844 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			844 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
| // © 2018 and later: Unicode, Inc. and others.
 | |
| // License & terms of use: http://www.unicode.org/copyright.html
 | |
| //
 | |
| // From the double-conversion library. Original license:
 | |
| //
 | |
| // Copyright 2010 the V8 project authors. All rights reserved.
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //     * Redistributions of source code must retain the above copyright
 | |
| //       notice, this list of conditions and the following disclaimer.
 | |
| //     * Redistributions in binary form must reproduce the above
 | |
| //       copyright notice, this list of conditions and the following
 | |
| //       disclaimer in the documentation and/or other materials provided
 | |
| //       with the distribution.
 | |
| //     * Neither the name of Google Inc. nor the names of its
 | |
| //       contributors may be used to endorse or promote products derived
 | |
| //       from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
 | |
| #include "unicode/utypes.h"
 | |
| #if !UCONFIG_NO_FORMATTING
 | |
| 
 | |
| // ICU PATCH: Do not include std::locale.
 | |
| 
 | |
| #include <climits>
 | |
| // #include <locale>
 | |
| #include <cmath>
 | |
| 
 | |
| // ICU PATCH: Customize header file paths for ICU.
 | |
| 
 | |
| #include "double-conversion-string-to-double.h"
 | |
| 
 | |
| #include "double-conversion-ieee.h"
 | |
| #include "double-conversion-strtod.h"
 | |
| #include "double-conversion-utils.h"
 | |
| 
 | |
| // ICU PATCH: Wrap in ICU namespace
 | |
| U_NAMESPACE_BEGIN
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  if _MSC_VER >= 1900
 | |
| // Fix MSVC >= 2015 (_MSC_VER == 1900) warning
 | |
| // C4244: 'argument': conversion from 'const uc16' to 'char', possible loss of data
 | |
| // against Advance and friends, when instantiated with **it as char, not uc16.
 | |
|  __pragma(warning(disable: 4244))
 | |
| #  endif
 | |
| #  if _MSC_VER <= 1700 // VS2012, see IsDecimalDigitForRadix warning fix, below
 | |
| #    define VS2012_RADIXWARN
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| namespace double_conversion {
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| inline char ToLower(char ch) {
 | |
| #if 0  // do not include std::locale in ICU
 | |
|   static const std::ctype<char>& cType =
 | |
|       std::use_facet<std::ctype<char> >(std::locale::classic());
 | |
|   return cType.tolower(ch);
 | |
| #else
 | |
|   (void)ch;
 | |
|   DOUBLE_CONVERSION_UNREACHABLE();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| inline char Pass(char ch) {
 | |
|   return ch;
 | |
| }
 | |
| 
 | |
| template <class Iterator, class Converter>
 | |
| static inline bool ConsumeSubStringImpl(Iterator* current,
 | |
|                                         Iterator end,
 | |
|                                         const char* substring,
 | |
|                                         Converter converter) {
 | |
|   DOUBLE_CONVERSION_ASSERT(converter(**current) == *substring);
 | |
|   for (substring++; *substring != '\0'; substring++) {
 | |
|     ++*current;
 | |
|     if (*current == end || converter(**current) != *substring) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   ++*current;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Consumes the given substring from the iterator.
 | |
| // Returns false, if the substring does not match.
 | |
| template <class Iterator>
 | |
| static bool ConsumeSubString(Iterator* current,
 | |
|                              Iterator end,
 | |
|                              const char* substring,
 | |
|                              bool allow_case_insensitivity) {
 | |
|   if (allow_case_insensitivity) {
 | |
|     return ConsumeSubStringImpl(current, end, substring, ToLower);
 | |
|   } else {
 | |
|     return ConsumeSubStringImpl(current, end, substring, Pass);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Consumes first character of the str is equal to ch
 | |
| inline bool ConsumeFirstCharacter(char ch,
 | |
|                                          const char* str,
 | |
|                                          bool case_insensitivity) {
 | |
|   return case_insensitivity ? ToLower(ch) == str[0] : ch == str[0];
 | |
| }
 | |
| }  // namespace
 | |
| 
 | |
| // Maximum number of significant digits in decimal representation.
