1633 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1633 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
| // © 2016 and later: Unicode, Inc. and others.
 | |
| // License & terms of use: http://www.unicode.org/copyright.html
 | |
| /*
 | |
| ******************************************************************************
 | |
| *   Copyright (C) 1997-2015, International Business Machines
 | |
| *   Corporation and others.  All Rights Reserved.
 | |
| ******************************************************************************
 | |
| *   file name:  nfrule.cpp
 | |
| *   encoding:   UTF-8
 | |
| *   tab size:   8 (not used)
 | |
| *   indentation:4
 | |
| *
 | |
| * Modification history
 | |
| * Date        Name      Comments
 | |
| * 10/11/2001  Doug      Ported from ICU4J
 | |
| */
 | |
| 
 | |
| #include "nfrule.h"
 | |
| 
 | |
| #if U_HAVE_RBNF
 | |
| 
 | |
| #include "unicode/localpointer.h"
 | |
| #include "unicode/rbnf.h"
 | |
| #include "unicode/tblcoll.h"
 | |
| #include "unicode/plurfmt.h"
 | |
| #include "unicode/upluralrules.h"
 | |
| #include "unicode/coleitr.h"
 | |
| #include "unicode/uchar.h"
 | |
| #include "nfrs.h"
 | |
| #include "nfrlist.h"
 | |
| #include "nfsubs.h"
 | |
| #include "patternprops.h"
 | |
| #include "putilimp.h"
 | |
| 
 | |
| U_NAMESPACE_BEGIN
 | |
| 
 | |
| NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status)
 | |
|   : baseValue((int32_t)0)
 | |
|   , radix(10)
 | |
|   , exponent(0)
 | |
|   , decimalPoint(0)
 | |
|   , fRuleText(_ruleText)
 | |
|   , sub1(NULL)
 | |
|   , sub2(NULL)
 | |
|   , formatter(_rbnf)
 | |
|   , rulePatternFormat(NULL)
 | |
| {
 | |
|     if (!fRuleText.isEmpty()) {
 | |
|         parseRuleDescriptor(fRuleText, status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| NFRule::~NFRule()
 | |
| {
 | |
|     if (sub1 != sub2) {
 | |
|         delete sub2;
 | |
|         sub2 = NULL;
 | |
|     }
 | |
|     delete sub1;
 | |
|     sub1 = NULL;
 | |
|     delete rulePatternFormat;
 | |
|     rulePatternFormat = NULL;
 | |
| }
 | |
| 
 | |
| static const UChar gLeftBracket = 0x005b;
 | |
| static const UChar gRightBracket = 0x005d;
 | |
| static const UChar gColon = 0x003a;
 | |
| static const UChar gZero = 0x0030;
 | |
| static const UChar gNine = 0x0039;
 | |
| static const UChar gSpace = 0x0020;
 | |
| static const UChar gSlash = 0x002f;
 | |
| static const UChar gGreaterThan = 0x003e;
 | |
| static const UChar gLessThan = 0x003c;
 | |
| static const UChar gComma = 0x002c;
 | |
| static const UChar gDot = 0x002e;
 | |
| static const UChar gTick = 0x0027;
 | |
| //static const UChar gMinus = 0x002d;
 | |
| static const UChar gSemicolon = 0x003b;
 | |
| static const UChar gX = 0x0078;
 | |
| 
 | |
| static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
 | |
| static const UChar gInf[] =                     {0x49, 0x6E, 0x66, 0}; /* "Inf" */
 | |
| static const UChar gNaN[] =                     {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
 | |
| 
 | |
| static const UChar gDollarOpenParenthesis[] =   {0x24, 0x28, 0}; /* "$(" */
 | |
| static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
 | |
| 
 | |
| static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
 | |
| static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
 | |
| static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
 | |
| static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
 | |
| static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
 | |
| static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
 | |
| static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
 | |
| static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
 | |
| static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
 | |
| static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
 | |
| static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
 | |
| static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
 | |
| 
 | |
| static const UChar * const RULE_PREFIXES[] = {
 | |
|     gLessLess, gLessPercent, gLessHash, gLessZero,
 | |
|     gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
 | |
|     gEqualPercent, gEqualHash, gEqualZero, NULL
 | |
| };
 | |
| 
 | |
| void
 | |
| NFRule::makeRules(UnicodeString& description,
 | |
|                   NFRuleSet *owner,
 | |
|                   const NFRule *predecessor,
 | |
|                   const RuleBasedNumberFormat *rbnf,
 | |
|                   NFRuleList& rules,
 | |
|                   UErrorCode& status)
 | |
| {
 | |
|     // we know we're making at least one rule, so go ahead and
 | |
|     // new it up and initialize its basevalue and divisor
 | |
|     // (this also strips the rule descriptor, if any, off the
 | |
|     // description string)
 | |
|     NFRule* rule1 = new NFRule(rbnf, description, status);
 | |
|     /* test for NULL */
 | |
|     if (rule1 == 0) {
 | |
|         status = U_MEMORY_ALLOCATION_ERROR;
 | |
|         return;
 | |
|     }
 | |
|     description = rule1->fRuleText;
 | |
| 
 | |
|     // check the description to see whether there's text enclosed
 | |
|     // in brackets
 | |
|     int32_t brack1 = description.indexOf(gLeftBracket);
 | |
|     int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket);
 | |
| 
 | |
|     // if the description doesn't contain a matched pair of brackets,
 | |
|     // or if it's of a type that doesn't recognize bracketed text,
 | |
|     // then leave the description alone, initialize the rule's
 | |
|     // rule text and substitutions, and return that rule
 | |
|     if (brack2 < 0 || brack1 > brack2
 | |
|         || rule1->getType() == kProperFractionRule
 | |
|         || rule1->getType() == kNegativeNumberRule
 | |
|         || rule1->getType() == kInfinityRule
 | |
|         || rule1->getType() == kNaNRule)
 | |
|     {
 | |
|         rule1->extractSubstitutions(owner, description, predecessor, status);
 | |
|     }
 | |
|     else {
 | |
|         // if the description does contain a matched pair of brackets,
 | |
|         // then it's really shorthand for two rules (with one exception)
 | |
|         NFRule* rule2 = NULL;
 | |
|         UnicodeString sbuf;
 | |
| 
 | |
|         // we'll actually only split the rule into two rules if its
 | |
|         // base value is an even multiple of its divisor (or it's one
 | |
|         // of the special rules)
 | |
|         if ((rule1->baseValue > 0
 | |
|             && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
 | |
|             || rule1->getType() == kImproperFractionRule
 | |
|             || rule1->getType() == kDefaultRule) {
 | |
| 
 | |
|             // if it passes that test, new up the second rule.  If the
 | |
|             // rule set both rules will belong to is a fraction rule
 | |
|             // set, they both have the same base value; otherwise,
 | |
|             // increment the original rule's base value ("rule1" actually
 | |
|             // goes SECOND in the rule set's rule list)
 | |
|             rule2 = new NFRule(rbnf, UnicodeString(), status);
 | |
|             /* test for NULL */
 | |
|             if (rule2 == 0) {
 | |
|                 status = U_MEMORY_ALLOCATION_ERROR;
 | |
|                 return;
 | |
|             }
 | |
|             if (rule1->baseValue >= 0) {
 | |
|                 rule2->baseValue = rule1->baseValue;
 | |
|                 if (!owner->isFractionRuleSet()) {
 | |
|                     ++rule1->baseValue;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // if the description began with "x.x" and contains bracketed
 | |
|             // text, it describes both the improper fraction rule and
 | |
|             // the proper fraction rule
 | |
|             else if (rule1->getType() == kImproperFractionRule) {
 | |
|                 rule2->setType(kProperFractionRule);
 | |
|             }
 | |
| 
 | |
|             // if the description began with "x.0" and contains bracketed
 | |
|             // text, it describes both the default rule and the
 | |
|             // improper fraction rule
 | |
|             else if (rule1->getType() == kDefaultRule) {
 | |
|                 rule2->baseValue = rule1->baseValue;
 | |
|                 rule1->setType(kImproperFractionRule);
 | |
|             }
 | |
| 
 | |
|             // both rules have the same radix and exponent (i.e., the
 | |
|             // same divisor)
 | |
|             rule2->radix = rule1->radix;
 | |
|             rule2->exponent = rule1->exponent;
 | |
| 
 | |
|             // rule2's rule text omits the stuff in brackets: initialize
 | |
|             // its rule text and substitutions accordingly
 | |
|             sbuf.append(description, 0, brack1);
 | |
|             if (brack2 + 1 < description.length()) {
 | |
|                 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
 | |
|             }
 | |
|             rule2->extractSubstitutions(owner, sbuf, predecessor, status);
 | |
|         }
 | |
| 
 | |
|         // rule1's text includes the text in the brackets but omits
 | |
|         // the brackets themselves: initialize _its_ rule text and
 | |
|         // substitutions accordingly
 | |
|         sbuf.setTo(description, 0, brack1);
 | |
|         sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
 | |
|         if (brack2 + 1 < description.length()) {
 | |
|             sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
 | |
|         }
 | |
|         rule1->extractSubstitutions(owner, sbuf, predecessor, status);
 | |
| 
 | |
|         // if we only have one rule, return it; if we have two, return
 | |
|         // a two-element array containing them (notice that rule2 goes
 | |
|         // BEFORE rule1 in the list: in all cases, rule2 OMITS the
 | |
|         // material in the brackets and rule1 INCLUDES the material
 | |
|         // in the brackets)
 | |
|         if (rule2 != NULL) {
 | |
|             if (rule2->baseValue >= kNoBase) {
 | |
|                 rules.add(rule2);
 | |
|             }
 | |
|             else {
 | |
|                 owner->setNonNumericalRule(rule2);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (rule1->baseValue >= kNoBase) {
 | |
|         rules.add(rule1);
 | |
|     }
 | |
|     else {
 | |
|         owner->setNonNumericalRule(rule1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * This function parses the rule's rule descriptor (i.e., the base
 | |
|  * value and/or other tokens that precede the rule's rule text
 | |
|  * in the description) and sets the rule's base value, radix, and
 | |
|  * exponent according to the descriptor.  (If the description doesn't
 | |
|  * include a rule descriptor, then this function sets everything to
 | |
|  * default values and the rule set sets the rule's real base value).
