 | |
|     this->y_zero_point_ = y_zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t y_zero_point() const {
 | |
|     return this->y_zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline VAddMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_qu8_vaddsub_minmax_ukernel_function vadd_minmax, xnn_init_qu8_addsub_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<uint8_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> b(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(uint8_t) : 0));
 | |
|     std::vector<float> y_fp(batch_size());
 | |
|     std::vector<uint8_t> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(u8rng));
 | |
|       std::generate(b.begin(), b.end(), std::ref(u8rng));
 | |
|       if (inplace_a() || inplace_b()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(u8rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), 0xA5);
 | |
|       }
 | |
|       const uint8_t* a_data = inplace_a() ? y.data() : a.data();
 | |
|       const uint8_t* b_data = inplace_b() ? y.data() : b.data();
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_qu8_addsub_minmax_params quantization_params;
 | |
|       init_params(
 | |
|         &quantization_params,
 | |
|         a_zero_point(), b_zero_point(), y_zero_point(),
 | |
|         a_scale() / y_scale(), b_scale() / y_scale(),
 | |
|         qmin(), qmax());
 | |
|       xnn_qu8_addsub_minmax_params scalar_quantization_params;
 | |
|       xnn_init_qu8_add_minmax_scalar_params(
 | |
|         &scalar_quantization_params,
 | |
|         a_zero_point(), b_zero_point(), y_zero_point(),
 | |
|         a_scale() / y_scale(), b_scale() / y_scale(),
 | |
|         qmin(), qmax());
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_fp[i] = float(y_zero_point()) +
 | |
|           float(int32_t(a_data[i]) - int32_t(a_zero_point())) * (a_scale() / y_scale()) +
 | |
|           float(int32_t(b_data[i]) - int32_t(b_zero_point())) * (b_scale() / y_scale());
 | |
|         y_fp[i] = std::min<float>(y_fp[i], float(qmax()));
 | |
|         y_fp[i] = std::max<float>(y_fp[i], float(qmin()));
 | |
|         y_ref[i] = xnn_qu8_quantize_add(a_data[i], b_data[i], scalar_quantization_params);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vadd_minmax(batch_size(), a_data, b_data, y.data(), &quantization_params);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_LE(uint32_t(y[i]), uint32_t(qmax()))
 | |
|           << "at element " << i << " / " << batch_size();
 | |
|         ASSERT_GE(uint32_t(y[i]), uint32_t(qmin()))
 | |
|           << "at element " << i << " / " << batch_size();
 | |
|         ASSERT_NEAR(float(int32_t(y[i])), y_fp[i], 0.6f)
 | |
|           << "at element " << i << " / " << batch_size();
 | |
|         ASSERT_EQ(uint32_t(y_ref[i]), uint32_t(y[i]))
 | |
|           << "at element " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_qs8_vaddsub_minmax_ukernel_function vadd_minmax, xnn_init_qs8_addsub_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), rng);
 | |
| 
 | |
|     std::vector<int8_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> b(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(int8_t) : 0));
 | |
|     std::vector<float> y_fp(batch_size());
 | |
|     std::vector<int8_t> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(i8rng));
 | |
|       std::generate(b.begin(), b.end(), std::ref(i8rng));
 | |
|       if (inplace_a() || inplace_b()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(i8rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), 0xA5);
 | |
|       }
 | |
|       const int8_t* a_data = inplace_a() ? y.data() : a.data();
 | |
|       const int8_t* b_data = inplace_b() ? y.data() : b.data();
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_qs8_addsub_minmax_params quantization_params;
 | |
|       init_params(
 | |
|         &quantization_params,
 | |
|         int8_t(a_zero_point() - 0x80), int8_t(b_zero_point() - 0x80), int8_t(y_zero_point() - 0x80),
 | |
|         a_scale() / y_scale(), b_scale() / y_scale(),
 | |
|         int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
|       xnn_qs8_addsub_minmax_params scalar_quantization_params;
 | |
|       xnn_init_qs8_add_minmax_scalar_params(
 | |
|         &scalar_quantization_params,
 | |
|         int8_t(a_zero_point() - 0x80), int8_t(b_zero_point() - 0x80), int8_t(y_zero_point() - 0x80),
 | |
|         a_scale() / y_scale(), b_scale() / y_scale(),
 | |
|         int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_fp[i] = float(int32_t(y_zero_point() - 0x80)) +
 | |
|           float(int32_t(a_data[i]) - int32_t(a_zero_point() - 0x80)) * (a_scale() / y_scale()) +
 | |
|           float(int32_t(b_data[i]) - int32_t(b_zero_point() - 0x80)) * (b_scale() / y_scale());
 | |
|         y_fp[i] = std::min<float>(y_fp[i], float(int32_t(qmax() - 0x80)));
 | |
|         y_fp[i] = std::max<float>(y_fp[i], float(int32_t(qmin() - 0x80)));
 | |
|         y_ref[i] = xnn_qs8_quantize_add(a_data[i], b_data[i], scalar_quantization_params);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vadd_minmax(batch_size(), a_data, b_data, y.data(), &quantization_params);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_LE(int32_t(y[i]), int32_t(qmax() - 0x80))
 | |
|           << "at element " << i << " / " << batch_size();
 | |
|         ASSERT_GE(int32_t(y[i]), int32_t(qmin() - 0x80))
 | |
|           << "at element " << i << " / " << batch_size();
 | |
|         ASSERT_EQ(int32_t(y_ref[i]), int32_t(y[i]))
 | |
|           << "at element " << i << " / " << batch_size();
 | |
|         ASSERT_NEAR(float(int32_t(y[i])), y_fp[i], 0.6f)
 | |
|           << "at element " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t batch_size_{1};
 | |
|   bool inplace_a_{false};
 | |
|   bool inplace_b_{false};
 | |
|   float a_scale_{0.75f};
 | |
|   float b_scale_{1.25f};
 | |
|   float y_scale_{0.96875f};
 | |
|   uint8_t a_zero_point_{121};
 | |
|   uint8_t b_zero_point_{127};
 | |
|   uint8_t y_zero_point_{133};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{15};
 | |
| };
 |