167 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			167 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
| // © 2016 and later: Unicode, Inc. and others.
 | |
| // License & terms of use: http://www.unicode.org/copyright.html
 | |
| /*
 | |
|  **********************************************************************
 | |
|  * Copyright (c) 2003-2008, International Business Machines
 | |
|  * Corporation and others.  All Rights Reserved.
 | |
|  **********************************************************************
 | |
|  * Author: Alan Liu
 | |
|  * Created: September 2 2003
 | |
|  * Since: ICU 2.8
 | |
|  **********************************************************************
 | |
|  */
 | |
| 
 | |
| #include "gregoimp.h"
 | |
| 
 | |
| #if !UCONFIG_NO_FORMATTING
 | |
| 
 | |
| #include "unicode/ucal.h"
 | |
| #include "uresimp.h"
 | |
| #include "cstring.h"
 | |
| #include "uassert.h"
 | |
| 
 | |
| U_NAMESPACE_BEGIN
 | |
| 
 | |
| int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) {
 | |
|     return (numerator >= 0) ?
 | |
|         numerator / denominator : ((numerator + 1) / denominator) - 1;
 | |
| }
 | |
| 
 | |
| int64_t ClockMath::floorDivide(int64_t numerator, int64_t denominator) {
 | |
|     return (numerator >= 0) ?
 | |
|         numerator / denominator : ((numerator + 1) / denominator) - 1;
 | |
| }
 | |
| 
 | |
| int32_t ClockMath::floorDivide(double numerator, int32_t denominator,
 | |
|                           int32_t& remainder) {
 | |
|     double quotient;
 | |
|     quotient = uprv_floor(numerator / denominator);
 | |
|     remainder = (int32_t) (numerator - (quotient * denominator));
 | |
|     return (int32_t) quotient;
 | |
| }
 | |
| 
 | |
| double ClockMath::floorDivide(double dividend, double divisor,
 | |
|                          double& remainder) {
 | |
|     // Only designed to work for positive divisors
 | |
|     U_ASSERT(divisor > 0);
 | |
|     double quotient = floorDivide(dividend, divisor);
 | |
|     remainder = dividend - (quotient * divisor);
 | |
|     // N.B. For certain large dividends, on certain platforms, there
 | |
|     // is a bug such that the quotient is off by one.  If you doubt
 | |
|     // this to be true, set a breakpoint below and run cintltst.
 | |
|     if (remainder < 0 || remainder >= divisor) {
 | |
|         // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my
 | |
|         // machine (too high by one).  4.1792057231752762e+024 /
 | |
|         // 86400000.0 is wrong the other way (too low).
 | |
|         double q = quotient;
 | |
|         quotient += (remainder < 0) ? -1 : +1;
 | |
|         if (q == quotient) {
 | |
|             // For quotients > ~2^53, we won't be able to add or
 | |
|             // subtract one, since the LSB of the mantissa will be >
 | |
|             // 2^0; that is, the exponent (base 2) will be larger than
 | |
|             // the length, in bits, of the mantissa.  In that case, we
 | |
|             // can't give a correct answer, so we set the remainder to
 | |
|             // zero.  This has the desired effect of making extreme
 | |
|             // values give back an approximate answer rather than
 | |
|             // crashing.  For example, UDate values above a ~10^25
 | |
|             // might all have a time of midnight.