 | |
|  * @param description The rule's description
 | |
|  * @return If "description" included a rule descriptor, this is
 | |
|  * "description" with the descriptor and any trailing whitespace
 | |
|  * stripped off.  Otherwise; it's "descriptor" unchangd.
 | |
|  */
 | |
| void
 | |
| NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
 | |
| {
 | |
|     // the description consists of a rule descriptor and a rule body,
 | |
|     // separated by a colon.  The rule descriptor is optional.  If
 | |
|     // it's omitted, just set the base value to 0.
 | |
|     int32_t p = description.indexOf(gColon);
 | |
|     if (p != -1) {
 | |
|         // copy the descriptor out into its own string and strip it,
 | |
|         // along with any trailing whitespace, out of the original
 | |
|         // description
 | |
|         UnicodeString descriptor;
 | |
|         descriptor.setTo(description, 0, p);
 | |
| 
 | |
|         ++p;
 | |
|         while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
 | |
|             ++p;
 | |
|         }
 | |
|         description.removeBetween(0, p);
 | |
| 
 | |
|         // check first to see if the rule descriptor matches the token
 | |
|         // for one of the special rules.  If it does, set the base
 | |
|         // value to the correct identifier value
 | |
|         int descriptorLength = descriptor.length();
 | |
|         UChar firstChar = descriptor.charAt(0);
 | |
|         UChar lastChar = descriptor.charAt(descriptorLength - 1);
 | |
|         if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) {
 | |
|             // if the rule descriptor begins with a digit, it's a descriptor
 | |
|             // for a normal rule
 | |
|             // since we don't have Long.parseLong, and this isn't much work anyway,
 | |
|             // just build up the value as we encounter the digits.
 | |
|             int64_t val = 0;
 | |
|             p = 0;
 | |
|             UChar c = gSpace;
 | |
| 
 | |
|             // begin parsing the descriptor: copy digits
 | |
|             // into "tempValue", skip periods, commas, and spaces,
 | |
|             // stop on a slash or > sign (or at the end of the string),
 | |
|             // and throw an exception on any other character
 | |
|             int64_t ll_10 = 10;
 | |
|             while (p < descriptorLength) {
 | |
|                 c = descriptor.charAt(p);
 | |
|                 if (c >= gZero && c <= gNine) {
 | |
|                     val = val * ll_10 + (int32_t)(c - gZero);
 | |
|                 }
 | |
|                 else if (c == gSlash || c == gGreaterThan) {
 | |
|                     break;
 | |
|                 }
 | |
|                 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
 | |
|                 }
 | |
|                 else {
 | |
|                     // throw new IllegalArgumentException("Illegal character in rule descriptor");
 | |
|                     status = U_PARSE_ERROR;
 | |
|                     return;
 | |
|                 }
 | |
|                 ++p;
 | |
|             }
 | |
| 
 | |
|             // we have the base value, so set it
 | |
|             setBaseValue(val, status);
 | |
| 
 | |
|             // if we stopped the previous loop on a slash, we're
 | |
|             // now parsing the rule's radix.  Again, accumulate digits
 | |
|             // in tempValue, skip punctuation, stop on a > mark, and
 | |
|             // throw an exception on anything else
 | |
|             if (c == gSlash) {
 | |
|                 val = 0;
 | |
|                 ++p;
 | |
|                 ll_10 = 10;
 | |
|                 while (p < descriptorLength) {
 | |
|                     c = descriptor.charAt(p);
 | |
|                     if (c >= gZero && c <= gNine) {
 | |
|                         val = val * ll_10 + (int32_t)(c - gZero);
 | |
|                     }
 | |
|                     else if (c == gGreaterThan) {
 | |
|                         break;
 | |
|                     }
 | |
|                     else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
 | |
|                     }
 | |
|                     else {
 | |
|                         // throw new IllegalArgumentException("Illegal character is rule descriptor");
 | |
|                         status = U_PARSE_ERROR;
 | |
|                         return;
 | |
|                     }
 | |
|                     ++p;
 | |
|                 }
 | |
| 
 | |
|                 // tempValue now contain's the rule's radix.  Set it
 | |
|                 // accordingly, and recalculate the rule's exponent
 | |
|                 radix = (int32_t)val;
 | |
|                 if (radix == 0) {
 | |
|                     // throw new IllegalArgumentException("Rule can't have radix of 0");
 | |
|                     status = U_PARSE_ERROR;
 | |
|                 }
 | |
| 
 | |
|                 exponent = expectedExponent();
 | |
|             }
 | |
| 
 | |
|             // if we stopped the previous loop on a > sign, then continue
 | |
|             // for as long as we still see > signs.  For each one,
 | |
|             // decrement the exponent (unless the exponent is already 0).
 | |
|             // If we see another character before reaching the end of
 | |
|             // the descriptor, that's also a syntax error.
 | |
|             if (c == gGreaterThan) {
 | |
|                 while (p < descriptor.length()) {
 | |
|                     c = descriptor.charAt(p);
 | |
|                     if (c == gGreaterThan && exponent > 0) {
 | |
|                         --exponent;
 | |
|                     } else {
 | |
|                         // throw new IllegalArgumentException("Illegal character in rule descriptor");
 | |
|                         status = U_PARSE_ERROR;
 | |
|                         return;
 | |
|                     }
 | |
|                     ++p;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else if (0 == descriptor.compare(gMinusX, 2)) {
 | |
|             setType(kNegativeNumberRule);
 | |
|         }
 | |
|         else if (descriptorLength == 3) {
 | |
|             if (firstChar == gZero && lastChar == gX) {
 | |
|                 setBaseValue(kProperFractionRule, status);
 | |
|                 decimalPoint = descriptor.charAt(1);
 | |
|             }
 | |
|             else if (firstChar == gX && lastChar == gX) {
 | |
|                 setBaseValue(kImproperFractionRule, status);
 | |
|                 decimalPoint = descriptor.charAt(1);
 | |
|             }
 | |
|             else if (firstChar == gX && lastChar == gZero) {
 | |
|                 setBaseValue(kDefaultRule, status);
 | |
|                 decimalPoint = descriptor.charAt(1);
 | |
|             }
 | |
|             else if (descriptor.compare(gNaN, 3) == 0) {
 | |
|                 setBaseValue(kNaNRule, status);
 | |
|             }
 | |
|             else if (descriptor.compare(gInf, 3) == 0) {
 | |
|                 setBaseValue(kInfinityRule, status);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     // else use the default base value for now.
 | |
| 
 | |
|     // finally, if the rule body begins with an apostrophe, strip it off
 | |
|     // (this is generally used to put whitespace at the beginning of
 | |
|     // a rule's rule text)
 | |
|     if (description.length() > 0 && description.charAt(0) == gTick) {
 | |
|         description.removeBetween(0, 1);
 | |
|     }
 | |
| 
 | |
|     // return the description with all the stuff we've just waded through
 | |
|     // stripped off the front.  It now contains just the rule body.
