743 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			743 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 Google LLC
 | |
| //
 | |
| // This source code is licensed under the BSD-style license found in the
 | |
| // LICENSE file in the root directory of this source tree.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include <fp16.h>
 | |
| 
 | |
| #include <xnnpack.h>
 | |
| #include <xnnpack/params-init.h>
 | |
| #include <xnnpack/params.h>
 | |
| 
 | |
| 
 | |
| class VUnaryMicrokernelTester {
 | |
|  public:
 | |
|   enum class OpType {
 | |
|     ReLU,
 | |
|     RoundToNearestEven,
 | |
|     RoundTowardsZero,
 | |
|     RoundUp,
 | |
|     RoundDown,
 | |
|   };
 | |
| 
 | |
|   enum class Variant {
 | |
|     Native,
 | |
|     Scalar,
 | |
|   };
 | |
| 
 | |
|   inline VUnaryMicrokernelTester& batch_size(size_t batch_size) {
 | |
|     assert(batch_size != 0);
 | |
|     this->batch_size_ = batch_size;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t batch_size() const {
 | |
|     return this->batch_size_;
 | |
|   }
 | |
| 
 | |
|   inline VUnaryMicrokernelTester& inplace(bool inplace) {
 | |
|     this->inplace_ = inplace;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline bool inplace() const {
 | |
|     return this->inplace_;
 | |
|   }
 | |
| 
 | |
|   inline VUnaryMicrokernelTester& slope(float slope) {
 | |
|     this->slope_ = slope;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float slope() const {
 | |
|     return this->slope_;
 | |
|   }
 | |
| 
 | |
|   inline VUnaryMicrokernelTester& prescale(float prescale) {
 | |
|     this->prescale_ = prescale;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float prescale() const {
 | |
|     return this->prescale_;
 | |
|   }
 | |
| 
 | |
|   inline VUnaryMicrokernelTester& alpha(float alpha) {
 | |
|     this->alpha_ = alpha;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float alpha() const {
 | |
|     return this->alpha_;
 | |
|   }
 | |
| 
 | |
|   inline VUnaryMicrokernelTester& beta(float beta) {
 | |
|     this->beta_ = beta;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline float beta() const {
 | |
|     return this->beta_;
 | |
|   }
 | |
| 
 | |
|   inline VUnaryMicrokernelTester& qmin(uint8_t qmin) {
 | |
|     this->qmin_ = qmin;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmin() const {
 | |
|     return this->qmin_;
 | |
|   }
 | |
| 
 | |
|   inline VUnaryMicrokernelTester& qmax(uint8_t qmax) {
 | |
|     this->qmax_ = qmax;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline uint8_t qmax() const {
 | |
|     return this->qmax_;
 | |
|   }
 | |
| 
 | |
|   inline VUnaryMicrokernelTester& iterations(size_t iterations) {
 | |
|     this->iterations_ = iterations;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline size_t iterations() const {
 | |
|     return this->iterations_;
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vunary_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto distribution = std::uniform_real_distribution<float>(-125.0f, 125.0f);
 | |
|     auto f32rng = std::bind(distribution, std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<double> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::ReLU:
 | |
|             y_ref[i] = std::max(x_data[i], 0.0f);
 | |
|             break;
 | |
|           default:
 | |
|             GTEST_FAIL() << "Unexpected operation type";
 | |
|             return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vunary(batch_size() * sizeof(float), x_data, y.data(), nullptr);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(y[i], y_ref[i], std::max(5.0e-6, std::abs(y_ref[i]) * 1.0e-5))
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vabs_ukernel_function vabs, xnn_init_f32_abs_params_fn init_params = nullptr) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::abs(x_data[i]);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_abs_params params;
 | |
|       if (init_params != nullptr) {
 | |
|         init_params(¶ms);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vabs(batch_size() * sizeof(float), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(y[i], y_ref[i])
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vclamp_ukernel_function vclamp, xnn_init_f32_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 255.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::max(std::min(x_data[i], float(qmax())), float(qmin()));
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_minmax_params params;
 | |
|       init_params(¶ms, float(qmin()), float(qmax()));
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vclamp(batch_size() * sizeof(float), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(y[i], y_ref[i])
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_velu_ukernel_function velu, xnn_init_f32_elu_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-20.0f, 20.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<double> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::signbit(x_data[i]) ? alpha() * std::expm1(double(x_data[i]) * prescale()) : double(x_data[i]) * beta();
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_elu_params params;
 | |
|       init_params(¶ms, prescale(), alpha(), beta());
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       velu(batch_size() * sizeof(float), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(y[i], y_ref[i], std::max(5.0e-6, std::abs(y_ref[i]) * 1.0e-5))
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vhswish_ukernel_function vhswish, xnn_init_f32_hswish_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-4.0f, 4.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<double> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = (x_data[i] / 6.0f) * std::max(std::min(x_data[i] + 3.0f, 6.0f), 0.0f);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_hswish_params params;
