1370 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1370 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
| // © 2017 and later: Unicode, Inc. and others.
 | |
| // License & terms of use: http://www.unicode.org/copyright.html
 | |
| 
 | |
| #include "unicode/utypes.h"
 | |
| 
 | |
| #if !UCONFIG_NO_FORMATTING
 | |
| 
 | |
| #include <cstdlib>
 | |
| #include <cmath>
 | |
| #include <limits>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #include "unicode/plurrule.h"
 | |
| #include "cmemory.h"
 | |
| #include "number_decnum.h"
 | |
| #include "putilimp.h"
 | |
| #include "number_decimalquantity.h"
 | |
| #include "number_roundingutils.h"
 | |
| #include "double-conversion.h"
 | |
| #include "charstr.h"
 | |
| #include "number_utils.h"
 | |
| #include "uassert.h"
 | |
| #include "util.h"
 | |
| 
 | |
| using namespace icu;
 | |
| using namespace icu::number;
 | |
| using namespace icu::number::impl;
 | |
| 
 | |
| using icu::double_conversion::DoubleToStringConverter;
 | |
| using icu::double_conversion::StringToDoubleConverter;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| int8_t NEGATIVE_FLAG = 1;
 | |
| int8_t INFINITY_FLAG = 2;
 | |
| int8_t NAN_FLAG = 4;
 | |
| 
 | |
| /** Helper function for safe subtraction (no overflow). */
 | |
| inline int32_t safeSubtract(int32_t a, int32_t b) {
 | |
|     // Note: In C++, signed integer subtraction is undefined behavior.
 | |
|     int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b));
 | |
|     if (b < 0 && diff < a) { return INT32_MAX; }
 | |
|     if (b > 0 && diff > a) { return INT32_MIN; }
 | |
|     return diff;
 | |
| }
 | |
| 
 | |
| static double DOUBLE_MULTIPLIERS[] = {
 | |
|         1e0,
 | |
|         1e1,
 | |
|         1e2,
 | |
|         1e3,
 | |
|         1e4,
 | |
|         1e5,
 | |
|         1e6,
 | |
|         1e7,
 | |
|         1e8,
 | |
|         1e9,
 | |
|         1e10,
 | |
|         1e11,
 | |
|         1e12,
 | |
|         1e13,
 | |
|         1e14,
 | |
|         1e15,
 | |
|         1e16,
 | |
|         1e17,
 | |
|         1e18,
 | |
|         1e19,
 | |
|         1e20,
 | |
|         1e21};
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| icu::IFixedDecimal::~IFixedDecimal() = default;
 | |
| 
 | |
| DecimalQuantity::DecimalQuantity() {
 | |
|     setBcdToZero();
 | |
|     flags = 0;
 | |
| }
 | |
| 
 | |
| DecimalQuantity::~DecimalQuantity() {
 | |
|     if (usingBytes) {
 | |
|         uprv_free(fBCD.bcdBytes.ptr);
 | |
|         fBCD.bcdBytes.ptr = nullptr;
 | |
|         usingBytes = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) {
 | |
|     *this = other;
 | |
| }
 | |
| 
 | |
| DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT {
 | |
|     *this = std::move(src);
 | |
| }
 | |
| 
 | |
| DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) {
 | |
|     if (this == &other) {
 | |
|         return *this;
 | |
|     }
 | |
|     copyBcdFrom(other);
 | |
|     copyFieldsFrom(other);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT {
 | |
|     if (this == &src) {
 | |
|         return *this;
 | |
|     }
 | |
|     moveBcdFrom(src);
 | |
|     copyFieldsFrom(src);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) {
 | |
|     bogus = other.bogus;
 | |
|     lReqPos = other.lReqPos;
 | |
|     rReqPos = other.rReqPos;
 | |
|     scale = other.scale;
 | |
|     precision = other.precision;
 | |
|     flags = other.flags;
 | |
|     origDouble = other.origDouble;
 | |
|     origDelta = other.origDelta;
 | |
|     isApproximate = other.isApproximate;
 | |
|     exponent = other.exponent;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::clear() {
 | |
|     lReqPos = 0;
 | |
|     rReqPos = 0;
 | |
|     flags = 0;
 | |
|     setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::setMinInteger(int32_t minInt) {
 | |
|     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
 | |
|     U_ASSERT(minInt >= 0);
 | |
| 
 | |
|     // Special behavior: do not set minInt to be less than what is already set.
 | |
|     // This is so significant digits rounding can set the integer length.
 | |
|     if (minInt < lReqPos) {
 | |
|         minInt = lReqPos;
 | |
|     }
 | |
| 
 | |
|     // Save values into internal state
 | |
|     lReqPos = minInt;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::setMinFraction(int32_t minFrac) {
 | |
|     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
 | |
|     U_ASSERT(minFrac >= 0);
 | |
| 
 | |
|     // Save values into internal state
 | |
|     // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE
 | |
|     rReqPos = -minFrac;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::applyMaxInteger(int32_t maxInt) {
 | |
|     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
 | |
|     U_ASSERT(maxInt >= 0);
 | |
| 
 | |
|     if (precision == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (maxInt <= scale) {
 | |
|         setBcdToZero();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int32_t magnitude = getMagnitude();
 | |
|     if (maxInt <= magnitude) {
 | |
|         popFromLeft(magnitude - maxInt + 1);
 | |
|         compact();
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t DecimalQuantity::getPositionFingerprint() const {
 | |
|     uint64_t fingerprint = 0;
 | |
|     fingerprint ^= (lReqPos << 16);
 | |
|     fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32);
 | |
|     return fingerprint;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
 | |
|                                        UErrorCode& status) {
 | |
|     // Do not call this method with an increment having only a 1 or a 5 digit!