 | |
|     // return description;
 | |
| }
 | |
| 
 | |
| /**
 | |
| * Searches the rule's rule text for the substitution tokens,
 | |
| * creates the substitutions, and removes the substitution tokens
 | |
| * from the rule's rule text.
 | |
| * @param owner The rule set containing this rule
 | |
| * @param predecessor The rule preseding this one in "owners" rule list
 | |
| * @param ownersOwner The RuleBasedFormat that owns this rule
 | |
| */
 | |
| void
 | |
| NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
 | |
|                              const UnicodeString &ruleText,
 | |
|                              const NFRule* predecessor,
 | |
|                              UErrorCode& status)
 | |
| {
 | |
|     if (U_FAILURE(status)) {
 | |
|         return;
 | |
|     }
 | |
|     fRuleText = ruleText;
 | |
|     sub1 = extractSubstitution(ruleSet, predecessor, status);
 | |
|     if (sub1 == NULL) {
 | |
|         // Small optimization. There is no need to create a redundant NullSubstitution.
 | |
|         sub2 = NULL;
 | |
|     }
 | |
|     else {
 | |
|         sub2 = extractSubstitution(ruleSet, predecessor, status);
 | |
|     }
 | |
|     int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
 | |
|     int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
 | |
|     if (pluralRuleEnd >= 0) {
 | |
|         int32_t endType = fRuleText.indexOf(gComma, pluralRuleStart);
 | |
|         if (endType < 0) {
 | |
|             status = U_PARSE_ERROR;
 | |
|             return;
 | |
|         }
 | |
|         UnicodeString type(fRuleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
 | |
|         UPluralType pluralType;
 | |
|         if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
 | |
|             pluralType = UPLURAL_TYPE_CARDINAL;
 | |
|         }
 | |
|         else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
 | |
|             pluralType = UPLURAL_TYPE_ORDINAL;
 | |
|         }
 | |
|         else {
 | |
|             status = U_ILLEGAL_ARGUMENT_ERROR;
 | |
|             return;
 | |
|         }
 | |
|         rulePatternFormat = formatter->createPluralFormat(pluralType,
 | |
|                 fRuleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
| * Searches the rule's rule text for the first substitution token,
 | |
| * creates a substitution based on it, and removes the token from
 | |
| * the rule's rule text.
 | |
| * @param owner The rule set containing this rule
 | |
| * @param predecessor The rule preceding this one in the rule set's
 | |
| * rule list
 | |
| * @param ownersOwner The RuleBasedNumberFormat that owns this rule
 | |
| * @return The newly-created substitution.  This is never null; if
 | |
| * the rule text doesn't contain any substitution tokens, this will
 | |
| * be a NullSubstitution.
 | |
| */
 | |
| NFSubstitution *
 | |
| NFRule::extractSubstitution(const NFRuleSet* ruleSet,
 | |
|                             const NFRule* predecessor,
 | |
|                             UErrorCode& status)
 | |
| {
 | |
|     NFSubstitution* result = NULL;
 | |
| 
 | |
|     // search the rule's rule text for the first two characters of
 | |
|     // a substitution token
 | |
|     int32_t subStart = indexOfAnyRulePrefix();
 | |
|     int32_t subEnd = subStart;
 | |
| 
 | |
|     // if we didn't find one, create a null substitution positioned
 | |
|     // at the end of the rule text
 | |
|     if (subStart == -1) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     // special-case the ">>>" token, since searching for the > at the
 | |
|     // end will actually find the > in the middle
 | |
|     if (fRuleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
 | |
|         subEnd = subStart + 2;
 | |
| 
 | |
|         // otherwise the substitution token ends with the same character
 | |
|         // it began with
 | |
|     } else {
 | |
|         UChar c = fRuleText.charAt(subStart);
 | |
|         subEnd = fRuleText.indexOf(c, subStart + 1);
 | |
|         // special case for '<%foo<<'
 | |
|         if (c == gLessThan && subEnd != -1 && subEnd < fRuleText.length() - 1 && fRuleText.charAt(subEnd+1) == c) {
 | |
|             // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
 | |
|             // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
 | |
|             // to get around this.  Having the duplicate at the front would cause problems with
 | |
|             // rules like "<<%" to format, say, percents...
 | |
|             ++subEnd;
 | |
|         }
 | |
|    }
 | |
| 
 | |
|     // if we don't find the end of the token (i.e., if we're on a single,
 | |
|     // unmatched token character), create a null substitution positioned
 | |
|     // at the end of the rule
 | |
|     if (subEnd == -1) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     // if we get here, we have a real substitution token (or at least
 | |
|     // some text bounded by substitution token characters).  Use
 | |
|     // makeSubstitution() to create the right kind of substitution
 | |
|     UnicodeString subToken;
 | |
|     subToken.setTo(fRuleText, subStart, subEnd + 1 - subStart);
 | |
|     result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
 | |
|         this->formatter, subToken, status);
 | |
| 
 | |
|     // remove the substitution from the rule text
 | |
|     fRuleText.removeBetween(subStart, subEnd+1);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Sets the rule's base value, and causes the radix and exponent
 | |
|  * to be recalculated.  This is used during construction when we
 | |
|  * don't know the rule's base value until after it's been
 | |
|  * constructed.  It should be used at any other time.
 | |
|  * @param The new base value for the rule.
 | |
|  */
 | |
| void
 | |
| NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
 | |
| {
 | |
|     // set the base value
 | |
|     baseValue = newBaseValue;
 | |
|     radix = 10;
 | |
| 
 | |
|     // if this isn't a special rule, recalculate the radix and exponent
 | |
|     // (the radix always defaults to 10; if it's supposed to be something
 | |
|     // else, it's cleaned up by the caller and the exponent is
 | |
|     // recalculated again-- the only function that does this is
 | |
|     // NFRule.parseRuleDescriptor() )
 | |
|     if (baseValue >= 1) {
 | |
|         exponent = expectedExponent();
 | |
| 
 | |
|         // this function gets called on a fully-constructed rule whose
 | |
|         // description didn't specify a base value.  This means it
 | |
|         // has substitutions, and some substitutions hold on to copies
 | |
|         // of the rule's divisor.  Fix their copies of the divisor.
 | |
|         if (sub1 != NULL) {
 | |
|             sub1->setDivisor(radix, exponent, status);
 | |
|         }
 | |
|         if (sub2 != NULL) {
 | |
|             sub2->setDivisor(radix, exponent, status);
 | |
|         }
 | |
| 
 | |
|         // if this is a special rule, its radix and exponent are basically
 | |
|         // ignored.  Set them to "safe" default values
 | |
|     } else {
 | |
|         exponent = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
| * This calculates the rule's exponent based on its radix and base
 | |
| * value.  This will be the highest power the radix can be raised to
 | |
| * and still produce a result less than or equal to the base value.
 | |
| */
 | |
| int16_t
 | |
| NFRule::expectedExponent() const
 | |
| {
 | |
|     // since the log of 0, or the log base 0 of something, causes an
 | |
|     // error, declare the exponent in these cases to be 0 (we also
 | |
|     // deal with the special-rule identifiers here)
 | |
|     if (radix == 0 || baseValue < 1) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     // we get rounding error in some cases-- for example, log 1000 / log 10
 | |
|     // gives us 1.9999999996 instead of 2.  The extra logic here is to take
 | |
|     // that into account
 | |
|     int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
 | |
|     int64_t temp = util64_pow(radix, tempResult + 1);
 | |
|     if (temp <= baseValue) {
 | |
|         tempResult += 1;
 | |
|     }
 | |
|     return tempResult;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Searches the rule's rule text for any of the specified strings.
 | |
|  * @return The index of the first match in the rule's rule text
 | |
|  * (i.e., the first substring in the rule's rule text that matches
 | |
|  * _any_ of the strings in "strings").  If none of the strings in
 | |
|  * "strings" is found in the rule's rule text, returns -1.
 | |
|  */
 | |
| int32_t
 | |
| NFRule::indexOfAnyRulePrefix() const
 | |
| {
 | |
|     int result = -1;
 | |
|     for (int i = 0; RULE_PREFIXES[i]; i++) {
 | |
|         int32_t pos = fRuleText.indexOf(*RULE_PREFIXES[i]);
 | |
|         if (pos != -1 && (result == -1 || pos < result)) {
 | |
|             result = pos;
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------
 | |
| // boilerplate
 | |
| //-----------------------------------------------------------------------
 | |
| 
 | |
| static UBool
 | |
| util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2)
 | |
| {
 | |
|     if (sub1) {
 | |
|         if (sub2) {
 | |
|             return *sub1 == *sub2;
 | |
|         }
 | |
|     } else if (!sub2) {
 | |
|         return TRUE;
 | |
|     }
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| /**
 | |
| * Tests two rules for equality.