 | |
|       init_params(¶ms);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vhswish(batch_size() * sizeof(float), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(y[i], y_ref[i], std::max(5.0e-6, std::abs(y_ref[i]) * 1.0e-5))
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vlrelu_ukernel_function vlrelu, xnn_init_f32_lrelu_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-125.0f, 125.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<double> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::signbit(x_data[i]) ? x_data[i] * slope() : x_data[i];
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_lrelu_params params;
 | |
|       init_params(¶ms, slope());
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vlrelu(batch_size() * sizeof(float), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(y[i], y_ref[i])
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vneg_ukernel_function vneg, xnn_init_f32_neg_params_fn init_params = nullptr) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = -x_data[i];
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_neg_params params;
 | |
|       if (init_params != nullptr) {
 | |
|         init_params(¶ms);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vneg(batch_size() * sizeof(float), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(y[i], y_ref[i])
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vround_ukernel_function vrnd, OpType op_type, xnn_init_f32_rnd_params_fn init_params = nullptr) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto distribution = std::uniform_real_distribution<float>(-5.0f, 5.0f);
 | |
|     auto f32rng = std::bind(distribution, std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         switch (op_type) {
 | |
|           case OpType::RoundToNearestEven:
 | |
|             y_ref[i] = std::nearbyint(double(x_data[i]));
 | |
|             break;
 | |
|           case OpType::RoundTowardsZero:
 | |
|             y_ref[i] = std::trunc(double(x_data[i]));
 | |
|             break;
 | |
|           case OpType::RoundUp:
 | |
|             y_ref[i] = std::ceil(double(x_data[i]));
 | |
|             break;
 | |
|           case OpType::RoundDown:
 | |
|             y_ref[i] = std::floor(double(x_data[i]));
 | |
|             break;
 | |
|           default:
 | |
|             GTEST_FAIL() << "Unexpected operation type";
 | |
|             return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       xnn_f32_rnd_params params;
 | |
|       if (init_params != nullptr) {
 | |
|         init_params(¶ms);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vrnd(batch_size() * sizeof(float), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(y[i], y_ref[i])
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vsigmoid_ukernel_function vsigmoid, xnn_init_f32_sigmoid_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto distribution = std::uniform_real_distribution<float>(-125.0f, 125.0f);
 | |
|     auto f32rng = std::bind(distribution, std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<double> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         const double e = std::exp(double(x_data[i]));
 | |
|         y_ref[i] = e / (1.0 + e);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_sigmoid_params params;
 | |
|       init_params(¶ms);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vsigmoid(batch_size() * sizeof(float), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(y[i], y_ref[i], std::max(5.0e-6, std::abs(y_ref[i]) * 1.0e-5))
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vsqr_ukernel_function vsqr, xnn_init_f32_default_params_fn init_params = nullptr) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = x_data[i] * x_data[i];
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_default_params params;
 | |
|       if (init_params != nullptr) {
 | |
|         init_params(¶ms);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vsqr(batch_size() * sizeof(float), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(y[i], y_ref[i])
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f32_vsqrt_ukernel_function vsqrt, xnn_init_f32_sqrt_params_fn init_params = nullptr) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 10.0f), std::ref(rng));
 | |
| 
 | |
|     std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
 | |
|     std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f32rng));
 | |
|       } else {
 | |
|         std::generate(x.begin(), x.end(), std::ref(f32rng));
 | |
|         std::fill(y.begin(), y.end(), nanf(""));
 | |
|       }
 | |
|       const float* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::sqrt(x_data[i]);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f32_sqrt_params params;
 | |
|       if (init_params != nullptr) {
 | |
|         init_params(¶ms);
 | |
|       }
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vsqrt(batch_size() * sizeof(float), x_data, y.data(), init_params != nullptr ? ¶ms : nullptr);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(y[i], y_ref[i])
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline void Test(xnn_f32_vabs_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const {
 | |
|     Test(xnn_f32_vunary_ukernel_function(vunary), op_type, variant);
 | |
|   }
 | |
| 
 | |
|   inline void Test(xnn_f32_velu_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const {
 | |
|     Test(xnn_f32_vunary_ukernel_function(vunary), op_type, variant);
 | |
|   }
 | |
| 
 | |
|   inline void Test(xnn_f32_vneg_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const {
 | |
|     Test(xnn_f32_vunary_ukernel_function(vunary), op_type, variant);
 | |
|   }
 | |
| 
 | |
|   inline void Test(xnn_f32_vrelu_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const {
 | |
|     Test(xnn_f32_vunary_ukernel_function(vunary), op_type, variant);
