264 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/AlignedAllocator.h>
 | |
| #include <xnnpack/pack.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| 
 | |
| 
 | |
| class VMulCAddCMicrokernelTester {
 | |
|  public:
 | |
|   inline VMulCAddCMicrokernelTester& channel_tile(size_t channel_tile) {
 | |
|     this->channel_tile_ = channel_tile;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channel_tile() const {
 | |
|     return this->channel_tile_;
 | |
|   }
 | |
| 
 | |
|   inline VMulCAddCMicrokernelTester& channels(size_t channels) {
 | |
|     assert(channels != 0);
 | |
|     this->channels_ = channels;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t channels() const {
 | |
|     return this->channels_;
 | |
|   }
 | |
| 
 | |
|   inline size_t packed_channels() const {
 | |
|     return channels() % channel_tile() == 0 ? channels() : (channels() / channel_tile() + 1) * channel_tile();
 | |
|   }
 | |
| 
 | |
|   inline VMulCAddCMicrokernelTester& rows(size_t rows) {
 | |
|     assert(rows != 0);
 | |
|     this->rows_ = rows;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t rows() const {
 | |
|     return this->rows_;
 | |
|   }
 | |
| 
 | |
|   inline VMulCAddCMicrokernelTester& input_stride(size_t input_stride) {
 | |
|     this->input_stride_ = input_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t input_stride() const {
 | |
|     return this->input_stride_ == 0 ? channels() : this->input_stride_;
 | |
|   }
 | |
| 
 | |
|   inline VMulCAddCMicrokernelTester& output_stride(size_t output_stride) {
 | |
|     this->output_stride_ = output_stride;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t output_stride() const {
 | |
|     return this->output_stride_ == 0 ? channels() : this->output_stride_;
 | |
|   }
 | |
| 
 | |
|   inline VMulCAddCMicrokernelTester& inplace(bool inplace) {
 | |
|     this->inplace_ = inplace;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool inplace() const {
 | |
|     return this->inplace_;
 | |
|   }
 | |
| 
 | |
|   inline VMulCAddCMicrokernelTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline VMulCAddCMicrokernelTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline VMulCAddCMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_vmulcaddc_ukernel_function vmulcaddc, xnn_init_f16_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     if (inplace()) {
 | |
|       ASSERT_EQ(input_stride(), output_stride());
 | |
|     }
 | |
| 
 | |
|     std::vector<uint16_t> x((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> scale(channels());
 | |
|     std::vector<uint16_t> bias(channels());
 | |
|     std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_w(packed_channels() * 2);
 | |
|     std::vector<uint16_t> y((rows() - 1) * output_stride() + channels() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
 | |
|     std::vector<float> y_ref(rows() * channels());
 | |
| 
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(scale.begin(), scale.end(), std::ref(f16rng));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(f16rng));
 | |
|       std::generate(x.begin(), x.end(), std::ref(f16rng));
 | |
|       if (inplace()) {
 | |
|         std::copy(x.cbegin(), x.cend(), y.begin());
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
 | |
|       }
 | |
|       const uint16_t* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       std::fill(packed_w.begin(), packed_w.end(), UINT16_C(0x7E00) /* NaN */);
 | |
|       xnn_pack_f16_vmulcaddc_w(channels(), channel_tile(),
 | |
|         scale.data(), bias.data(), packed_w.data(), nullptr);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < rows(); i++) {
 | |
|         for (size_t j = 0; j < channels(); j++) {
 | |
|           y_ref[i * channels() + j] = fp16_ieee_to_fp32_value(x_data[i * input_stride() + j]) * fp16_ieee_to_fp32_value(scale[j]) + fp16_ieee_to_fp32_value(bias[j]);
 | |
|         }
 | |
|       }
 | |
|       const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float y_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())));
 | |
|       const float y_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin())));
 | |
| 
 | |
|       for (float& y_value : y_ref) {
 | |
|         y_value = std::max(std::min(y_value, y_max), y_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f16_minmax_params params;
 | |
|       init_params(¶ms, fp16_ieee_from_fp32_value(y_min), fp16_ieee_from_fp32_value(y_max));
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vmulcaddc(rows(), channels() * sizeof(uint16_t),
 | |
|         x_data, input_stride() * sizeof(uint16_t),
 | |
|         packed_w.data(),
 | |
|         y.data(), output_stride() * sizeof(uint16_t),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < rows(); i++) {
 | |
|         for (size_t j = 0; j < channels(); j++) {
 | |
|           ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i * output_stride() + j]), y_ref[i * channels() + j], std::max(1.0e-4f, std::abs(y_ref[i * channels() + j]) * 1.0e-2f))
 | |
|             << "at pixel " << i << " / " << rows()
 | |
|             << ", channel = " << j << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vmulcaddc_ukernel_function vmulcaddc, xnn_init_f32_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
 | |
| 
 | |
|     if (inplace()) {
 | |
|       ASSERT_EQ(input_stride(), output_stride());
 | |
|     }
 | |
| 
 | |
|     std::vector<float> x((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> scale(channels());
 | |
|     std::vector<float> bias(channels());
 | |
|     std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_channels() * 2);
 | |
|     std::vector<float> y((rows() - 1) * output_stride() + channels() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(rows() * channels());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(scale.begin(), scale.end(), std::ref(f32rng));
 | |
|       std::generate(bias.begin(), bias.end(), std::ref(f32rng));
 | |
|       std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|       if (inplace()) {
 | |
|         std::copy(x.cbegin(), x.cend(), y.begin());
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       std::fill(packed_w.begin(), packed_w.end(), nanf(""));
 | |
|       xnn_pack_f32_vmulcaddc_w(channels(), channel_tile(),
 | |
|         scale.data(), bias.data(), packed_w.data(), nullptr);
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < rows(); i++) {
 | |
|         for (size_t j = 0; j < channels(); j++) {
 | |
|           y_ref[i * channels() + j] = x_data[i * input_stride() + j] * scale[j] + bias[j];
 | |
|         }
 | |
|       }
 | |
|       const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
 | |
|       const float accumulated_range = accumulated_max - accumulated_min;
 | |
|       const float y_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
 | |
|       const float y_min = accumulated_min + accumulated_range / 255.0f * float(qmin());
 | |
|       for (float& y_value : y_ref) {
 | |
|         y_value = std::max<float>(std::min<float>(y_value, y_max), y_min);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_minmax_params params;
 | |
|       init_params(¶ms, y_min, y_max);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vmulcaddc(rows(), channels() * sizeof(float),
 | |
|         x_data, input_stride() * sizeof(float),
 | |
|         packed_w.data(),
 | |
|         y.data(), output_stride() * sizeof(float),
 | |
|         ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < rows(); i++) {
 | |
|         for (size_t j = 0; j < channels(); j++) {
 | |
|           ASSERT_NEAR(y[i * output_stride() + j], y_ref[i * channels() + j], std::abs(y_ref[i * channels() + j]) * 1.0e-6f)
 | |
|             << "at pixel " << i << " / " << rows()
 | |
|             << ", channel = " << j << " / " << channels();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t channel_tile_{1};
 | |
|   size_t channels_{1};
 | |
|   size_t rows_{1};
 | |
|   size_t input_stride_{0};
 | |
|   size_t output_stride_{0};
 | |
|   bool inplace_{false};
 | |
|   uint8_t qmin_{0};
 | |
|   uint8_t qmax_{255};
 | |
|   size_t iterations_{15};
 | |
| };
 |