 | |
| * @param that The rule to compare this one against
 | |
| * @return True is the two rules are functionally equivalent
 | |
| */
 | |
| bool
 | |
| NFRule::operator==(const NFRule& rhs) const
 | |
| {
 | |
|     return baseValue == rhs.baseValue
 | |
|         && radix == rhs.radix
 | |
|         && exponent == rhs.exponent
 | |
|         && fRuleText == rhs.fRuleText
 | |
|         && util_equalSubstitutions(sub1, rhs.sub1)
 | |
|         && util_equalSubstitutions(sub2, rhs.sub2);
 | |
| }
 | |
| 
 | |
| /**
 | |
| * Returns a textual representation of the rule.  This won't
 | |
| * necessarily be the same as the description that this rule
 | |
| * was created with, but it will produce the same result.
 | |
| * @return A textual description of the rule
 | |
| */
 | |
| static void util_append64(UnicodeString& result, int64_t n)
 | |
| {
 | |
|     UChar buffer[256];
 | |
|     int32_t len = util64_tou(n, buffer, sizeof(buffer));
 | |
|     UnicodeString temp(buffer, len);
 | |
|     result.append(temp);
 | |
| }
 | |
| 
 | |
| void
 | |
| NFRule::_appendRuleText(UnicodeString& result) const
 | |
| {
 | |
|     switch (getType()) {
 | |
|     case kNegativeNumberRule: result.append(gMinusX, 2); break;
 | |
|     case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
 | |
|     case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
 | |
|     case kDefaultRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break;
 | |
|     case kInfinityRule: result.append(gInf, 3); break;
 | |
|     case kNaNRule: result.append(gNaN, 3); break;
 | |
|     default:
 | |
|         // for a normal rule, write out its base value, and if the radix is
 | |
|         // something other than 10, write out the radix (with the preceding
 | |
|         // slash, of course).  Then calculate the expected exponent and if
 | |
|         // if isn't the same as the actual exponent, write an appropriate
 | |
|         // number of > signs.  Finally, terminate the whole thing with
 | |
|         // a colon.
 | |
|         util_append64(result, baseValue);
 | |
|         if (radix != 10) {
 | |
|             result.append(gSlash);
 | |
|             util_append64(result, radix);
 | |
|         }
 | |
|         int numCarets = expectedExponent() - exponent;
 | |
|         for (int i = 0; i < numCarets; i++) {
 | |
|             result.append(gGreaterThan);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     result.append(gColon);
 | |
|     result.append(gSpace);
 | |
| 
 | |
|     // if the rule text begins with a space, write an apostrophe
 | |
|     // (whitespace after the rule descriptor is ignored; the
 | |
|     // apostrophe is used to make the whitespace significant)
 | |
|     if (fRuleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) {
 | |
|         result.append(gTick);
 | |
|     }
 | |
| 
 | |
|     // now, write the rule's rule text, inserting appropriate
 | |
|     // substitution tokens in the appropriate places
 | |
|     UnicodeString ruleTextCopy;
 | |
|     ruleTextCopy.setTo(fRuleText);
 | |
| 
 | |
|     UnicodeString temp;
 | |
|     if (sub2 != NULL) {
 | |
|         sub2->toString(temp);
 | |
|         ruleTextCopy.insert(sub2->getPos(), temp);
 | |
|     }
 | |
|     if (sub1 != NULL) {
 | |
|         sub1->toString(temp);
 | |
|         ruleTextCopy.insert(sub1->getPos(), temp);
 | |
|     }
 | |
| 
 | |
|     result.append(ruleTextCopy);
 | |
| 
 | |
|     // and finally, top the whole thing off with a semicolon and
 | |
|     // return the result
 | |
|     result.append(gSemicolon);
 | |
| }
 | |
| 
 | |
| int64_t NFRule::getDivisor() const
 | |
| {
 | |
|     return util64_pow(radix, exponent);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------
 | |
| // formatting
 | |
| //-----------------------------------------------------------------------
 | |
| 
 | |
| /**
 | |
| * Formats the number, and inserts the resulting text into
 | |
| * toInsertInto.
 | |
| * @param number The number being formatted
 | |
| * @param toInsertInto The string where the resultant text should
 | |
| * be inserted
 | |
| * @param pos The position in toInsertInto where the resultant text
 | |
| * should be inserted
 | |
| */
 | |
| void
 | |
| NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
 | |
| {
 | |
|     // first, insert the rule's rule text into toInsertInto at the
 | |
|     // specified position, then insert the results of the substitutions
 | |
|     // into the right places in toInsertInto (notice we do the
 | |
|     // substitutions in reverse order so that the offsets don't get
 | |
|     // messed up)
 | |
|     int32_t pluralRuleStart = fRuleText.length();
 | |
|     int32_t lengthOffset = 0;
 | |
|     if (!rulePatternFormat) {
 | |
|         toInsertInto.insert(pos, fRuleText);
 | |
|     }
 | |
|     else {
 | |
|         pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
 | |
|         int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
 | |
|         int initialLength = toInsertInto.length();
 | |
|         if (pluralRuleEnd < fRuleText.length() - 1) {
 | |
|             toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
 | |
|         }
 | |
|         toInsertInto.insert(pos,
 | |
|             rulePatternFormat->format((int32_t)(number/util64_pow(radix, exponent)), status));
 | |
|         if (pluralRuleStart > 0) {
 | |
|             toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
 | |
|         }
 | |
|         lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
 | |
|     }
 | |
| 
 | |
|     if (sub2 != NULL) {
 | |
|         sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
 | |
|     }
 | |
|     if (sub1 != NULL) {
 | |
|         sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
| * Formats the number, and inserts the resulting text into
 | |
| * toInsertInto.
 | |
| * @param number The number being formatted
 | |
| * @param toInsertInto The string where the resultant text should
 | |
| * be inserted
 | |
| * @param pos The position in toInsertInto where the resultant text
 | |
| * should be inserted
 | |
| */
 | |
| void
 | |
| NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
 | |
| {
 | |
|     // first, insert the rule's rule text into toInsertInto at the
 | |
|     // specified position, then insert the results of the substitutions
 | |
|     // into the right places in toInsertInto
 | |
|     // [again, we have two copies of this routine that do the same thing
 | |
|     // so that we don't sacrifice precision in a long by casting it
 | |
|     // to a double]
 | |
|     int32_t pluralRuleStart = fRuleText.length();
 | |
|     int32_t lengthOffset = 0;
 | |
|     if (!rulePatternFormat) {
 | |
|         toInsertInto.insert(pos, fRuleText);
 | |
|     }
 | |
|     else {
 | |
|         pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
 | |
|         int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
 | |
|         int initialLength = toInsertInto.length();
 | |
|         if (pluralRuleEnd < fRuleText.length() - 1) {
 | |
|             toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
 | |
|         }
 | |
|         double pluralVal = number;
 | |
|         if (0 <= pluralVal && pluralVal < 1) {
 | |
|             // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
 | |
|             // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
 | |
|             pluralVal = uprv_round(pluralVal * util64_pow(radix, exponent));
 | |
|         }
 | |
|         else {
 | |
|             pluralVal = pluralVal / util64_pow(radix, exponent);
 | |
|         }
 | |
|         toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status));
 | |
|         if (pluralRuleStart > 0) {
 | |
|             toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
 | |
|         }
 | |
|         lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
 | |
|     }
 | |
| 
 | |
|     if (sub2 != NULL) {
 | |
|         sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
 | |
|     }
 | |
|     if (sub1 != NULL) {
 | |
|         sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
| * Used by the owning rule set to determine whether to invoke the
 | |
| * rollback rule (i.e., whether this rule or the one that precedes
 | |
| * it in the rule set's list should be used to format the number)
 | |
| * @param The number being formatted
 | |
| * @return True if the rule set should use the rule that precedes
 | |
| * this one in its list; false if it should use this rule
 | |
| */
 | |
| UBool
 | |
| NFRule::shouldRollBack(int64_t number) const
 | |
| {
 | |
|     // we roll back if the rule contains a modulus substitution,
 | |
|     // the number being formatted is an even multiple of the rule's
 | |
|     // divisor, and the rule's base value is NOT an even multiple
 | |
|     // of its divisor
 | |
|     // In other words, if the original description had
 | |
|     //    100: << hundred[ >>];
 | |
|     // that expands into
 | |
|     //    100: << hundred;
 | |
|     //    101: << hundred >>;
 | |
|     // internally.  But when we're formatting 200, if we use the rule
 | |
|     // at 101, which would normally apply, we get "two hundred zero".