 | |
|             remainder = 0;
 | |
|         } else {
 | |
|             remainder = dividend - (quotient * divisor);
 | |
|         }
 | |
|     }
 | |
|     U_ASSERT(0 <= remainder && remainder < divisor);
 | |
|     return quotient;
 | |
| }
 | |
| 
 | |
| const int32_t JULIAN_1_CE    = 1721426; // January 1, 1 CE Gregorian
 | |
| const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian
 | |
| 
 | |
| const int16_t Grego::DAYS_BEFORE[24] =
 | |
|     {0,31,59,90,120,151,181,212,243,273,304,334,
 | |
|      0,31,60,91,121,152,182,213,244,274,305,335};
 | |
| 
 | |
| const int8_t Grego::MONTH_LENGTH[24] =
 | |
|     {31,28,31,30,31,30,31,31,30,31,30,31,
 | |
|      31,29,31,30,31,30,31,31,30,31,30,31};
 | |
| 
 | |
| double Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) {
 | |
| 
 | |
|     int32_t y = year - 1;
 | |
| 
 | |
|     double julian = 365 * y + ClockMath::floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal
 | |
|         ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2 + // => Gregorian cal
 | |
|         DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom
 | |
| 
 | |
|     return julian - JULIAN_1970_CE; // JD => epoch day
 | |
| }
 | |
| 
 | |
| void Grego::dayToFields(double day, int32_t& year, int32_t& month,
 | |
|                         int32_t& dom, int32_t& dow, int32_t& doy) {
 | |
| 
 | |
|     // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar)
 | |
|     day += JULIAN_1970_CE - JULIAN_1_CE;
 | |
| 
 | |
|     // Convert from the day number to the multiple radix
 | |
|     // representation.  We use 400-year, 100-year, and 4-year cycles.
 | |
|     // For example, the 4-year cycle has 4 years + 1 leap day; giving
 | |
|     // 1461 == 365*4 + 1 days.
 | |
|     int32_t n400 = ClockMath::floorDivide(day, 146097, doy); // 400-year cycle length
 | |
|     int32_t n100 = ClockMath::floorDivide(doy, 36524, doy); // 100-year cycle length
 | |
|     int32_t n4   = ClockMath::floorDivide(doy, 1461, doy); // 4-year cycle length
 | |
|     int32_t n1   = ClockMath::floorDivide(doy, 365, doy);
 | |
|     year = 400*n400 + 100*n100 + 4*n4 + n1;
 | |
|     if (n100 == 4 || n1 == 4) {
 | |
|         doy = 365; // Dec 31 at end of 4- or 400-year cycle
 | |
|     } else {
 | |
|         ++year;
 | |
|     }
 | |
|     
 | |
|     UBool isLeap = isLeapYear(year);
 | |
|     
 | |
|     // Gregorian day zero is a Monday.
 | |
|     dow = (int32_t) uprv_fmod(day + 1, 7);
 | |
|     dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY;
 | |
| 
 | |
|     // Common Julian/Gregorian calculation
 | |
|     int32_t correction = 0;
 | |
|     int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
 | |
|     if (doy >= march1) {
 | |
|         correction = isLeap ? 1 : 2;
 | |
|     }
 | |
|     month = (12 * (doy + correction) + 6) / 367; // zero-based month
 | |
|     dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM
 | |
|     doy++; // one-based doy
 | |
| }
 | |
| 
 | |
| void Grego::timeToFields(UDate time, int32_t& year, int32_t& month,
 | |
|                         int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) {
 | |
|     double millisInDay;
 | |
|     double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, millisInDay);
 | |
|     mid = (int32_t)millisInDay;
 | |
|     dayToFields(day, year, month, dom, dow, doy);
 | |
| }
 | |
| 
 | |
| int32_t Grego::dayOfWeek(double day) {
 | |
|     int32_t dow;
 | |
|     ClockMath::floorDivide(day + UCAL_THURSDAY, 7, dow);
 | |
|     return (dow == 0) ? UCAL_SATURDAY : dow;
 | |
| }
 | |
| 
 | |
| int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) {
 | |
|     int32_t weekInMonth = (dom + 6)/7;
 | |
|     if (weekInMonth == 4) {
 | |
|         if (dom + 7 > monthLength(year, month)) {
 | |
|             weekInMonth = -1;
 | |
|         }
 | |
|     } else if (weekInMonth == 5) {
 | |
|         weekInMonth = -1;
 | |
|     }
 | |
|     return weekInMonth;
 | |
| }
 | |
| 
 | |
| U_NAMESPACE_END
 | |
| 
 | |
| #endif
 | |
| //eof
 |