462 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			462 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| 
 | |
| 
 | |
| class VBinaryCMicrokernelTester {
 | |
|  public:
 | |
|   enum class OpType {
 | |
|     AddC,
 | |
|     DivC,
 | |
|     RDivC,
 | |
|     MaxC,
 | |
|     MinC,
 | |
|     MulC,
 | |
|     SqrDiffC,
 | |
|     SubC,
 | |
|     RSubC,
 | |
|   };
 | |
| 
 | |
|   inline VBinaryCMicrokernelTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline VBinaryCMicrokernelTester& inplace(bool inplace) {
 | |
|     this->inplace_ = inplace;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool inplace() const {
 | |
|     return this->inplace_;
 | |
|   }
 | |
| 
 | |
|   inline VBinaryCMicrokernelTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline VBinaryCMicrokernelTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline VBinaryCMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_vbinary_ukernel_function vbinaryc, OpType op_type) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     const uint16_t b = f16rng();
 | |
|     std::vector<uint16_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(f16rng));
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f16rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
 | |
|       }
 | |
|       const uint16_t* a_data = inplace() ? y.data() : a.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::AddC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) + fp16_ieee_to_fp32_value(b);
 | |
|             break;
 | |
|           case OpType::DivC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) / fp16_ieee_to_fp32_value(b);
 | |
|             break;
 | |
|           case OpType::RDivC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(b) / fp16_ieee_to_fp32_value(a_data[i]);
 | |
|             break;
 | |
|           case OpType::MaxC:
 | |
|             y_ref[i] = std::max<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b));
 | |
|             break;
 | |
|           case OpType::MinC:
 | |
|             y_ref[i] = std::min<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b));
 | |
|             break;
 | |
|           case OpType::MulC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) * fp16_ieee_to_fp32_value(b);
 | |
|             break;
 | |
|           case OpType::SqrDiffC:
 | |
|           {
 | |
|             const float diff = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b);
 | |
|             y_ref[i] = diff * diff;
 | |
|             break;
 | |
|           }
 | |
|           case OpType::SubC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b);
 | |
|             break;
 | |
|           case OpType::RSubC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(b) - fp16_ieee_to_fp32_value(a_data[i]);
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
|       // Call optimized micro-kernel.
 | |
|       vbinaryc(batch_size() * sizeof(uint16_t), a_data, &b, y.data(), nullptr);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], std::max(1.0e-4f, std::abs(y_ref[i]) * 1.0e-2f))
 | |
|           << "at " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_vbinary_minmax_ukernel_function vbinaryc_minmax, OpType op_type, xnn_init_f16_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(1.0e-3f, 1.0f), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     const uint16_t b = f16rng();
 | |
|     std::vector<uint16_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(f16rng));
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f16rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
 | |
|       }
 | |
|       const uint16_t* a_data = inplace() ? y.data() : a.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::AddC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) + fp16_ieee_to_fp32_value(b);
 | |
|             break;
 | |
|           case OpType::DivC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) / fp16_ieee_to_fp32_value(b);
 | |
|             break;
 | |
|           case OpType::RDivC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(b) / fp16_ieee_to_fp32_value(a_data[i]);
 | |
|             break;
 | |
|           case OpType::MaxC:
 | |
|             y_ref[i] = std::max<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b));
 | |
|             break;
 | |
|           case OpType::MinC:
 | |
|             y_ref[i] = std::min<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b));
 | |
|             break;
 | |
|           case OpType::MulC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) * fp16_ieee_to_fp32_value(b);
 | |
|             break;
 | |
|           case OpType::SqrDiffC:
 | |
|           {
 | |
|             const float diff = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b);
 | |
|             y_ref[i] = diff * diff;
 | |
|             break;
 | |
|           }
 | |
|           case OpType::SubC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b);
 | |
|             break;
 | |
|           case OpType::RSubC:
 | |
|             y_ref[i] = fp16_ieee_to_fp32_value(b) - fp16_ieee_to_fp32_value(a_data[i]);
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
|       const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float y_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_range > 0.0f ?
 | |
|         (accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) :
 | |
|         +std::numeric_limits<float>::infinity()));
 | |
|       const float y_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_range > 0.0f ?