 | |
| // The longest possible double in decimal representation is
 | |
| // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
 | |
| // (768 digits). If we parse a number whose first digits are equal to a
 | |
| // mean of 2 adjacent doubles (that could have up to 769 digits) the result
 | |
| // must be rounded to the bigger one unless the tail consists of zeros, so
 | |
| // we don't need to preserve all the digits.
 | |
| const int kMaxSignificantDigits = 772;
 | |
| 
 | |
| 
 | |
| static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
 | |
| static const int kWhitespaceTable7Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable7);
 | |
| 
 | |
| 
 | |
| static const uc16 kWhitespaceTable16[] = {
 | |
|   160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
 | |
|   8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
 | |
| };
 | |
| static const int kWhitespaceTable16Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable16);
 | |
| 
 | |
| 
 | |
| static bool isWhitespace(int x) {
 | |
|   if (x < 128) {
 | |
|     for (int i = 0; i < kWhitespaceTable7Length; i++) {
 | |
|       if (kWhitespaceTable7[i] == x) return true;
 | |
|     }
 | |
|   } else {
 | |
|     for (int i = 0; i < kWhitespaceTable16Length; i++) {
 | |
|       if (kWhitespaceTable16[i] == x) return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if a nonspace found and false if the end has reached.
 | |
| template <class Iterator>
 | |
| static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
 | |
|   while (*current != end) {
 | |
|     if (!isWhitespace(**current)) return true;
 | |
|     ++*current;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool isDigit(int x, int radix) {
 | |
|   return (x >= '0' && x <= '9' && x < '0' + radix)
 | |
|       || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
 | |
|       || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
 | |
| }
 | |
| 
 | |
| 
 | |
| static double SignedZero(bool sign) {
 | |
|   return sign ? -0.0 : 0.0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if 'c' is a decimal digit that is valid for the given radix.
 | |
| //
 | |
| // The function is small and could be inlined, but VS2012 emitted a warning
 | |
| // because it constant-propagated the radix and concluded that the last
 | |
| // condition was always true. Moving it into a separate function and
 | |
| // suppressing optimisation keeps the compiler from warning.
 | |
| #ifdef VS2012_RADIXWARN
 | |
| #pragma optimize("",off)
 | |
| static bool IsDecimalDigitForRadix(int c, int radix) {
 | |
|   return '0' <= c && c <= '9' && (c - '0') < radix;
 | |
| }
 | |
| #pragma optimize("",on)
 | |
| #else
 | |
| static bool inline IsDecimalDigitForRadix(int c, int radix) {
 | |
|   return '0' <= c && c <= '9' && (c - '0') < radix;
 | |
| }
 | |
| #endif
 | |
| // Returns true if 'c' is a character digit that is valid for the given radix.
 | |
| // The 'a_character' should be 'a' or 'A'.
 | |
| //
 | |
| // The function is small and could be inlined, but VS2012 emitted a warning
 | |
| // because it constant-propagated the radix and concluded that the first
 | |
| // condition was always false. By moving it into a separate function the
 | |
| // compiler wouldn't warn anymore.
 | |
| static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
 | |
|   return radix > 10 && c >= a_character && c < a_character + radix - 10;
 | |
| }
 | |
| 
 | |
| // Returns true, when the iterator is equal to end.
 | |
| template<class Iterator>
 | |
| static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) {
 | |
|   if (separator == StringToDoubleConverter::kNoSeparator) {
 | |
|     ++(*it);
 | |
|     return *it == end;
 | |
|   }
 | |
|   if (!isDigit(**it, base)) {
 | |
|     ++(*it);
 | |
|     return *it == end;
 | |
|   }
 | |
|   ++(*it);
 | |
|   if (*it == end) return true;
 | |
|   if (*it + 1 == end) return false;
 | |
|   if (**it == separator && isDigit(*(*it + 1), base)) {
 | |
|     ++(*it);
 | |
|   }
 | |
|   return *it == end;
 | |
| }
 | |
| 
 | |
| // Checks whether the string in the range start-end is a hex-float string.
 | |
| // This function assumes that the leading '0x'/'0X' is already consumed.
