318 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2021 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/params.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| 
 | |
| 
 | |
| class VCvtMicrokernelTester {
 | |
|  public:
 | |
|   inline VCvtMicrokernelTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline VCvtMicrokernelTester& scale(float scale) {
 | |
|     assert(scale > 0.0f);
 | |
|     assert(std::isnormal(scale));
 | |
|     this->scale_ = scale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float scale() const {
 | |
|     return this->scale_;
 | |
|   }
 | |
| 
 | |
|   inline VCvtMicrokernelTester& zero_point(int16_t zero_point) {
 | |
|     this->zero_point_ = zero_point;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline int16_t zero_point() const {
 | |
|     return this->zero_point_;
 | |
|   }
 | |
| 
 | |
|   inline VCvtMicrokernelTester& qmin(int16_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline int16_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline VCvtMicrokernelTester& qmax(int16_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline int16_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline VCvtMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_f32_vcvt_ukernel_function vcvt, xnn_init_f16_f32_cvt_params_fn init_params = nullptr) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto distribution = std::uniform_real_distribution<float>(-100.0f, 100.0f);
 | |
|     auto f32rng = std::bind(distribution, std::ref(rng));
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<float> output(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f16rng));
 | |
|       std::fill(output.begin(), output.end(), nanf(""));
 | |
| 
 | |
|       union xnn_f16_f32_cvt_params params;
 | |
|       if (init_params) {
 | |
|         init_params(¶ms);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vcvt(batch_size() * sizeof(uint16_t), input.data(), output.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(fp32_to_bits(output[i]), fp32_to_bits(fp16_ieee_to_fp32_value(input[i])))
 | |
|           << "at " << i << " / " << batch_size()
 | |
|           << ", x[" << i << "] = 0x" << std::hex << std::setw(4) << std::setfill('0') << input[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_f16_vcvt_ukernel_function vcvt, xnn_init_f32_f16_cvt_params_fn init_params = nullptr) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto distribution = std::uniform_real_distribution<float>(-100.0f, 100.0f);
 | |
|     auto f32rng = std::bind(distribution, std::ref(rng));
 | |
| 
 | |
|     std::vector<float> input(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<uint16_t> output(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), UINT16_C(0x7E));
 | |
| 
 | |
|       union xnn_f32_f16_cvt_params params;
 | |
|       if (init_params) {
 | |
|         init_params(¶ms);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vcvt(batch_size() * sizeof(float), input.data(), output.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(output[i], fp16_ieee_from_fp32_value(input[i]))
 | |
|           << "at " << i << " / " << batch_size()
 | |
|           << ", x[" << i << "] = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(input[i])
 | |
|           << " (" << input[i] << ")";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_qs8_vcvt_ukernel_function vcvt, xnn_init_f32_qs8_cvt_params_fn init_params) const {
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto distribution = std::uniform_real_distribution<float>(-1.0f, 1.0f);
 | |
|     auto f32rng = std::bind(distribution, std::ref(rng));
 | |
| 
 | |
|     std::vector<float> input(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<int8_t> output(batch_size());
 | |
|     std::vector<int8_t> output_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), INT8_C(0xA5));
 | |
| 
 | |
|       union xnn_f32_qs8_cvt_params params;
 | |
|       if (init_params) {
 | |
|         init_params(¶ms, scale(), zero_point(), qmin(), qmax());
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vcvt(batch_size() * sizeof(float), input.data(), output.data(), ¶ms);
 | |
| 
 | |
|       // Compute reference results
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         float scaled_input = input[i] * scale();
 | |
|         scaled_input = std::min<float>(scaled_input, float(qmax() - zero_point()));
 | |
|         scaled_input = std::max<float>(scaled_input, float(qmin() - zero_point()));
 | |
|         output_ref[i] = int8_t(std::lrintf(scaled_input) + long(zero_point()));
 | |
|       }
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(int32_t(output[i]), int32_t(output_ref[i]))
 | |
|           << "at " << i << " / " << batch_size()
 | |