 | |
|         (accumulated_min + accumulated_range / 255.0f * float(qmin())) :
 | |
|         -std::numeric_limits<float>::infinity()));
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::max<float>(std::min<float>(y_ref[i], y_max), y_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f16_minmax_params params;
 | |
|       init_params(¶ms,
 | |
|         fp16_ieee_from_fp32_value(y_min), fp16_ieee_from_fp32_value(y_max));
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vbinaryc_minmax(batch_size() * sizeof(uint16_t), a_data, &b, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], std::max(1.0e-4f, std::abs(y_ref[i]) * 1.0e-2f))
 | |
|           << "at " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vbinary_ukernel_function vbinaryc, OpType op_type, xnn_init_f32_default_params_fn init_params = nullptr) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     const float b = f32rng();
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(f32rng));
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* a_data = inplace() ? y.data() : a.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::AddC:
 | |
|             y_ref[i] = a_data[i] + b;
 | |
|             break;
 | |
|           case OpType::DivC:
 | |
|             y_ref[i] = a_data[i] / b;
 | |
|             break;
 | |
|           case OpType::RDivC:
 | |
|             y_ref[i] = b / a_data[i];
 | |
|             break;
 | |
|           case OpType::MaxC:
 | |
|             y_ref[i] = std::max<float>(a_data[i], b);
 | |
|             break;
 | |
|           case OpType::MinC:
 | |
|             y_ref[i] = std::min<float>(a_data[i], b);
 | |
|             break;
 | |
|           case OpType::MulC:
 | |
|             y_ref[i] = a_data[i] * b;
 | |
|             break;
 | |
|           case OpType::SqrDiffC:
 | |
|           {
 | |
|             const float diff = a_data[i] - b;
 | |
|             y_ref[i] = diff * diff;
 | |
|             break;
 | |
|           }
 | |
|           case OpType::SubC:
 | |
|             y_ref[i] = a_data[i] - b;
 | |
|             break;
 | |
|           case OpType::RSubC:
 | |
|             y_ref[i] = b - a_data[i];
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_default_params params;
 | |
|       if (init_params) {
 | |
|         init_params(¶ms);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vbinaryc(batch_size() * sizeof(float), a_data, &b, y.data(), init_params != nullptr ? ¶ms : nullptr);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
 | |
|           << "at " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vbinary_relu_ukernel_function vbinaryc_relu, OpType op_type) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     const float b = f32rng();
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(f32rng));
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* a_data = inplace() ? y.data() : a.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::AddC:
 | |
|             y_ref[i] = a_data[i] + b;
 | |
|             break;
 | |
|           case OpType::DivC:
 | |
|             y_ref[i] = a_data[i] / b;
 | |
|             break;
 | |
|           case OpType::RDivC:
 | |
|             y_ref[i] = b / a_data[i];
 | |
|             break;
 | |
|           case OpType::MaxC:
 | |
|             y_ref[i] = std::max<float>(a_data[i], b);
 | |
|             break;
 | |
|           case OpType::MinC:
 | |
|             y_ref[i] = std::min<float>(a_data[i], b);
 | |
|             break;
 | |
|           case OpType::MulC:
 | |
|             y_ref[i] = a_data[i] * b;
 | |
|             break;
 | |
|           case OpType::SqrDiffC:
 | |
|           {
 | |
|             const float diff = a_data[i] - b;
 | |
|             y_ref[i] = diff * diff;
 | |
|             break;
 | |
|           }
 | |
|           case OpType::SubC:
 | |
|             y_ref[i] = a_data[i] - b;
 | |
|             break;
 | |
|           case OpType::RSubC:
 | |
|             y_ref[i] = b - a_data[i];
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::max(y_ref[i], 0.0f);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vbinaryc_relu(batch_size() * sizeof(float), a_data, &b, y.data(), nullptr);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_GE(y[i], 0.0f)
 | |
|           << "at " << i << " / " << batch_size();
 | |
|         ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
 | |
|           << "at " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vbinary_minmax_ukernel_function vbinaryc_minmax, OpType op_type, xnn_init_f32_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
| 
 | |
|     std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     const float b = f32rng();
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(a.begin(), a.end(), std::ref(f32rng));
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* a_data = inplace() ? y.data() : a.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::AddC:
 | |
|             y_ref[i] = a_data[i] + b;
 | |
|             break;
 | |
|           case OpType::DivC:
 | |
|             y_ref[i] = a_data[i] / b;
 | |
|             break;
 | |
|           case OpType::RDivC:
 | |
|             y_ref[i] = b / a_data[i];
 | |
|             break;
 | |
|           case OpType::MaxC:
 | |
|             y_ref[i] = std::max<float>(a_data[i], b);
 | |
|             break;
 | |
|           case OpType::MinC:
 | |
|             y_ref[i] = std::min<float>(a_data[i], b);
 | |
|             break;
 | |
|           case OpType::MulC:
 | |
|             y_ref[i] = a_data[i] * b;
 | |
|             break;
 | |
|           case OpType::SqrDiffC:
 | |
|           {
 | |
|             const float diff = a_data[i] - b;
 | |
|             y_ref[i] = diff * diff;
 | |
|             break;
 | |
|           }
 | |
|           case OpType::SubC:
 | |
|             y_ref[i] = a_data[i] - b;
 | |
|             break;
 | |
|           case OpType::RSubC:
 | |
|             y_ref[i] = b - a_data[i];
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
|       const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float y_max = accumulated_range > 0.0f ?
 | |
|         (accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) :
 | |
|         +std::numeric_limits<float>::infinity();
 | |
|       const float y_min = accumulated_range > 0.0f ?
 | |
|         (accumulated_min + accumulated_range / 255.0f * float(qmin())) :
 | |
|         -std::numeric_limits<float>::infinity();
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::max<float>(std::min<float>(y_ref[i], y_max), y_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_minmax_params params;
 | |
|       init_params(¶ms, y_min, y_max);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vbinaryc_minmax(batch_size() * sizeof(float), a_data, &b, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
 | |
|           << "at " << i << " / " << batch_size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t batch_size_{1};
 | |
|   bool inplace_{false};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{15};
 | |
| };
 |