452 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			452 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| 
 | |
| 
 | |
| class VBinaryMicrokernelTester {
 | |
|  public:
 | |
|   enum class OpType {
 | |
|     Add,
 | |
|     Div,
 | |
|     Max,
 | |
|     Min,
 | |
|     Mul,
 | |
|     Sub,
 | |
|     SqrDiff,
 | |
|   };
 | |
| 
 | |
|   inline VBinaryMicrokernelTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline VBinaryMicrokernelTester& inplace_a(bool inplace_a) {
 | |
|     this->inplace_a_ = inplace_a;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool inplace_a() const {
 | |
|     return this->inplace_a_;
 | |
|   }
 | |
| 
 | |
|   inline VBinaryMicrokernelTester& inplace_b(bool inplace_b) {
 | |
|     this->inplace_b_ = inplace_b;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool inplace_b() const {
 | |
|     return this->inplace_b_;
 | |
|   }
 | |
| 
 | |
|   inline VBinaryMicrokernelTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline VBinaryMicrokernelTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline VBinaryMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_vbinary_ukernel_function vbinary, OpType op_type) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> b(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(f16rng));
 | |
|       std::generate(b.begin(), b.end(), std::ref(f16rng));
 | |
|       if (inplace_a() || inplace_b()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f16rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
 | |
|       }
 | |
|       const uint16_t* a_data = inplace_a() ? y.data() : a.data();
 | |
|       const uint16_t* b_data = inplace_b() ? y.data() : b.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::Add:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) + fp16_ieee_to_fp32_value(b_data[i]);
 | |
|             break;
 | |
|           case OpType::Div:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) / fp16_ieee_to_fp32_value(b_data[i]);
 | |
|             break;
 | |
|           case OpType::Max:
 | |
|             y_ref[i] = std::max<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i]));
 | |
|             break;
 | |
|           case OpType::Min:
 | |
|             y_ref[i] = std::min<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i]));
 | |
|             break;
 | |
|           case OpType::Mul:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) * fp16_ieee_to_fp32_value(b_data[i]);
 | |
|             break;
 | |
|           case OpType::SqrDiff:
 | |
|           {
 | |
|             const float diff = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]);
 | |
|             y_ref[i] = diff * diff;
 | |
|             break;
 | |
|           }
 | |
|           case OpType::Sub:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]);
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vbinary(batch_size() * sizeof(uint16_t), a_data, b_data, y.data(), nullptr);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], std::max(1.0e-4f, std::abs(y_ref[i]) * 1.0e-2f))
 | |
|           << "at " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_vbinary_minmax_ukernel_function vbinary_minmax, OpType op_type, xnn_init_f16_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> b(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(f16rng));
 | |
|       std::generate(b.begin(), b.end(), std::ref(f16rng));
 | |
|       if (inplace_a() || inplace_b()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f16rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
 | |
|       }
 | |
|       const uint16_t* a_data = inplace_a() ? y.data() : a.data();
 | |
|       const uint16_t* b_data = inplace_b() ? y.data() : b.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::Add:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) + fp16_ieee_to_fp32_value(b_data[i]);
 | |
|             break;
 | |
|           case OpType::Div:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) / fp16_ieee_to_fp32_value(b_data[i]);
 | |
|             break;
 | |
|           case OpType::Max:
 | |
|             y_ref[i] = std::max<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i]));
 | |
|             break;
 | |
|           case OpType::Min:
 | |
|             y_ref[i] = std::min<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i]));
 | |
|             break;
 | |
|           case OpType::Mul:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) * fp16_ieee_to_fp32_value(b_data[i]);
 | |
|             break;
 | |
|           case OpType::SqrDiff:
 | |
|           {
 | |
|             const float diff = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]);
 | |
|             y_ref[i] = diff * diff;
 | |
|             break;
 | |
|           }
 | |
|           case OpType::Sub:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]);
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float y_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_range > 0.0f ?
 | |
|         (accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) :
 | |
|         +std::numeric_limits<float>::infinity()));
 | |
|       const float y_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_range > 0.0f ?