 | |
| //
 | |
| // Hex float strings are of one of the following forms:
 | |
| //   - hex_digits+ 'p' ('+'|'-')? exponent_digits+
 | |
| //   - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+
 | |
| //   - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+
 | |
| template<class Iterator>
 | |
| static bool IsHexFloatString(Iterator start,
 | |
|                              Iterator end,
 | |
|                              uc16 separator,
 | |
|                              bool allow_trailing_junk) {
 | |
|   DOUBLE_CONVERSION_ASSERT(start != end);
 | |
| 
 | |
|   Iterator current = start;
 | |
| 
 | |
|   bool saw_digit = false;
 | |
|   while (isDigit(*current, 16)) {
 | |
|     saw_digit = true;
 | |
|     if (Advance(¤t, separator, 16, end)) return false;
 | |
|   }
 | |
|   if (*current == '.') {
 | |
|     if (Advance(¤t, separator, 16, end)) return false;
 | |
|     while (isDigit(*current, 16)) {
 | |
|       saw_digit = true;
 | |
|       if (Advance(¤t, separator, 16, end)) return false;
 | |
|     }
 | |
|   }
 | |
|   if (!saw_digit) return false;
 | |
|   if (*current != 'p' && *current != 'P') return false;
 | |
|   if (Advance(¤t, separator, 16, end)) return false;
 | |
|   if (*current == '+' || *current == '-') {
 | |
|     if (Advance(¤t, separator, 16, end)) return false;
 | |
|   }
 | |
|   if (!isDigit(*current, 10)) return false;
 | |
|   if (Advance(¤t, separator, 16, end)) return true;
 | |
|   while (isDigit(*current, 10)) {
 | |
|     if (Advance(¤t, separator, 16, end)) return true;
 | |
|   }
 | |
|   return allow_trailing_junk || !AdvanceToNonspace(¤t, end);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
 | |
| //
 | |
| // If parse_as_hex_float is true, then the string must be a valid
 | |
| // hex-float.
 | |
| template <int radix_log_2, class Iterator>
 | |
| static double RadixStringToIeee(Iterator* current,
 | |
|                                 Iterator end,
 | |
|                                 bool sign,
 | |
|                                 uc16 separator,
 | |
|                                 bool parse_as_hex_float,
 | |
|                                 bool allow_trailing_junk,
 | |
|                                 double junk_string_value,
 | |
|                                 bool read_as_double,
 | |
|                                 bool* result_is_junk) {
 | |
|   DOUBLE_CONVERSION_ASSERT(*current != end);
 | |
|   DOUBLE_CONVERSION_ASSERT(!parse_as_hex_float ||
 | |
|       IsHexFloatString(*current, end, separator, allow_trailing_junk));
 | |
| 
 | |
|   const int kDoubleSize = Double::kSignificandSize;
 | |
|   const int kSingleSize = Single::kSignificandSize;
 | |
|   const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
 | |
| 
 | |
|   *result_is_junk = true;
 | |
| 
 | |
|   int64_t number = 0;
 | |
|   int exponent = 0;
 | |
|   const int radix = (1 << radix_log_2);
 | |
|   // Whether we have encountered a '.' and are parsing the decimal digits.
 | |
|   // Only relevant if parse_as_hex_float is true.
 | |
|   bool post_decimal = false;
 | |
| 
 | |
|   // Skip leading 0s.
 | |
|   while (**current == '0') {
 | |
|     if (Advance(current, separator, radix, end)) {
 | |
|       *result_is_junk = false;
 | |
|       return SignedZero(sign);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while (true) {
 | |
|     int digit;
 | |
|     if (IsDecimalDigitForRadix(**current, radix)) {
 | |
|       digit = static_cast<char>(**current) - '0';
 | |
|       if (post_decimal) exponent -= radix_log_2;
 | |
|     } else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
 | |
|       digit = static_cast<char>(**current) - 'a' + 10;
 | |
|       if (post_decimal) exponent -= radix_log_2;
 | |
|     } else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
 | |
|       digit = static_cast<char>(**current) - 'A' + 10;
 | |
|       if (post_decimal) exponent -= radix_log_2;
 | |
|     } else if (parse_as_hex_float && **current == '.') {
 | |
|       post_decimal = true;
 | |
|       Advance(current, separator, radix, end);
 | |
|       DOUBLE_CONVERSION_ASSERT(*current != end);
 | |
|       continue;
 | |
|     } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) {
 | |
|       break;
 | |
|     } else {
 | |
|       if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
 | |
|         break;
 | |
|       } else {
 | |
|         return junk_string_value;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     number = number * radix + digit;
 | |
|     int overflow = static_cast<int>(number >> kSignificandSize);
 | |
|     if (overflow != 0) {
 | |
|       // Overflow occurred. Need to determine which direction to round the
 | |
|       // result.