|           << ", x[" << i << "] = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(input[i])
 | |
|           << " (" << input[i] << ")";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_qu8_vcvt_ukernel_function vcvt, xnn_init_f32_qu8_cvt_params_fn init_params) const {
 | |
|     ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
 | |
|     ASSERT_LT(qmin(), qmax());
 | |
| 
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto distribution = std::uniform_real_distribution<float>(-1.0f, 1.0f);
 | |
|     auto f32rng = std::bind(distribution, std::ref(rng));
 | |
| 
 | |
|     std::vector<float> input(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<uint8_t> output(batch_size());
 | |
|     std::vector<uint8_t> output_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(f32rng));
 | |
|       std::fill(output.begin(), output.end(), UINT8_C(0xA5));
 | |
| 
 | |
|       union xnn_f32_qu8_cvt_params params;
 | |
|       init_params(¶ms, scale(), zero_point(), qmin(), qmax());
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vcvt(batch_size() * sizeof(float), input.data(), output.data(), ¶ms);
 | |
| 
 | |
|       // Compute reference results
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         float scaled_input = input[i] * scale();
 | |
|         scaled_input = std::min<float>(scaled_input, float(qmax() - zero_point()));
 | |
|         scaled_input = std::max<float>(scaled_input, float(qmin() - zero_point()));
 | |
|         output_ref[i] = uint8_t(std::lrintf(scaled_input) + long(zero_point()));
 | |
|       }
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(int32_t(output[i]), int32_t(output_ref[i]))
 | |
|           << "at " << i << " / " << batch_size()
 | |
|           << ", x[" << i << "] = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(input[i])
 | |
|           << " (" << input[i] << ")";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_qs8_f32_vcvt_ukernel_function vcvt, xnn_init_qs8_f32_cvt_params_fn init_params) const {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto distribution =
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
 | |
|     auto i8rng = std::bind(distribution, std::ref(rng));
 | |
| 
 | |
|     std::vector<int8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<float> output(batch_size());
 | |
|     std::vector<float> output_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(i8rng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       union xnn_qs8_f32_cvt_params params;
 | |
|       init_params(¶ms, scale(), zero_point());
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vcvt(batch_size() * sizeof(int8_t), input.data(), output.data(), ¶ms);
 | |
| 
 | |
|       // Compute reference results
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         output_ref[i] = float(int16_t(input[i]) - zero_point()) * scale();
 | |
|       }
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(output[i], output_ref[i])
 | |
|           << "at " << i << " / " << batch_size()
 | |
|           << ", x[" << i << "] = " << int32_t(input[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_qu8_f32_vcvt_ukernel_function vcvt, xnn_init_qu8_f32_cvt_params_fn init_params) const {
 | |
|     ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
 | |
|     ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
 | |
| 
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto distribution =
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
 | |
|     auto u8rng = std::bind(distribution, std::ref(rng));
 | |
| 
 | |
|     std::vector<uint8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<float> output(batch_size());
 | |
|     std::vector<float> output_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(input.begin(), input.end(), std::ref(u8rng));
 | |
|       std::fill(output.begin(), output.end(), std::nanf(""));
 | |
| 
 | |
|       union xnn_qu8_f32_cvt_params params;
 | |
|       init_params(¶ms, scale(), zero_point());
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vcvt(batch_size() * sizeof(uint8_t), input.data(), output.data(), ¶ms);
 | |
| 
 | |
|       // Compute reference results
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         output_ref[i] = float(int16_t(input[i]) - zero_point()) * scale();
 | |
|       }
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(output[i], output_ref[i])
 | |
|           << "at " << i << " / " << batch_size()
 | |
|           << ", x[" << i << "] = " << int32_t(input[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   float scale_ = 1.75f;
 | |
|   int16_t zero_point_ = 1;
 | |
|   int16_t qmin_ = std::numeric_limits<int16_t>::min();
 | |
|   int16_t qmax_ = std::numeric_limits<int16_t>::max();
 | |
|   size_t batch_size_ = 1;
 | |
|   size_t iterations_ = 15;
 | |
| };
 |