 | |
|         (accumulated_min + accumulated_range / 255.0f * float(qmin())) :
 | |
|         -std::numeric_limits<float>::infinity()));
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::max<float>(std::min<float>(y_ref[i], y_max), y_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f16_minmax_params params;
 | |
|       init_params(¶ms,
 | |
|         fp16_ieee_from_fp32_value(y_min), fp16_ieee_from_fp32_value(y_max));
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vbinary_minmax(batch_size() * sizeof(uint16_t), a_data, b_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], std::max(1.0e-4f, std::abs(y_ref[i]) * 1.0e-2f))
 | |
|           << "at " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vbinary_ukernel_function vbinary, OpType op_type, xnn_init_f32_default_params_fn init_params = nullptr) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> b(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(f32rng));
 | |
|       std::generate(b.begin(), b.end(), std::ref(f32rng));
 | |
|       if (inplace_a() || inplace_b()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* a_data = inplace_a() ? y.data() : a.data();
 | |
|       const float* b_data = inplace_b() ? y.data() : b.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::Add:
 | |
|             y_ref[i] = a_data[i] + b_data[i];
 | |
|             break;
 | |
|           case OpType::Div:
 | |
|             y_ref[i] = a_data[i] / b_data[i];
 | |
|             break;
 | |
|           case OpType::Max:
 | |
|             y_ref[i] = std::max<float>(a_data[i], b_data[i]);
 | |
|             break;
 | |
|           case OpType::Min:
 | |
|             y_ref[i] = std::min<float>(a_data[i], b_data[i]);
 | |
|             break;
 | |
|           case OpType::Mul:
 | |
|             y_ref[i] = a_data[i] * b_data[i];
 | |
|             break;
 | |
|           case OpType::SqrDiff:
 | |
|           {
 | |
|             const float diff = a_data[i] - b_data[i];
 | |
|             y_ref[i] = diff * diff;
 | |
|             break;
 | |
|           }
 | |
|           case OpType::Sub:
 | |
|             y_ref[i] = a_data[i] - b_data[i];
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_default_params params;
 | |
|       if (init_params) {
 | |
|         init_params(¶ms);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vbinary(batch_size() * sizeof(float), a_data, b_data, y.data(), init_params != nullptr ? ¶ms : nullptr);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
 | |
|           << "at " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vbinary_relu_ukernel_function vbinary_relu, OpType op_type) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> b(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(f32rng));
 | |
|       std::generate(b.begin(), b.end(), std::ref(f32rng));
 | |
|       if (inplace_a() || inplace_b()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* a_data = inplace_a() ? y.data() : a.data();
 | |
|       const float* b_data = inplace_b() ? y.data() : b.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::Add:
 | |
|             y_ref[i] = a_data[i] + b_data[i];
 | |
|             break;
 | |
|           case OpType::Div:
 | |
|             y_ref[i] = a_data[i] / b_data[i];
 | |
|             break;
 | |
|           case OpType::Max:
 | |
|             y_ref[i] = std::max<float>(a_data[i], b_data[i]);
 | |
|             break;
 | |
|           case OpType::Min:
 | |
|             y_ref[i] = std::min<float>(a_data[i], b_data[i]);
 | |
|             break;
 | |
|           case OpType::Mul:
 | |
|             y_ref[i] = a_data[i] * b_data[i];
 | |
|             break;
 | |
|           case OpType::SqrDiff:
 | |
|           {
 | |
|             const float diff = a_data[i] - b_data[i];
 | |
|             y_ref[i] = diff * diff;
 | |
|             break;
 | |
|           }
 | |
|           case OpType::Sub:
 | |
|             y_ref[i] = a_data[i] - b_data[i];
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::max(y_ref[i], 0.0f);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vbinary_relu(batch_size() * sizeof(float), a_data, b_data, y.data(), nullptr);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_GE(y[i], 0.0f)
 | |
|           << "at " << i << " / " << batch_size();
 | |
|         ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
 | |
|           << "at " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vbinary_minmax_ukernel_function vbinary_minmax, OpType op_type, xnn_init_f32_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> b(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(f32rng));
 | |
|       std::generate(b.begin(), b.end(), std::ref(f32rng));
 | |
|       if (inplace_a() || inplace_b()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* a_data = inplace_a() ? y.data() : a.data();
 | |
|       const float* b_data = inplace_b() ? y.data() : b.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::Add:
 | |
|             y_ref[i] = a_data[i] + b_data[i];
 | |
|             break;
 | |
|           case OpType::Div:
 | |
|             y_ref[i] = a_data[i] / b_data[i];
 | |
|             break;
 | |
|           case OpType::Max:
 | |
|             y_ref[i] = std::max<float>(a_data[i], b_data[i]);
 | |
|             break;
 | |
|           case OpType::Min:
 | |
|             y_ref[i] = std::min<float>(a_data[i], b_data[i]);
 | |
|             break;
 | |
|           case OpType::Mul:
 | |
|             y_ref[i] = a_data[i] * b_data[i];
 | |
|             break;
 | |
|           case OpType::SqrDiff:
 | |
|           {
 | |
|             const float diff = a_data[i] - b_data[i];
 | |
|             y_ref[i] = diff * diff;
 | |
|             break;
 | |
|           }
 | |
|           case OpType::Sub:
 | |
|             y_ref[i] = a_data[i] - b_data[i];
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
|       const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float y_max = accumulated_range > 0.0f ?
 | |
|         (accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) :
 | |
|         +std::numeric_limits<float>::infinity();
 | |
|       const float y_min = accumulated_range > 0.0f ?
 | |
|         (accumulated_min + accumulated_range / 255.0f * float(qmin())) :
 | |
|         -std::numeric_limits<float>::infinity();
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::max<float>(std::min<float>(y_ref[i], y_max), y_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_minmax_params params;
 | |
|       init_params(¶ms, y_min, y_max);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vbinary_minmax(batch_size() * sizeof(float), a_data, b_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
 | |
|           << "at " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t batch_size_{1};
 | |
|   bool inplace_a_{false};
 | |
|   bool inplace_b_{false};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{15};
 | |
| };
 |