 | |
|       int overflow_bits_count = 1;
 | |
|       while (overflow > 1) {
 | |
|         overflow_bits_count++;
 | |
|         overflow >>= 1;
 | |
|       }
 | |
| 
 | |
|       int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
 | |
|       int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
 | |
|       number >>= overflow_bits_count;
 | |
|       exponent += overflow_bits_count;
 | |
| 
 | |
|       bool zero_tail = true;
 | |
|       for (;;) {
 | |
|         if (Advance(current, separator, radix, end)) break;
 | |
|         if (parse_as_hex_float && **current == '.') {
 | |
|           // Just run over the '.'. We are just trying to see whether there is
 | |
|           // a non-zero digit somewhere.
 | |
|           Advance(current, separator, radix, end);
 | |
|           DOUBLE_CONVERSION_ASSERT(*current != end);
 | |
|           post_decimal = true;
 | |
|         }
 | |
|         if (!isDigit(**current, radix)) break;
 | |
|         zero_tail = zero_tail && **current == '0';
 | |
|         if (!post_decimal) exponent += radix_log_2;
 | |
|       }
 | |
| 
 | |
|       if (!parse_as_hex_float &&
 | |
|           !allow_trailing_junk &&
 | |
|           AdvanceToNonspace(current, end)) {
 | |
|         return junk_string_value;
 | |
|       }
 | |
| 
 | |
|       int middle_value = (1 << (overflow_bits_count - 1));
 | |
|       if (dropped_bits > middle_value) {
 | |
|         number++;  // Rounding up.
 | |
|       } else if (dropped_bits == middle_value) {
 | |
|         // Rounding to even to consistency with decimals: half-way case rounds
 | |
|         // up if significant part is odd and down otherwise.
 | |
|         if ((number & 1) != 0 || !zero_tail) {
 | |
|           number++;  // Rounding up.
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Rounding up may cause overflow.
 | |
|       if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
 | |
|         exponent++;
 | |
|         number >>= 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     if (Advance(current, separator, radix, end)) break;
 | |
|   }
 | |
| 
 | |
|   DOUBLE_CONVERSION_ASSERT(number < ((int64_t)1 << kSignificandSize));
 | |
|   DOUBLE_CONVERSION_ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
 | |
| 
 | |
|   *result_is_junk = false;
 | |
| 
 | |
|   if (parse_as_hex_float) {
 | |
|     DOUBLE_CONVERSION_ASSERT(**current == 'p' || **current == 'P');
 | |
|     Advance(current, separator, radix, end);
 | |
|     DOUBLE_CONVERSION_ASSERT(*current != end);
 | |
|     bool is_negative = false;
 | |
|     if (**current == '+') {
 | |
|       Advance(current, separator, radix, end);
 | |
|       DOUBLE_CONVERSION_ASSERT(*current != end);
 | |
|     } else if (**current == '-') {
 | |
|       is_negative = true;
 | |
|       Advance(current, separator, radix, end);
 | |
|       DOUBLE_CONVERSION_ASSERT(*current != end);
 | |
|     }
 | |
|     int written_exponent = 0;
 | |
|     while (IsDecimalDigitForRadix(**current, 10)) {
 | |
|       // No need to read exponents if they are too big. That could potentially overflow
 | |
|       // the `written_exponent` variable.
