440 lines
13 KiB
C++
440 lines
13 KiB
C++
/* -----------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
|
Forschung e.V. All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
|
a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
|
full-bandwidth communications codec by independent studies and is widely
|
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
|
specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
|
those of Fraunhofer) may be obtained through Via Licensing
|
|
(www.vialicensing.com) or through the respective patent owners individually for
|
|
the purpose of encoding or decoding bit streams in products that are compliant
|
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
|
Android devices already license these patent claims through Via Licensing or
|
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
|
already be covered under those patent licenses when it is used for those
|
|
licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
|
encouraged to check the Fraunhofer website for additional applications
|
|
information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted without payment of copyright license fees provided that you
|
|
satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of
|
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation
|
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
|
your modifications thereto in binary form. You must make available free of
|
|
charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
|
from this library without prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
|
the FDK AAC Codec software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
|
that you changed the software and the date of any change. For modified versions
|
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
|
AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
|
software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
|
purposes that are authorized by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
including but not limited to the implied warranties of merchantability and
|
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
|
or consequential damages, including but not limited to procurement of substitute
|
|
goods or services; loss of use, data, or profits, or business interruption,
|
|
however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of
|
|
this software, even if advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------- */
|
|
|
|
/**************************** AAC decoder library ******************************
|
|
|
|
Author(s):
|
|
|
|
Description: ACELP
|
|
|
|
*******************************************************************************/
|
|
|
|
#include "usacdec_ace_d4t64.h"
|
|
|
|
#define L_SUBFR 64 /* Subframe size */
|
|
|
|
/*
|
|
* D_ACELP_add_pulse
|
|
*
|
|
* Parameters:
|
|
* pos I: position of pulse
|
|
* nb_pulse I: number of pulses
|
|
* track I: track
|
|
* code O: fixed codebook
|
|
*
|
|
* Function:
|
|
* Add pulses to fixed codebook
|
|
*
|
|
* Returns:
|
|
* void
|
|
*/
|
|
static void D_ACELP_add_pulse(SHORT pos[], SHORT nb_pulse, SHORT track,
|
|
FIXP_COD code[]) {
|
|
SHORT i, k;
|
|
for (k = 0; k < nb_pulse; k++) {
|
|
/* i = ((pos[k] & (16-1))*NB_TRACK) + track; */
|
|
i = ((pos[k] & (16 - 1)) << 2) + track;
|
|
if ((pos[k] & 16) == 0) {
|
|
code[i] = code[i] + (FIXP_COD)(512 << (COD_BITS - FRACT_BITS));
|
|
} else {
|
|
code[i] = code[i] - (FIXP_COD)(512 << (COD_BITS - FRACT_BITS));
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
/*
|
|
* D_ACELP_decode_1p_N1
|
|
*
|
|
* Parameters:
|
|
* index I: pulse index
|
|
* N I: number of bits for position
|
|
* offset I: offset
|
|
* pos O: position of the pulse
|
|
*
|
|
* Function:
|
|
* Decode 1 pulse with N+1 bits
|
|
*
|
|
* Returns:
|
|
* void
|
|
*/
|
|
static void D_ACELP_decode_1p_N1(LONG index, SHORT N, SHORT offset,
|
|
SHORT pos[]) {
|
|
SHORT pos1;
|
|
LONG i, mask;
|
|
|
|
mask = ((1 << N) - 1);
|
|
/*
|
|
* Decode 1 pulse with N+1 bits
|
|
*/
|
|