 | |
|     // To prevent this, we roll back and use the rule at 100 instead.
 | |
|     // This is the logic that makes this happen: the rule at 101 has
 | |
|     // a modulus substitution, its base value isn't an even multiple
 | |
|     // of 100, and the value we're trying to format _is_ an even
 | |
|     // multiple of 100.  This is called the "rollback rule."
 | |
|     if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) {
 | |
|         int64_t re = util64_pow(radix, exponent);
 | |
|         return (number % re) == 0 && (baseValue % re) != 0;
 | |
|     }
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------
 | |
| // parsing
 | |
| //-----------------------------------------------------------------------
 | |
| 
 | |
| /**
 | |
| * Attempts to parse the string with this rule.
 | |
| * @param text The string being parsed
 | |
| * @param parsePosition On entry, the value is ignored and assumed to
 | |
| * be 0. On exit, this has been updated with the position of the first
 | |
| * character not consumed by matching the text against this rule
 | |
| * (if this rule doesn't match the text at all, the parse position
 | |
| * if left unchanged (presumably at 0) and the function returns
 | |
| * new Long(0)).
 | |
| * @param isFractionRule True if this rule is contained within a
 | |
| * fraction rule set.  This is only used if the rule has no
 | |
| * substitutions.
 | |
| * @return If this rule matched the text, this is the rule's base value
 | |
| * combined appropriately with the results of parsing the substitutions.
 | |
| * If nothing matched, this is new Long(0) and the parse position is
 | |
| * left unchanged.  The result will be an instance of Long if the
 | |
| * result is an integer and Double otherwise.  The result is never null.
 | |
| */
 | |
| #ifdef RBNF_DEBUG
 | |
| #include <stdio.h>
 | |
| 
 | |
| static void dumpUS(FILE* f, const UnicodeString& us) {
 | |
|   int len = us.length();
 | |
|   char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
 | |
|   if (buf != NULL) {
 | |
| 	  us.extract(0, len, buf);
 | |
| 	  buf[len] = 0;
 | |
| 	  fprintf(f, "%s", buf);
 | |
| 	  uprv_free(buf); //delete[] buf;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| UBool
 | |
| NFRule::doParse(const UnicodeString& text,
 | |
|                 ParsePosition& parsePosition,
 | |
|                 UBool isFractionRule,
 | |
|                 double upperBound,
 | |
|                 uint32_t nonNumericalExecutedRuleMask,
 | |
|                 Formattable& resVal) const
 | |
| {
 | |
|     // internally we operate on a copy of the string being parsed
 | |
|     // (because we're going to change it) and use our own ParsePosition
 | |
|     ParsePosition pp;
 | |
|     UnicodeString workText(text);
 | |
| 
 | |
|     int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : fRuleText.length();
 | |
|     int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : fRuleText.length();
 | |
| 
 | |
|     // check to see whether the text before the first substitution
 | |
|     // matches the text at the beginning of the string being
 | |
|     // parsed.  If it does, strip that off the front of workText;
 | |
|     // otherwise, dump out with a mismatch
 | |
|     UnicodeString prefix;
 | |
|     prefix.setTo(fRuleText, 0, sub1Pos);
 | |
| 
 | |
| #ifdef RBNF_DEBUG
 | |
|     fprintf(stderr, "doParse %p ", this);
 | |
|     {
 | |
|         UnicodeString rt;
 | |
|         _appendRuleText(rt);
 | |
|         dumpUS(stderr, rt);
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, " text: '");
 | |
|     dumpUS(stderr, text);
 | |
|     fprintf(stderr, "' prefix: '");
 | |
|     dumpUS(stderr, prefix);
 | |
| #endif
 | |
|     stripPrefix(workText, prefix, pp);
 | |
|     int32_t prefixLength = text.length() - workText.length();
 | |
| 
 | |
| #ifdef RBNF_DEBUG
 | |
|     fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos);
 | |
| #endif
 | |
| 
 | |
|     if (pp.getIndex() == 0 && sub1Pos != 0) {
 | |
|         // commented out because ParsePosition doesn't have error index in 1.1.x
 | |
|         // restored for ICU4C port
 | |
|         parsePosition.setErrorIndex(pp.getErrorIndex());
 | |
|         resVal.setLong(0);
 | |
|         return TRUE;
 | |
|     }
 | |
|     if (baseValue == kInfinityRule) {
 | |
|         // If you match this, don't try to perform any calculations on it.
 | |
|         parsePosition.setIndex(pp.getIndex());
 | |
|         resVal.setDouble(uprv_getInfinity());
 | |
|         return TRUE;
 | |
|     }
 | |
|     if (baseValue == kNaNRule) {
 | |
|         // If you match this, don't try to perform any calculations on it.
 | |
|         parsePosition.setIndex(pp.getIndex());
 | |
|         resVal.setDouble(uprv_getNaN());
 | |
|         return TRUE;
 | |
|     }
 | |
| 
 | |
|     // this is the fun part.  The basic guts of the rule-matching
 | |
|     // logic is matchToDelimiter(), which is called twice.  The first
 | |
|     // time it searches the input string for the rule text BETWEEN
 | |
|     // the substitutions and tries to match the intervening text
 | |
|     // in the input string with the first substitution.  If that
 | |
|     // succeeds, it then calls it again, this time to look for the
 | |
|     // rule text after the second substitution and to match the
 | |
|     // intervening input text against the second substitution.
 | |
|     //
 | |
|     // For example, say we have a rule that looks like this:
 | |
|     //    first << middle >> last;
 | |
|     // and input text that looks like this:
 | |
|     //    first one middle two last
 | |
|     // First we use stripPrefix() to match "first " in both places and
 | |
|     // strip it off the front, leaving
 | |
|     //    one middle two last
 | |
|     // Then we use matchToDelimiter() to match " middle " and try to
 | |
|     // match "one" against a substitution.  If it's successful, we now
 | |
|     // have
 | |
|     //    two last
 | |
|     // We use matchToDelimiter() a second time to match " last" and
 | |
|     // try to match "two" against a substitution.  If "two" matches
 | |
|     // the substitution, we have a successful parse.
 | |
|     //
 | |
|     // Since it's possible in many cases to find multiple instances
 | |
|     // of each of these pieces of rule text in the input string,
 | |
|     // we need to try all the possible combinations of these
 | |
|     // locations.  This prevents us from prematurely declaring a mismatch,
 | |
|     // and makes sure we match as much input text as we can.