 | |
|       if (abs(written_exponent) <= 100 * Double::kMaxExponent) {
 | |
|         written_exponent = 10 * written_exponent + **current - '0';
 | |
|       }
 | |
|       if (Advance(current, separator, radix, end)) break;
 | |
|     }
 | |
|     if (is_negative) written_exponent = -written_exponent;
 | |
|     exponent += written_exponent;
 | |
|   }
 | |
| 
 | |
|   if (exponent == 0 || number == 0) {
 | |
|     if (sign) {
 | |
|       if (number == 0) return -0.0;
 | |
|       number = -number;
 | |
|     }
 | |
|     return static_cast<double>(number);
 | |
|   }
 | |
| 
 | |
|   DOUBLE_CONVERSION_ASSERT(number != 0);
 | |
|   double result = Double(DiyFp(number, exponent)).value();
 | |
|   return sign ? -result : result;
 | |
| }
 | |
| 
 | |
| template <class Iterator>
 | |
| double StringToDoubleConverter::StringToIeee(
 | |
|     Iterator input,
 | |
|     int length,
 | |
|     bool read_as_double,
 | |
|     int* processed_characters_count) const {
 | |
|   Iterator current = input;
 | |
|   Iterator end = input + length;
 | |
| 
 | |
|   *processed_characters_count = 0;
 | |
| 
 | |
|   const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
 | |
|   const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
 | |
|   const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
 | |
|   const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
 | |
|   const bool allow_case_insensitivity = (flags_ & ALLOW_CASE_INSENSITIVITY) != 0;
 | |
| 
 | |
|   // To make sure that iterator dereferencing is valid the following
 | |
|   // convention is used:
 | |
|   // 1. Each '++current' statement is followed by check for equality to 'end'.
 | |
|   // 2. If AdvanceToNonspace returned false then current == end.
 | |
|   // 3. If 'current' becomes equal to 'end' the function returns or goes to
 | |
|   // 'parsing_done'.
 | |
|   // 4. 'current' is not dereferenced after the 'parsing_done' label.
 | |
|   // 5. Code before 'parsing_done' may rely on 'current != end'.
 | |
|   if (current == end) return empty_string_value_;
 | |
| 
 | |
|   if (allow_leading_spaces || allow_trailing_spaces) {
 | |
|     if (!AdvanceToNonspace(¤t, end)) {
 | |
|       *processed_characters_count = static_cast<int>(current - input);
 | |
|       return empty_string_value_;
 | |
|     }
 | |
|     if (!allow_leading_spaces && (input != current)) {
 | |
|       // No leading spaces allowed, but AdvanceToNonspace moved forward.
 | |
|       return junk_string_value_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Exponent will be adjusted if insignificant digits of the integer part
 | |
|   // or insignificant leading zeros of the fractional part are dropped.
 | |
|   int exponent = 0;
 | |
|   int significant_digits = 0;
 | |
|   int insignificant_digits = 0;
 | |
|   bool nonzero_digit_dropped = false;
 | |
| 
 | |
|   bool sign = false;
 | |
| 
 | |
|   if (*current == '+' || *current == '-') {
 | |
|     sign = (*current == '-');
 | |
|     ++current;
 | |
|     Iterator next_non_space = current;
 | |
|     // Skip following spaces (if allowed).
 | |
|     if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
 | |
|     if (!allow_spaces_after_sign && (current != next_non_space)) {
 | |
|       return junk_string_value_;
 | |
|     }
 | |
|     current = next_non_space;
 | |
|   }
 | |
| 
 | |
|   if (infinity_symbol_ != NULL) {
 | |
|     if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensitivity)) {
 | |
|       if (!ConsumeSubString(¤t, end, infinity_symbol_, allow_case_insensitivity)) {
 | |
|         return junk_string_value_;
 | |
|       }
 | |
| 
 | |
|       if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
 | |
|         return junk_string_value_;
 | |
|       }
 | |
|       if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
 | |
|         return junk_string_value_;
 | |
|       }
 | |
| 
 | |
|       *processed_characters_count = static_cast<int>(current - input);
 | |
|       return sign ? -Double::Infinity() : Double::Infinity();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (nan_symbol_ != NULL) {
 | |
|     if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensitivity)) {
 | |
|       if (!ConsumeSubString(¤t, end, nan_symbol_, allow_case_insensitivity)) {
 | |
|         return junk_string_value_;
 | |
|       }
 | |
| 
 | |
|       if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
 | |
|         return junk_string_value_;
 | |
|       }
 | |
|       if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
 | |
|         return junk_string_value_;
 | |
|       }
 | |
| 
 | |
|       *processed_characters_count = static_cast<int>(current - input);
 | |
|       return sign ? -Double::NaN() : Double::NaN();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool leading_zero = false;
 | |
|   if (*current == '0') {
 | |
|     if (Advance(¤t, separator_, 10, end)) {
 | |
|       *processed_characters_count = static_cast<int>(current - input);
 | |
|       return SignedZero(sign);
 | |
|     }
 | |
| 
 | |
|     leading_zero = true;
 | |
| 
 | |
|     // It could be hexadecimal value.