pos1 = (SHORT)((index & mask) + offset);
|
|
i = ((index >> N) & 1);
|
|
if (i == 1) {
|
|
pos1 += 16;
|
|
}
|
|
pos[0] = pos1;
|
|
return;
|
|
}
|
|
/*
|
|
* D_ACELP_decode_2p_2N1
|
|
*
|
|
* Parameters:
|
|
* index I: pulse index
|
|
* N I: number of bits for position
|
|
* offset I: offset
|
|
* pos O: position of the pulse
|
|
*
|
|
* Function:
|
|
* Decode 2 pulses with 2*N+1 bits
|
|
*
|
|
* Returns:
|
|
* void
|
|
*/
|
|
static void D_ACELP_decode_2p_2N1(LONG index, SHORT N, SHORT offset,
|
|
SHORT pos[]) {
|
|
SHORT pos1, pos2;
|
|
LONG mask, i;
|
|
mask = ((1 << N) - 1);
|
|
/*
|
|
* Decode 2 pulses with 2*N+1 bits
|
|
*/
|
|
pos1 = (SHORT)(((index >> N) & mask) + offset);
|
|
i = (index >> (2 * N)) & 1;
|
|
pos2 = (SHORT)((index & mask) + offset);
|
|
if ((pos2 - pos1) < 0) {
|
|
if (i == 1) {
|
|
pos1 += 16;
|
|
} else {
|
|
pos2 += 16;
|
|
}
|
|
} else {
|
|
if (i == 1) {
|
|
pos1 += 16;
|
|
pos2 += 16;
|
|
}
|
|
}
|
|
pos[0] = pos1;
|
|
pos[1] = pos2;
|
|
return;
|
|
}
|
|
/*
|
|
* D_ACELP_decode_3p_3N1
|
|
*
|
|
* Parameters:
|
|
* index I: pulse index
|
|
* N I: number of bits for position
|
|
* offset I: offset
|
|
* pos O: position of the pulse
|
|
*
|
|
* Function:
|
|
* Decode 3 pulses with 3*N+1 bits
|
|
*
|
|
* Returns:
|
|
* void
|
|
*/
|
|
static void D_ACELP_decode_3p_3N1(LONG index, SHORT N, SHORT offset,
|
|
SHORT pos[]) {
|
|
SHORT j;
|
|
LONG mask, idx;
|
|
|
|
/*
|
|
* Decode 3 pulses with 3*N+1 bits
|
|
*/
|
|
mask = ((1 << ((2 * N) - 1)) - 1);
|
|
idx = index & mask;
|
|
j = offset;
|
|
if (((index >> ((2 * N) - 1)) & 1) == 1) {
|
|
j += (1 << (N - 1));
|
|
}
|
|
D_ACELP_decode_2p_2N1(idx, N - 1, j, pos);
|
|
mask = ((1 << (N + 1)) - 1);
|
|
idx = (index >> (2 * N)) & mask;
|
|
D_ACELP_decode_1p_N1(idx, N, offset, pos + 2);
|
|
return;
|
|
}
|
|
/*
|
|
* D_ACELP_decode_4p_4N1
|
|
*
|
|
* Parameters:
|
|
* index I: pulse index
|
|
* N I: number of bits for position
|
|
* offset I: offset
|
|
* pos O: position of the pulse
|
|
*
|
|
* Function:
|
|
* Decode 4 pulses with 4*N+1 bits
|
|
*
|
|
* Returns:
|
|
* void
|
|
*/
|
|
static void D_ACELP_decode_4p_4N1(LONG index, SHORT N, SHORT offset,
|
|
SHORT pos[]) {
|
|
SHORT j;
|
|
LONG mask, idx;
|
|
/*
|
|
* Decode 4 pulses with 4*N+1 bits
|
|
*/
|
|
mask = ((1 << ((2 * N) - 1)) - 1);
|
|
idx = index & mask;
|
|
j = offset;
|
|
if (((index >> ((2 * N) - 1)) & 1) == 1) {
|
|
j += (1 << (N - 1));
|
|
}
|
|
D_ACELP_decode_2p_2N1(idx, N - 1, j, pos);
|
|
mask = ((1 << ((2 * N) + 1)) - 1);
|
|
idx = (index >> (2 * N)) & mask;
|
|
D_ACELP_decode_2p_2N1(idx, N, offset, pos + 2);
|
|
return;
|
|
}
|
|
/*
|
|
* D_ACELP_decode_4p_4N
|
|
*
|
|
* Parameters:
|
|
* index I: pulse index
|
|
* N I: number of bits for position
|
|
* offset I: offset
|
|
* pos O: position of the pulse
|
|
*
|
|
* Function:
|
|
* Decode 4 pulses with 4*N bits
|
|
*
|
|
* Returns:
|
|
* void
|
|
*/
|
|
static void D_ACELP_decode_4p_4N(LONG index, SHORT N, SHORT offset,
|
|
SHORT pos[]) {
|
|
SHORT j, n_1;
|
|
/*
|
|
* Decode 4 pulses with 4*N bits
|
|
*/
|
|
n_1 = N - 1;
|
|
j = offset + (1 << n_1);
|
|
switch ((index >> ((4 * N) - 2)) & 3) {
|
|
case 0:
|
|
if (((index >> ((4 * n_1) + 1)) & 1) == 0) {
|
|
D_ACELP_decode_4p_4N1(index, n_1, offset, pos);
|
|
} else {
|
|
D_ACELP_decode_4p_4N1(index, n_1, j, pos);
|
|
}
|
|
break;
|
|
case 1:
|
|
D_ACELP_decode_1p_N1((index >> ((3 * n_1) + 1)), n_1, offset, pos);
|
|
D_ACELP_decode_3p_3N1(index, n_1, j, pos + 1);
|
|
break;
|
|
case 2:
|
|
D_ACELP_decode_2p_2N1((index >> ((2 * n_1) + 1)), n_1, offset, pos);
|
|
D_ACELP_decode_2p_2N1(index, n_1, j, pos + 2);
|
|
break;
|
|
case 3:
|
|
D_ACELP_decode_3p_3N1((index >> (n_1 + 1)), n_1, offset, pos);
|
|
D_ACELP_decode_1p_N1(index, n_1, j, pos + 3);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* D_ACELP_decode_4t
|
|
*
|
|
* Parameters:
|
|
* index I: index
|
|
* mode I: speech mode
|
|
* code I: (Q9) algebraic (fixed) codebook excitation
|
|
*
|
|
* Function:
|
|
* 20, 36, 44, 52, 64, 72, 88 bits algebraic codebook.