 | |
|     int highWaterMark = 0;
 | |
|     double result = 0;
 | |
|     int start = 0;
 | |
|     double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
 | |
| 
 | |
|     UnicodeString temp;
 | |
|     do {
 | |
|         // our partial parse result starts out as this rule's base
 | |
|         // value.  If it finds a successful match, matchToDelimiter()
 | |
|         // will compose this in some way with what it gets back from
 | |
|         // the substitution, giving us a new partial parse result
 | |
|         pp.setIndex(0);
 | |
| 
 | |
|         temp.setTo(fRuleText, sub1Pos, sub2Pos - sub1Pos);
 | |
|         double partialResult = matchToDelimiter(workText, start, tempBaseValue,
 | |
|             temp, pp, sub1,
 | |
|             nonNumericalExecutedRuleMask,
 | |
|             upperBound);
 | |
| 
 | |
|         // if we got a successful match (or were trying to match a
 | |
|         // null substitution), pp is now pointing at the first unmatched
 | |
|         // character.  Take note of that, and try matchToDelimiter()
 | |
|         // on the input text again
 | |
|         if (pp.getIndex() != 0 || sub1 == NULL) {
 | |
|             start = pp.getIndex();
 | |
| 
 | |
|             UnicodeString workText2;
 | |
|             workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
 | |
|             ParsePosition pp2;
 | |
| 
 | |
|             // the second matchToDelimiter() will compose our previous
 | |
|             // partial result with whatever it gets back from its
 | |
|             // substitution if there's a successful match, giving us
 | |
|             // a real result
 | |
|             temp.setTo(fRuleText, sub2Pos, fRuleText.length() - sub2Pos);
 | |
|             partialResult = matchToDelimiter(workText2, 0, partialResult,
 | |
|                 temp, pp2, sub2,
 | |
|                 nonNumericalExecutedRuleMask,
 | |
|                 upperBound);
 | |
| 
 | |
|             // if we got a successful match on this second
 | |
|             // matchToDelimiter() call, update the high-water mark
 | |
|             // and result (if necessary)
 | |
|             if (pp2.getIndex() != 0 || sub2 == NULL) {
 | |
|                 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
 | |
|                     highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
 | |
|                     result = partialResult;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 // commented out because ParsePosition doesn't have error index in 1.1.x
 | |
|                 // restored for ICU4C port
 | |
|                 int32_t i_temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex();
 | |
|                 if (i_temp> parsePosition.getErrorIndex()) {
 | |
|                     parsePosition.setErrorIndex(i_temp);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             // commented out because ParsePosition doesn't have error index in 1.1.x
 | |
|             // restored for ICU4C port
 | |
|             int32_t i_temp = sub1Pos + pp.getErrorIndex();
 | |
|             if (i_temp > parsePosition.getErrorIndex()) {
 | |
|                 parsePosition.setErrorIndex(i_temp);
 | |
|             }
 | |
|         }
 | |
|         // keep trying to match things until the outer matchToDelimiter()
 | |
|         // call fails to make a match (each time, it picks up where it
 | |
|         // left off the previous time)
 | |
|     } while (sub1Pos != sub2Pos
 | |
|         && pp.getIndex() > 0
 | |
|         && pp.getIndex() < workText.length()
 | |
|         && pp.getIndex() != start);
 | |
| 
 | |
|     // update the caller's ParsePosition with our high-water mark
 | |
|     // (i.e., it now points at the first character this function
 | |
|     // didn't match-- the ParsePosition is therefore unchanged if
 | |
|     // we didn't match anything)
 | |
|     parsePosition.setIndex(highWaterMark);
 | |
|     // commented out because ParsePosition doesn't have error index in 1.1.x
 | |
|     // restored for ICU4C port
 | |
|     if (highWaterMark > 0) {
 | |
|         parsePosition.setErrorIndex(0);
 | |
|     }
 | |
| 
 | |
|     // this is a hack for one unusual condition: Normally, whether this
 | |
|     // rule belong to a fraction rule set or not is handled by its
 | |
|     // substitutions.  But if that rule HAS NO substitutions, then
 | |
|     // we have to account for it here.  By definition, if the matching
 | |
|     // rule in a fraction rule set has no substitutions, its numerator
 | |
|     // is 1, and so the result is the reciprocal of its base value.
 | |
|     if (isFractionRule && highWaterMark > 0 && sub1 == NULL) {
 | |
|         result = 1 / result;
 | |
|     }
 | |
| 
 | |
|     resVal.setDouble(result);
 | |
|     return TRUE; // ??? do we need to worry if it is a long or a double?
 | |
| }
 | |
| 
 | |
| /**
 | |
| * This function is used by parse() to match the text being parsed
 | |
| * against a possible prefix string.  This function
 | |
| * matches characters from the beginning of the string being parsed
 | |
| * to characters from the prospective prefix.  If they match, pp is
 | |
| * updated to the first character not matched, and the result is
 | |
| * the unparsed part of the string.  If they don't match, the whole
 | |
| * string is returned, and pp is left unchanged.
 | |
| * @param text The string being parsed
 | |
| * @param prefix The text to match against
 | |
| * @param pp On entry, ignored and assumed to be 0.  On exit, points
 | |
| * to the first unmatched character (assuming the whole prefix matched),
 | |
| * or is unchanged (if the whole prefix didn't match).
 | |
| * @return If things match, this is the unparsed part of "text";
 | |
| * if they didn't match, this is "text".
 | |
| */
 | |
| void
 | |
| NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
 | |
| {
 | |
|     // if the prefix text is empty, dump out without doing anything
 | |
|     if (prefix.length() != 0) {
 | |
|     	UErrorCode status = U_ZERO_ERROR;
 | |
|         // use prefixLength() to match the beginning of
 | |
|         // "text" against "prefix".  This function returns the
 | |
|         // number of characters from "text" that matched (or 0 if
 | |
|         // we didn't match the whole prefix)
 | |
|         int32_t pfl = prefixLength(text, prefix, status);
 | |
|         if (U_FAILURE(status)) { // Memory allocation error.
 | |
|         	return;
 | |
|         }
 | |
|         if (pfl != 0) {
 | |
|             // if we got a successful match, update the parse position
 | |
|             // and strip the prefix off of "text"
 | |
|             pp.setIndex(pp.getIndex() + pfl);
 | |
|             text.remove(0, pfl);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
| * Used by parse() to match a substitution and any following text.
 | |
| * "text" is searched for instances of "delimiter".  For each instance
 | |
| * of delimiter, the intervening text is tested to see whether it
 | |
| * matches the substitution.  The longest match wins.
 | |
| * @param text The string being parsed
 | |
| * @param startPos The position in "text" where we should start looking
 | |
| * for "delimiter".
 | |
| * @param baseValue A partial parse result (often the rule's base value),
 | |
| * which is combined with the result from matching the substitution
 | |
| * @param delimiter The string to search "text" for.
 | |
| * @param pp Ignored and presumed to be 0 on entry.  If there's a match,
 | |
| * on exit this will point to the first unmatched character.
 | |
| * @param sub If we find "delimiter" in "text", this substitution is used
 | |
| * to match the text between the beginning of the string and the
 | |
| * position of "delimiter."  (If "delimiter" is the empty string, then
 | |
| * this function just matches against this substitution and updates
 | |
| * everything accordingly.)
 | |
| * @param upperBound When matching the substitution, it will only
 | |
| * consider rules with base values lower than this value.
 | |
| * @return If there's a match, this is the result of composing
 | |
| * baseValue with the result of matching the substitution.  Otherwise,
 | |
| * this is new Long(0).  It's never null.  If the result is an integer,
 | |
| * this will be an instance of Long; otherwise, it's an instance of
 | |
| * Double.
 | |
| *
 | |
| * !!! note {dlf} in point of fact, in the java code the caller always converts
 | |
| * the result to a double, so we might as well return one.
 | |
| */
 | |
| double
 | |
| NFRule::matchToDelimiter(const UnicodeString& text,
 | |
|                          int32_t startPos,
 | |
|                          double _baseValue,
 | |
|                          const UnicodeString& delimiter,
 | |
|                          ParsePosition& pp,
 | |
|                          const NFSubstitution* sub,
 | |
|                          uint32_t nonNumericalExecutedRuleMask,
 | |
|                          double upperBound) const
 | |
| {
 | |
| 	UErrorCode status = U_ZERO_ERROR;
 | |
|     // if "delimiter" contains real (i.e., non-ignorable) text, search
 | |
|     // it for "delimiter" beginning at "start".  If that succeeds, then
 | |
|     // use "sub"'s doParse() method to match the text before the
 | |
|     // instance of "delimiter" we just found.
 | |
|     if (!allIgnorable(delimiter, status)) {
 | |
|     	if (U_FAILURE(status)) { //Memory allocation error.
 | |
|     		return 0;
 | |
|     	}
 | |
|         ParsePosition tempPP;
 | |
|         Formattable result;
 | |
| 
 | |
|         // use findText() to search for "delimiter".  It returns a two-
 | |
|         // element array: element 0 is the position of the match, and
 | |
|         // element 1 is the number of characters that matched
 | |
|         // "delimiter".
 | |
|         int32_t dLen;
 | |
|         int32_t dPos = findText(text, delimiter, startPos, &dLen);
 | |
| 
 | |
|         // if findText() succeeded, isolate the text preceding the
 | |
|         // match, and use "sub" to match that text
 | |
|         while (dPos >= 0) {
 | |
|             UnicodeString subText;
 | |
|             subText.setTo(text, 0, dPos);
 | |
|             if (subText.length() > 0) {
 | |
|                 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
 | |
| #if UCONFIG_NO_COLLATION
 | |
|                     FALSE,
 | |
| #else
 | |
|                     formatter->isLenient(),
 | |
| #endif
 | |
|                     nonNumericalExecutedRuleMask,
 | |
|                     result);
 | |
| 
 | |
|                 // if the substitution could match all the text up to
 | |
|                 // where we found "delimiter", then this function has
 | |
|                 // a successful match.  Bump the caller's parse position
 | |
|                 // to point to the first character after the text
 | |
|                 // that matches "delimiter", and return the result
 | |
|                 // we got from parsing the substitution.