 | |
|     if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) &&
 | |
|         (*current == 'x' || *current == 'X')) {
 | |
|       ++current;
 | |
| 
 | |
|       if (current == end) return junk_string_value_;  // "0x"
 | |
| 
 | |
|       bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) &&
 | |
|                 IsHexFloatString(current, end, separator_, allow_trailing_junk);
 | |
| 
 | |
|       if (!parse_as_hex_float && !isDigit(*current, 16)) {
 | |
|         return junk_string_value_;
 | |
|       }
 | |
| 
 | |
|       bool result_is_junk;
 | |
|       double result = RadixStringToIeee<4>(¤t,
 | |
|                                            end,
 | |
|                                            sign,
 | |
|                                            separator_,
 | |
|                                            parse_as_hex_float,
 | |
|                                            allow_trailing_junk,
 | |
|                                            junk_string_value_,
 | |
|                                            read_as_double,
 | |
|                                            &result_is_junk);
 | |
|       if (!result_is_junk) {
 | |
|         if (allow_trailing_spaces) AdvanceToNonspace(¤t, end);
 | |
|         *processed_characters_count = static_cast<int>(current - input);
 | |
|       }
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|     // Ignore leading zeros in the integer part.
 | |
|     while (*current == '0') {
 | |
|       if (Advance(¤t, separator_, 10, end)) {
 | |
|         *processed_characters_count = static_cast<int>(current - input);
 | |
|         return SignedZero(sign);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
 | |
| 
 | |
|   // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
 | |
|   const int kBufferSize = kMaxSignificantDigits + 10;
 | |
|   DOUBLE_CONVERSION_STACK_UNINITIALIZED char
 | |
|       buffer[kBufferSize];  // NOLINT: size is known at compile time.
 | |
|   int buffer_pos = 0;
 | |
| 
 | |
|   // Copy significant digits of the integer part (if any) to the buffer.
 | |
|   while (*current >= '0' && *current <= '9') {
 | |
|     if (significant_digits < kMaxSignificantDigits) {
 | |
|       DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
 | |
|       buffer[buffer_pos++] = static_cast<char>(*current);
 | |
|       significant_digits++;
 | |
|       // Will later check if it's an octal in the buffer.
 | |
|     } else {
 | |
|       insignificant_digits++;  // Move the digit into the exponential part.
 | |
|       nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
 | |
|     }
 | |
|     octal = octal && *current < '8';
 | |
|     if (Advance(¤t, separator_, 10, end)) goto parsing_done;
 | |
|   }
 | |
| 
 | |
|   if (significant_digits == 0) {
 | |
|     octal = false;
 | |
|   }
 | |
| 
 | |
|   if (*current == '.') {
 | |
|     if (octal && !allow_trailing_junk) return junk_string_value_;
 | |
|     if (octal) goto parsing_done;
 | |
| 
 | |
|     if (Advance(¤t, separator_, 10, end)) {
 | |
|       if (significant_digits == 0 && !leading_zero) {
 | |
|         return junk_string_value_;
 | |
|       } else {
 | |
|         goto parsing_done;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (significant_digits == 0) {
 | |
|       // octal = false;
 | |
|       // Integer part consists of 0 or is absent. Significant digits start after
 | |
|       // leading zeros (if any).
 | |
|       while (*current == '0') {
 | |
|         if (Advance(¤t, separator_, 10, end)) {
 | |
|           *processed_characters_count = static_cast<int>(current - input);
 | |
|           return SignedZero(sign);
 | |
|         }
 | |
|         exponent--;  // Move this 0 into the exponent.