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_vclamp_ukernel_function vclamp, xnn_init_f16_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 255.0f), std::ref(rng));
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> x(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(x.begin(), x.end(), std::ref(f16rng));
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f16rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
 | |
|       }
 | |
|       const uint16_t* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::max(std::min(fp16_ieee_to_fp32_value(x_data[i]), float(qmax())), float(qmin()));
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f16_minmax_params params;
 | |
|       init_params(¶ms, fp16_ieee_from_fp32_value(float(qmin())), fp16_ieee_from_fp32_value(float(qmax())));
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vclamp(batch_size() * sizeof(uint16_t), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(y_ref[i], fp16_ieee_to_fp32_value(y[i]), std::max(1.0e-3f, std::abs(y_ref[i]) * 1.0e-2f))
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << fp16_ieee_to_fp32_value(x[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_f16_vhswish_ukernel_function vhswish, xnn_init_f16_hswish_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto f32rng = std::bind(std::uniform_real_distribution<float>(-4.0f, 4.0f), std::ref(rng));
 | |
|     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
 | |
| 
 | |
|     std::vector<uint16_t> x(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
 | |
|     std::vector<uint16_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
 | |
|     std::vector<float> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(x.begin(), x.end(), std::ref(f16rng));
 | |
|       if (inplace()) {
 | |
|         std::generate(y.begin(), y.end(), std::ref(f16rng));
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
 | |
|       }
 | |
|       const uint16_t* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         const float x_value = fp16_ieee_to_fp32_value(x_data[i]);
 | |
|         y_ref[i] = (x_value / 6.0f) * std::max(std::min(x_value + 3.0f, 6.0f), 0.0f);
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_f16_hswish_params params;
 | |
|       init_params(¶ms);
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vhswish(batch_size() * sizeof(uint16_t), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_NEAR(y_ref[i], fp16_ieee_to_fp32_value(y[i]), std::max(1.0e-3f, std::abs(y_ref[i]) * 1.0e-2f))
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << fp16_ieee_to_fp32_value(x[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_s8_vclamp_ukernel_function vclamp, xnn_init_s8_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto i8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
 | |
|       std::ref(rng));
 | |
| 
 | |
|     std::vector<int8_t> x(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t));
 | |
|     std::vector<int8_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(int8_t) : 0));
 | |
|     std::vector<int8_t> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(x.begin(), x.end(), std::ref(i8rng));
 | |
|       if (inplace()) {
 | |
|         std::copy(x.cbegin(), x.cend(), y.begin());
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), INT8_C(0xA5));
 | |
|       }
 | |
|       const int8_t* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::min(std::max(x_data[i], int8_t(qmin() - 0x80)), int8_t(qmax() - 0x80));
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_s8_minmax_params params;
 | |
|       init_params(¶ms, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vclamp(batch_size() * sizeof(int8_t), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(int32_t(y_ref[i]), int32_t(y[i]))
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << int32_t(x[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Test(xnn_u8_vclamp_ukernel_function vclamp, xnn_init_u8_minmax_params_fn init_params) const {
 | |
|     std::random_device random_device;
 | |
|     auto rng = std::mt19937(random_device());
 | |
|     auto u8rng = std::bind(
 | |
|       std::uniform_int_distribution<int32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
 | |
| 
 | |
|     std::vector<uint8_t> x(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t));
 | |
|     std::vector<uint8_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint8_t) : 0));
 | |
|     std::vector<uint8_t> y_ref(batch_size());
 | |
|     for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | |
|       std::generate(x.begin(), x.end(), std::ref(u8rng));
 | |
|       if (inplace()) {
 | |
|         std::copy(x.cbegin(), x.cend(), y.begin());
 | |
|       } else {
 | |
|         std::fill(y.begin(), y.end(), UINT8_C(0xA5));
 | |
|       }
 | |
|       const uint8_t* x_data = inplace() ? y.data() : x.data();
 | |
| 
 | |
|       // Compute reference results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         y_ref[i] = std::min(std::max(x_data[i], qmin()), qmax());
 | |
|       }
 | |
| 
 | |
|       // Prepare parameters.
 | |
|       union xnn_u8_minmax_params params;
 | |
|       init_params(¶ms, qmin(), qmax());
 | |
| 
 | |
|       // Call optimized micro-kernel.
 | |
|       vclamp(batch_size() * sizeof(uint8_t), x_data, y.data(), ¶ms);
 | |
| 
 | |
|       // Verify results.
 | |
|       for (size_t i = 0; i < batch_size(); i++) {
 | |
|         ASSERT_EQ(uint32_t(y_ref[i]), uint32_t(y[i]))
 | |
|           << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << uint32_t(x[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   size_t batch_size_ = 1;
 | |
|   bool inplace_ = false;
 | |
|   float slope_ = 0.5f;
 | |
|   float prescale_ = 1.0f;
 | |
|   float alpha_ = 1.0f;
 | |
|   float beta_ = 1.0f;
 | |
|   uint8_t qmin_ = 0;
 | |
|   uint8_t qmax_ = 255;
 | |
|   size_t iterations_ = 15;
 | |
| };
 |