|
|
* 4 tracks x 16 positions per track = 64 samples.
|
|
*
|
|
* 20 bits 5+5+5+5 --> 4 pulses in a frame of 64 samples.
|
|
* 36 bits 9+9+9+9 --> 8 pulses in a frame of 64 samples.
|
|
* 44 bits 13+9+13+9 --> 10 pulses in a frame of 64 samples.
|
|
* 52 bits 13+13+13+13 --> 12 pulses in a frame of 64 samples.
|
|
* 64 bits 2+2+2+2+14+14+14+14 --> 16 pulses in a frame of 64 samples.
|
|
* 72 bits 10+2+10+2+10+14+10+14 --> 18 pulses in a frame of 64 samples.
|
|
* 88 bits 11+11+11+11+11+11+11+11 --> 24 pulses in a frame of 64 samples.
|
|
*
|
|
* All pulses can have two (2) possible amplitudes: +1 or -1.
|
|
* Each pulse can sixteen (16) possible positions.
|
|
*
|
|
* codevector length 64
|
|
* number of track 4
|
|
* number of position 16
|
|
*
|
|
* Returns:
|
|
* void
|
|
*/
|
|
void D_ACELP_decode_4t64(SHORT index[], int nbits, FIXP_COD code[]) {
|
|
LONG L_index;
|
|
SHORT k, pos[6];
|
|
|
|
FDKmemclear(code, L_SUBFR * sizeof(FIXP_COD));
|
|
|
|
/* decode the positions and signs of pulses and build the codeword */
|
|
switch (nbits) {
|
|
case 12:
|
|
for (k = 0; k < 4; k += 2) {
|
|
L_index = index[2 * (k / 2) + 1];
|
|
D_ACELP_decode_1p_N1(L_index, 4, 0, pos);
|
|
D_ACELP_add_pulse(pos, 1, 2 * (index[2 * (k / 2)]) + k / 2, code);
|
|
}
|
|
break;
|
|
case 16: {
|
|
int i = 0;
|
|
int offset = index[i++];
|
|
offset = (offset == 0) ? 1 : 3;
|
|
for (k = 0; k < 4; k++) {
|
|
if (k != offset) {
|
|
L_index = index[i++];
|
|
D_ACELP_decode_1p_N1(L_index, 4, 0, pos);
|
|
D_ACELP_add_pulse(pos, 1, k, code);
|
|
}
|
|
}
|
|
} break;
|
|
case 20:
|
|
for (k = 0; k < 4; k++) {
|
|
L_index = (LONG)index[k];
|
|
D_ACELP_decode_1p_N1(L_index, 4, 0, pos);
|
|
D_ACELP_add_pulse(pos, 1, k, code);
|
|
}
|
|
break;
|
|
case 28:
|
|
for (k = 0; k < 4 - 2; k++) {
|
|
L_index = (LONG)index[k];
|
|
D_ACELP_decode_2p_2N1(L_index, 4, 0, pos);
|
|
D_ACELP_add_pulse(pos, 2, k, code);
|
|
}
|
|
for (k = 2; k < 4; k++) {
|
|
L_index = (LONG)index[k];
|
|
D_ACELP_decode_1p_N1(L_index, 4, 0, pos);
|
|
D_ACELP_add_pulse(pos, 1, k, code);
|
|
}
|
|
break;
|
|
case 36:
|
|
for (k = 0; k < 4; k++) {
|
|
L_index = (LONG)index[k];
|
|
D_ACELP_decode_2p_2N1(L_index, 4, 0, pos);
|
|
D_ACELP_add_pulse(pos, 2, k, code);
|
|
}
|
|
break;
|
|
case 44:
|
|
for (k = 0; k < 4 - 2; k++) {
|
|
L_index = (LONG)index[k];
|
|
D_ACELP_decode_3p_3N1(L_index, 4, 0, pos);
|
|
D_ACELP_add_pulse(pos, 3, k, code);
|
|
}
|
|
for (k = 2; k < 4; k++) {
|
|
L_index = (LONG)index[k];
|
|
D_ACELP_decode_2p_2N1(L_index, 4, 0, pos);
|
|
D_ACELP_add_pulse(pos, 2, k, code);
|
|
}
|
|
break;
|
|
case 52:
|
|
for (k = 0; k < 4; k++) {
|
|
L_index = (LONG)index[k];
|
|
D_ACELP_decode_3p_3N1(L_index, 4, 0, pos);
|
|
D_ACELP_add_pulse(pos, 3, k, code);
|
|
}
|
|
break;
|
|
case 64:
|
|
for (k = 0; k < 4; k++) {
|
|
L_index = (((LONG)index[k] << 14) + (LONG)index[k + 4]);
|
|
D_ACELP_decode_4p_4N(L_index, 4, 0, pos);
|
|
D_ACELP_add_pulse(pos, 4, k, code);
|
|
}
|
|
break;
|
|
default:
|
|
FDK_ASSERT(0);
|
|
}
|
|
return;
|
|
}
|