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // There is a fractional part.
 | |
|     // We don't emit a '.', but adjust the exponent instead.
 | |
|     while (*current >= '0' && *current <= '9') {
 | |
|       if (significant_digits < kMaxSignificantDigits) {
 | |
|         DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
 | |
|         buffer[buffer_pos++] = static_cast<char>(*current);
 | |
|         significant_digits++;
 | |
|         exponent--;
 | |
|       } else {
 | |
|         // Ignore insignificant digits in the fractional part.
 | |
|         nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
 | |
|       }
 | |
|       if (Advance(¤t, separator_, 10, end)) goto parsing_done;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!leading_zero && exponent == 0 && significant_digits == 0) {
 | |
|     // If leading_zeros is true then the string contains zeros.
 | |
|     // If exponent < 0 then string was [+-]\.0*...
 | |
|     // If significant_digits != 0 the string is not equal to 0.
 | |
|     // Otherwise there are no digits in the string.
 | |
|     return junk_string_value_;
 | |
|   }
 | |
| 
 | |
|   // Parse exponential part.
 | |
|   if (*current == 'e' || *current == 'E') {
 | |
|     if (octal && !allow_trailing_junk) return junk_string_value_;
 | |
|     if (octal) goto parsing_done;
 | |
|     Iterator junk_begin = current;
 | |
|     ++current;
 | |
|     if (current == end) {
 | |
|       if (allow_trailing_junk) {
 | |
|         current = junk_begin;
 | |
|         goto parsing_done;
 | |
|       } else {
 | |
|         return junk_string_value_;
 | |
|       }
 | |
|     }
 | |
|     char exponen_sign = '+';
 | |
|     if (*current == '+' || *current == '-') {
 | |
|       exponen_sign = static_cast<char>(*current);
 | |
|       ++current;
 | |
|       if (current == end) {
 | |
|         if (allow_trailing_junk) {
 | |
|           current = junk_begin;
 | |
|           goto parsing_done;
 | |
|         } else {
 | |
|           return junk_string_value_;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (current == end || *current < '0' || *current > '9') {
 | |
|       if (allow_trailing_junk) {
 | |
|         current = junk_begin;
 | |
|         goto parsing_done;
 | |
|       } else {
 | |
|         return junk_string_value_;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     const int max_exponent = INT_MAX / 2;
 | |
|     DOUBLE_CONVERSION_ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
 | |
|     int num = 0;
 | |
|     do {
 | |
|       // Check overflow.
 | |
|       int digit = *current - '0';
 | |
|       if (num >= max_exponent / 10
 | |
|           && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
 | |
|         num = max_exponent;
 | |
|       } else {
 | |
|         num = num * 10 + digit;
 | |
|       }
 | |
|       ++current;
 | |
|     } while (current != end && *current >= '0' && *current <= '9');
 | |
| 
 | |
|     exponent += (exponen_sign == '-' ? -num : num);
 | |
|   }
 | |
| 
 | |
|   if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
 | |
|     return junk_string_value_;
 | |
|   }
 | |
|   if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
 | |
|     return junk_string_value_;
 | |
|   }
 | |
|   if (allow_trailing_spaces) {
 | |
|     AdvanceToNonspace(¤t, end);
 | |
|   }
 | |
| 
 | |
|   parsing_done:
 | |
|   exponent += insignificant_digits;
 | |
| 
 | |
|   if (octal) {
 | |
|     double result;
 | |
|     bool result_is_junk;
 | |
|     char* start = buffer;
 | |
|     result = RadixStringToIeee<3>(&start,
 | |
|                                   buffer + buffer_pos,
 | |
|                                   sign,
 | |
|                                   separator_,
 | |
|                                   false, // Don't parse as hex_float.