 | |
|                 if (success && tempPP.getIndex() == dPos) {
 | |
|                     pp.setIndex(dPos + dLen);
 | |
|                     return result.getDouble();
 | |
|                 }
 | |
|                 else {
 | |
|                     // commented out because ParsePosition doesn't have error index in 1.1.x
 | |
|                     // restored for ICU4C port
 | |
|                     if (tempPP.getErrorIndex() > 0) {
 | |
|                         pp.setErrorIndex(tempPP.getErrorIndex());
 | |
|                     } else {
 | |
|                         pp.setErrorIndex(tempPP.getIndex());
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // if we didn't match the substitution, search for another
 | |
|             // copy of "delimiter" in "text" and repeat the loop if
 | |
|             // we find it
 | |
|             tempPP.setIndex(0);
 | |
|             dPos = findText(text, delimiter, dPos + dLen, &dLen);
 | |
|         }
 | |
|         // if we make it here, this was an unsuccessful match, and we
 | |
|         // leave pp unchanged and return 0
 | |
|         pp.setIndex(0);
 | |
|         return 0;
 | |
| 
 | |
|         // if "delimiter" is empty, or consists only of ignorable characters
 | |
|         // (i.e., is semantically empty), thwe we obviously can't search
 | |
|         // for "delimiter".  Instead, just use "sub" to parse as much of
 | |
|         // "text" as possible.
 | |
|     }
 | |
|     else if (sub == NULL) {
 | |
|         return _baseValue;
 | |
|     }
 | |
|     else {
 | |
|         ParsePosition tempPP;
 | |
|         Formattable result;
 | |
| 
 | |
|         // try to match the whole string against the substitution
 | |
|         UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
 | |
| #if UCONFIG_NO_COLLATION
 | |
|             FALSE,
 | |
| #else
 | |
|             formatter->isLenient(),
 | |
| #endif
 | |
|             nonNumericalExecutedRuleMask,
 | |
|             result);
 | |
|         if (success && (tempPP.getIndex() != 0)) {
 | |
|             // if there's a successful match (or it's a null
 | |
|             // substitution), update pp to point to the first
 | |
|             // character we didn't match, and pass the result from
 | |
|             // sub.doParse() on through to the caller
 | |
|             pp.setIndex(tempPP.getIndex());
 | |
|             return result.getDouble();
 | |
|         }
 | |
|         else {
 | |
|             // commented out because ParsePosition doesn't have error index in 1.1.x
 | |
|             // restored for ICU4C port
 | |
|             pp.setErrorIndex(tempPP.getErrorIndex());
 | |
|         }
 | |
| 
 | |
|         // and if we get to here, then nothing matched, so we return
 | |
|         // 0 and leave pp alone
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
| * Used by stripPrefix() to match characters.  If lenient parse mode
 | |
| * is off, this just calls startsWith().  If lenient parse mode is on,
 | |
| * this function uses CollationElementIterators to match characters in
 | |
| * the strings (only primary-order differences are significant in
 | |
| * determining whether there's a match).
 | |
| * @param str The string being tested
 | |
| * @param prefix The text we're hoping to see at the beginning
 | |
| * of "str"
 | |
| * @return If "prefix" is found at the beginning of "str", this
 | |
| * is the number of characters in "str" that were matched (this
 | |
| * isn't necessarily the same as the length of "prefix" when matching
 | |
| * text with a collator).  If there's no match, this is 0.
 | |
| */
 | |
| int32_t
 | |
| NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
 | |
| {
 | |
|     // if we're looking for an empty prefix, it obviously matches
 | |
|     // zero characters.  Just go ahead and return 0.
 | |
|     if (prefix.length() == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
| #if !UCONFIG_NO_COLLATION
 | |
|     // go through all this grief if we're in lenient-parse mode
 | |
|     if (formatter->isLenient()) {
 | |
|         // Check if non-lenient rule finds the text before call lenient parsing
 | |
|         if (str.startsWith(prefix)) {
 | |
|             return prefix.length();
 | |
|         }
 | |
|         // get the formatter's collator and use it to create two
 | |
|         // collation element iterators, one over the target string
 | |
|         // and another over the prefix (right now, we'll throw an
 | |
|         // exception if the collator we get back from the formatter
 | |
|         // isn't a RuleBasedCollator, because RuleBasedCollator defines
 | |
|         // the CollationElementIterator protocol.  Hopefully, this
 | |
|         // will change someday.)
 | |
|         const RuleBasedCollator* collator = formatter->getCollator();
 | |
|         if (collator == NULL) {
 | |
|             status = U_MEMORY_ALLOCATION_ERROR;
 | |
|             return 0;
 | |
|         }
 | |
|         LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
 | |
|         LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
 | |
|         // Check for memory allocation error.
 | |
|         if (strIter.isNull() || prefixIter.isNull()) {
 | |
|             status = U_MEMORY_ALLOCATION_ERROR;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         UErrorCode err = U_ZERO_ERROR;
 | |
| 
 | |
|         // The original code was problematic.  Consider this match:
 | |
|         // prefix = "fifty-"
 | |
|         // string = " fifty-7"
 | |
|         // The intent is to match string up to the '7', by matching 'fifty-' at position 1
 | |
|         // in the string.  Unfortunately, we were getting a match, and then computing where
 | |
|         // the match terminated by rematching the string.  The rematch code was using as an
 | |
|         // initial guess the substring of string between 0 and prefix.length.  Because of
 | |
|         // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
 | |
|         // the position before the hyphen in the string.  Recursing down, we then parsed the
 | |
|         // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
 | |
|         // This was not pretty, especially since the string "fifty-7" parsed just fine.
 | |
|         //
 | |
|         // We have newer APIs now, so we can use calls on the iterator to determine what we
 | |
|         // matched up to.  If we terminate because we hit the last element in the string,
 | |
|         // our match terminates at this length.  If we terminate because we hit the last element
 | |
|         // in the target, our match terminates at one before the element iterator position.
 | |
| 
 | |
|         // match collation elements between the strings
 | |
|         int32_t oStr = strIter->next(err);
 | |
|         int32_t oPrefix = prefixIter->next(err);
 | |
| 
 | |
|         while (oPrefix != CollationElementIterator::NULLORDER) {
 | |
|             // skip over ignorable characters in the target string
 | |
|             while (CollationElementIterator::primaryOrder(oStr) == 0
 | |
|                 && oStr != CollationElementIterator::NULLORDER) {
 | |
|                 oStr = strIter->next(err);
 | |
|             }
 | |
| 
 | |
|             // skip over ignorable characters in the prefix
 | |
|             while (CollationElementIterator::primaryOrder(oPrefix) == 0
 | |
|                 && oPrefix != CollationElementIterator::NULLORDER) {
 | |
|                 oPrefix = prefixIter->next(err);
 | |
|             }
 | |
| 
 | |
|             // dlf: move this above following test, if we consume the
 | |
|             // entire target, aren't we ok even if the source was also
 | |
|             // entirely consumed?
 | |
| 
 | |
|             // if skipping over ignorables brought to the end of
 | |
|             // the prefix, we DID match: drop out of the loop
 | |
|             if (oPrefix == CollationElementIterator::NULLORDER) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // if skipping over ignorables brought us to the end
 | |
|             // of the target string, we didn't match and return 0
 | |
|             if (oStr == CollationElementIterator::NULLORDER) {
 | |
|                 return 0;
 | |
|             }
 | |
| 
 | |
|             // match collation elements from the two strings
 | |
|             // (considering only primary differences).  If we
 | |
|             // get a mismatch, dump out and return 0
 | |
|             if (CollationElementIterator::primaryOrder(oStr)
 | |
|                 != CollationElementIterator::primaryOrder(oPrefix)) {
 | |
|                 return 0;
 | |
| 
 | |
|                 // otherwise, advance to the next character in each string
 | |
|                 // and loop (we drop out of the loop when we exhaust
 | |
|                 // collation elements in the prefix)
 | |
|             } else {
 | |
|                 oStr = strIter->next(err);
 | |
|                 oPrefix = prefixIter->next(err);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         int32_t result = strIter->getOffset();
 | |
|         if (oStr != CollationElementIterator::NULLORDER) {
 | |
|             --result; // back over character that we don't want to consume;
 | |
|         }
 | |
| 
 | |
| #ifdef RBNF_DEBUG
 | |
|         fprintf(stderr, "prefix length: %d\n", result);
 | |
| #endif
 | |
|         return result;
 | |
| #if 0
 | |
|         //----------------------------------------------------------------
 | |
|         // JDK 1.2-specific API call
 | |
|         // return strIter.getOffset();
 | |
|         //----------------------------------------------------------------
 | |
|         // JDK 1.1 HACK (take out for 1.2-specific code)
 | |
| 
 | |
|         // if we make it to here, we have a successful match.  Now we
 | |
|         // have to find out HOW MANY characters from the target string
 | |
|         // matched the prefix (there isn't necessarily a one-to-one
 | |
|         // mapping between collation elements and characters).
 | |
|         // In JDK 1.2, there's a simple getOffset() call we can use.