 | |
|                                   allow_trailing_junk,
 | |
|                                   junk_string_value_,
 | |
|                                   read_as_double,
 | |
|                                   &result_is_junk);
 | |
|     DOUBLE_CONVERSION_ASSERT(!result_is_junk);
 | |
|     *processed_characters_count = static_cast<int>(current - input);
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   if (nonzero_digit_dropped) {
 | |
|     buffer[buffer_pos++] = '1';
 | |
|     exponent--;
 | |
|   }
 | |
| 
 | |
|   DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
 | |
|   buffer[buffer_pos] = '\0';
 | |
| 
 | |
|   // Code above ensures there are no leading zeros and the buffer has fewer than
 | |
|   // kMaxSignificantDecimalDigits characters. Trim trailing zeros.
 | |
|   Vector<const char> chars(buffer, buffer_pos);
 | |
|   chars = TrimTrailingZeros(chars);
 | |
|   exponent += buffer_pos - chars.length();
 | |
| 
 | |
|   double converted;
 | |
|   if (read_as_double) {
 | |
|     converted = StrtodTrimmed(chars, exponent);
 | |
|   } else {
 | |
|     converted = StrtofTrimmed(chars, exponent);
 | |
|   }
 | |
|   *processed_characters_count = static_cast<int>(current - input);
 | |
|   return sign? -converted: converted;
 | |
| }
 | |
| 
 | |
| 
 | |
| double StringToDoubleConverter::StringToDouble(
 | |
|     const char* buffer,
 | |
|     int length,
 | |
|     int* processed_characters_count) const {
 | |
|   return StringToIeee(buffer, length, true, processed_characters_count);
 | |
| }
 | |
| 
 | |
| 
 | |
| double StringToDoubleConverter::StringToDouble(
 | |
|     const uc16* buffer,
 | |
|     int length,
 | |
|     int* processed_characters_count) const {
 | |
|   return StringToIeee(buffer, length, true, processed_characters_count);
 | |
| }
 | |
| 
 | |
| 
 | |
| float StringToDoubleConverter::StringToFloat(
 | |
|     const char* buffer,
 | |
|     int length,
 | |
|     int* processed_characters_count) const {
 | |
|   return static_cast<float>(StringToIeee(buffer, length, false,
 | |
|                                          processed_characters_count));
 | |
| }
 | |
| 
 | |
| 
 | |
| float StringToDoubleConverter::StringToFloat(
 | |
|     const uc16* buffer,
 | |
|     int length,
 | |
|     int* processed_characters_count) const {
 | |
|   return static_cast<float>(StringToIeee(buffer, length, false,
 | |
|                                          processed_characters_count));
 | |
| }
 | |
| 
 | |
| 
 | |
| template<>
 | |
| double StringToDoubleConverter::StringTo<double>(
 | |
|     const char* buffer,
 | |
|     int length,
 | |
|     int* processed_characters_count) const {
 | |
|     return StringToDouble(buffer, length, processed_characters_count);
 | |
| }
 | |
| 
 | |
| 
 | |
| template<>
 | |
| float StringToDoubleConverter::StringTo<float>(
 | |
|     const char* buffer,
 | |
|     int length,
 | |
|     int* processed_characters_count) const {
 | |
|     return StringToFloat(buffer, length, processed_characters_count);
 | |
| }
 | |
| 
 | |
| 
 | |
| template<>
 | |
| double StringToDoubleConverter::StringTo<double>(
 | |
|     const uc16* buffer,
 | |
|     int length,
 | |
|     int* processed_characters_count) const {
 | |
|     return StringToDouble(buffer, length, processed_characters_count);
 | |
| }
 | |
| 
 | |
| 
 | |
| template<>
 | |
| float StringToDoubleConverter::StringTo<float>(
 | |
|     const uc16* buffer,
 | |
|     int length,
 | |
|     int* processed_characters_count) const {
 | |
|     return StringToFloat(buffer, length, processed_characters_count);
 | |
| }
 | |
| 
 | |
| }  // namespace double_conversion
 | |
| 
 | |
| // ICU PATCH: Close ICU namespace
 | |
| U_NAMESPACE_END
 | |
| #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
 |