 | |
|         // In JDK 1.1, on the other hand, we have to go through some
 | |
|         // ugly contortions.  First, use the collator to compare the
 | |
|         // same number of characters from the prefix and target string.
 | |
|         // If they're equal, we're done.
 | |
|         collator->setStrength(Collator::PRIMARY);
 | |
|         if (str.length() >= prefix.length()) {
 | |
|             UnicodeString temp;
 | |
|             temp.setTo(str, 0, prefix.length());
 | |
|             if (collator->equals(temp, prefix)) {
 | |
| #ifdef RBNF_DEBUG
 | |
|                 fprintf(stderr, "returning: %d\n", prefix.length());
 | |
| #endif
 | |
|                 return prefix.length();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // if they're not equal, then we have to compare successively
 | |
|         // larger and larger substrings of the target string until we
 | |
|         // get to one that matches the prefix.  At that point, we know
 | |
|         // how many characters matched the prefix, and we can return.
 | |
|         int32_t p = 1;
 | |
|         while (p <= str.length()) {
 | |
|             UnicodeString temp;
 | |
|             temp.setTo(str, 0, p);
 | |
|             if (collator->equals(temp, prefix)) {
 | |
|                 return p;
 | |
|             } else {
 | |
|                 ++p;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // SHOULD NEVER GET HERE!!!
 | |
|         return 0;
 | |
|         //----------------------------------------------------------------
 | |
| #endif
 | |
| 
 | |
|         // If lenient parsing is turned off, forget all that crap above.
 | |
|         // Just use String.startsWith() and be done with it.
 | |
|   } else
 | |
| #endif
 | |
|   {
 | |
|       if (str.startsWith(prefix)) {
 | |
|           return prefix.length();
 | |
|       } else {
 | |
|           return 0;
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
| * Searches a string for another string.  If lenient parsing is off,
 | |
| * this just calls indexOf().  If lenient parsing is on, this function
 | |
| * uses CollationElementIterator to match characters, and only
 | |
| * primary-order differences are significant in determining whether
 | |
| * there's a match.
 | |
| * @param str The string to search
 | |
| * @param key The string to search "str" for
 | |
| * @param startingAt The index into "str" where the search is to
 | |
| * begin
 | |
| * @return A two-element array of ints.  Element 0 is the position
 | |
| * of the match, or -1 if there was no match.  Element 1 is the
 | |
| * number of characters in "str" that matched (which isn't necessarily
 | |
| * the same as the length of "key")
 | |
| */
 | |
| int32_t
 | |
| NFRule::findText(const UnicodeString& str,
 | |
|                  const UnicodeString& key,
 | |
|                  int32_t startingAt,
 | |
|                  int32_t* length) const
 | |
| {
 | |
|     if (rulePatternFormat) {
 | |
|         Formattable result;
 | |
|         FieldPosition position(UNUM_INTEGER_FIELD);
 | |
|         position.setBeginIndex(startingAt);
 | |
|         rulePatternFormat->parseType(str, this, result, position);
 | |
|         int start = position.getBeginIndex();
 | |
|         if (start >= 0) {
 | |
|             int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
 | |
|             int32_t pluralRuleSuffix = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
 | |
|             int32_t matchLen = position.getEndIndex() - start;
 | |
|             UnicodeString prefix(fRuleText.tempSubString(0, pluralRuleStart));
 | |
|             UnicodeString suffix(fRuleText.tempSubString(pluralRuleSuffix));
 | |
|             if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
 | |
|                     && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
 | |
|             {
 | |
|                 *length = matchLen + prefix.length() + suffix.length();
 | |
|                 return start - prefix.length();
 | |
|             }
 | |
|         }
 | |
|         *length = 0;
 | |
|         return -1;
 | |
|     }
 | |
|     if (!formatter->isLenient()) {
 | |
|         // if lenient parsing is turned off, this is easy: just call
 | |
|         // String.indexOf() and we're done
 | |
|         *length = key.length();
 | |
|         return str.indexOf(key, startingAt);
 | |
|     }
 | |
|     else {
 | |
|         // Check if non-lenient rule finds the text before call lenient parsing
 | |
|         *length = key.length();
 | |
|         int32_t pos = str.indexOf(key, startingAt);
 | |
|         if(pos >= 0) {
 | |
|             return pos;
 | |
|         } else {
 | |
|             // but if lenient parsing is turned ON, we've got some work ahead of us
 | |
|             return findTextLenient(str, key, startingAt, length);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int32_t
 | |
| NFRule::findTextLenient(const UnicodeString& str,
 | |
|                  const UnicodeString& key,
 | |
|                  int32_t startingAt,
 | |
|                  int32_t* length) const
 | |
| {
 | |
|     //----------------------------------------------------------------
 | |
|     // JDK 1.1 HACK (take out of 1.2-specific code)
 | |
| 
 | |
|     // in JDK 1.2, CollationElementIterator provides us with an
 | |
|     // API to map between character offsets and collation elements
 | |
|     // and we can do this by marching through the string comparing
 | |
|     // collation elements.  We can't do that in JDK 1.1.  Instead,
 | |
|     // we have to go through this horrible slow mess:
 | |
|     int32_t p = startingAt;
 | |
|     int32_t keyLen = 0;
 | |
| 
 | |
|     // basically just isolate smaller and smaller substrings of
 | |
|     // the target string (each running to the end of the string,
 | |
|     // and with the first one running from startingAt to the end)
 | |
|     // and then use prefixLength() to see if the search key is at
 | |
|     // the beginning of each substring.  This is excruciatingly
 | |
|     // slow, but it will locate the key and tell use how long the
 | |
|     // matching text was.
 | |
|     UnicodeString temp;
 | |
|     UErrorCode status = U_ZERO_ERROR;
 | |
|     while (p < str.length() && keyLen == 0) {
 | |
|         temp.setTo(str, p, str.length() - p);
 | |
|         keyLen = prefixLength(temp, key, status);
 | |
|         if (U_FAILURE(status)) {
 | |
|             break;
 | |
|         }
 | |
|         if (keyLen != 0) {
 | |
|             *length = keyLen;
 | |
|             return p;
 | |
|         }
 | |
|         ++p;
 | |
|     }
 | |
|     // if we make it to here, we didn't find it.  Return -1 for the
 | |
|     // location.  The length should be ignored, but set it to 0,
 | |
|     // which should be "safe"
 | |
|     *length = 0;
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
| * Checks to see whether a string consists entirely of ignorable
 | |
| * characters.
 | |
| * @param str The string to test.
 | |
| * @return true if the string is empty of consists entirely of
 | |
| * characters that the number formatter's collator says are
 | |
| * ignorable at the primary-order level.  false otherwise.
 | |
| */
 | |
| UBool
 | |
| NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
 | |
| {
 | |
|     // if the string is empty, we can just return true
 | |
|     if (str.length() == 0) {
 | |
|         return TRUE;
 | |
|     }
 | |
| 
 | |
| #if !UCONFIG_NO_COLLATION
 | |
|     // if lenient parsing is turned on, walk through the string with
 | |
|     // a collation element iterator and make sure each collation
 | |
|     // element is 0 (ignorable) at the primary level
 | |
|     if (formatter->isLenient()) {
 | |
|         const RuleBasedCollator* collator = formatter->getCollator();
 | |
|         if (collator == NULL) {
 | |
|             status = U_MEMORY_ALLOCATION_ERROR;
 | |
|             return FALSE;
 | |
|         }
 | |
|         LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
 | |
| 
 | |
|         // Memory allocation error check.
 | |
|         if (iter.isNull()) {
 | |
|             status = U_MEMORY_ALLOCATION_ERROR;
 | |
|             return FALSE;
 | |
|         }
 | |
| 
 | |
|         UErrorCode err = U_ZERO_ERROR;
 | |
|         int32_t o = iter->next(err);
 | |
|         while (o != CollationElementIterator::NULLORDER
 | |
|             && CollationElementIterator::primaryOrder(o) == 0) {
 | |
|             o = iter->next(err);
 | |
|         }
 | |
| 
 | |
|         return o == CollationElementIterator::NULLORDER;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // if lenient parsing is turned off, there is no such thing as
 | |
|     // an ignorable character: return true only if the string is empty
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| void
 | |
| NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) {
 | |
|     if (sub1 != NULL) {
 | |
|         sub1->setDecimalFormatSymbols(newSymbols, status);
 | |
|     }
 | |
|     if (sub2 != NULL) {
 | |
|         sub2->setDecimalFormatSymbols(newSymbols, status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| U_NAMESPACE_END
 | |
| 
 | |
| /* U_HAVE_RBNF */
 | |
| #endif
 |