 | |
|     // Use a more efficient call to either roundToMagnitude() or roundToNickel().
 | |
|     // Check a few popular rounding increments; a more thorough check is in Java.
 | |
|     U_ASSERT(roundingIncrement != 0.01);
 | |
|     U_ASSERT(roundingIncrement != 0.05);
 | |
|     U_ASSERT(roundingIncrement != 0.1);
 | |
|     U_ASSERT(roundingIncrement != 0.5);
 | |
|     U_ASSERT(roundingIncrement != 1);
 | |
|     U_ASSERT(roundingIncrement != 5);
 | |
| 
 | |
|     DecNum incrementDN;
 | |
|     incrementDN.setTo(roundingIncrement, status);
 | |
|     if (U_FAILURE(status)) { return; }
 | |
| 
 | |
|     // Divide this DecimalQuantity by the increment, round, then multiply back.
 | |
|     divideBy(incrementDN, status);
 | |
|     if (U_FAILURE(status)) { return; }
 | |
|     roundToMagnitude(0, roundingMode, status);
 | |
|     if (U_FAILURE(status)) { return; }
 | |
|     multiplyBy(incrementDN, status);
 | |
|     if (U_FAILURE(status)) { return; }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) {
 | |
|     if (isZeroish()) {
 | |
|         return;
 | |
|     }
 | |
|     // Convert to DecNum, multiply, and convert back.
 | |
|     DecNum decnum;
 | |
|     toDecNum(decnum, status);
 | |
|     if (U_FAILURE(status)) { return; }
 | |
|     decnum.multiplyBy(multiplicand, status);
 | |
|     if (U_FAILURE(status)) { return; }
 | |
|     setToDecNum(decnum, status);
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) {
 | |
|     if (isZeroish()) {
 | |
|         return;
 | |
|     }
 | |
|     // Convert to DecNum, multiply, and convert back.
 | |
|     DecNum decnum;
 | |
|     toDecNum(decnum, status);
 | |
|     if (U_FAILURE(status)) { return; }
 | |
|     decnum.divideBy(divisor, status);
 | |
|     if (U_FAILURE(status)) { return; }
 | |
|     setToDecNum(decnum, status);
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::negate() {
 | |
|     flags ^= NEGATIVE_FLAG;
 | |
| }
 | |
| 
 | |
| int32_t DecimalQuantity::getMagnitude() const {
 | |
|     U_ASSERT(precision != 0);
 | |
|     return scale + precision - 1;
 | |
| }
 | |
| 
 | |
| bool DecimalQuantity::adjustMagnitude(int32_t delta) {
 | |
|     if (precision != 0) {
 | |
|         // i.e., scale += delta; origDelta += delta
 | |
|         bool overflow = uprv_add32_overflow(scale, delta, &scale);
 | |
|         overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow;
 | |
|         // Make sure that precision + scale won't overflow, either
 | |
|         int32_t dummy;
 | |
|         overflow = overflow || uprv_add32_overflow(scale, precision, &dummy);
 | |
|         return overflow;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| double DecimalQuantity::getPluralOperand(PluralOperand operand) const {
 | |
|     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
 | |
|     // See the comment at the top of this file explaining the "isApproximate" field.
 | |
|     U_ASSERT(!isApproximate);
 | |
| 
 | |
|     switch (operand) {
 | |
|         case PLURAL_OPERAND_I:
 | |
|             // Invert the negative sign if necessary
 | |
|             return static_cast<double>(isNegative() ? -toLong(true) : toLong(true));
 | |
|         case PLURAL_OPERAND_F:
 | |
|             return static_cast<double>(toFractionLong(true));
 | |
|         case PLURAL_OPERAND_T:
 | |
|             return static_cast<double>(toFractionLong(false));
 | |
|         case PLURAL_OPERAND_V:
 | |
|             return fractionCount();
 | |
|         case PLURAL_OPERAND_W:
 | |
|             return fractionCountWithoutTrailingZeros();
 | |
|         case PLURAL_OPERAND_E:
 | |
|             return static_cast<double>(getExponent());
 | |
|         case PLURAL_OPERAND_C:
 | |
|             // Plural operand `c` is currently an alias for `e`.
 | |
|             return static_cast<double>(getExponent());
 | |
|         default:
 | |
|             return std::abs(toDouble());
 | |
|     }
 | |
| }
 | |
| 
 | |
| int32_t DecimalQuantity::getExponent() const {
 | |
|     return exponent;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::adjustExponent(int delta) {
 | |
|     exponent = exponent + delta;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::resetExponent() {
 | |
|     adjustMagnitude(exponent);
 | |
|     exponent = 0;
 | |
| }
 | |
| 
 | |
| bool DecimalQuantity::hasIntegerValue() const {
 | |
|     return scale >= 0;
 | |
| }
 | |
| 
 | |
| int32_t DecimalQuantity::getUpperDisplayMagnitude() const {
 | |
|     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
 | |
|     // See the comment in the header file explaining the "isApproximate" field.
 | |
|     U_ASSERT(!isApproximate);
 | |
| 
 | |
|     int32_t magnitude = scale + precision;
 | |
|     int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude;
 | |
|     return result - 1;
 | |
| }
 | |
| 
 | |
| int32_t DecimalQuantity::getLowerDisplayMagnitude() const {
 | |
|     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
 | |
|     // See the comment in the header file explaining the "isApproximate" field.
 | |
|     U_ASSERT(!isApproximate);
 | |
| 
 | |
|     int32_t magnitude = scale;
 | |
|     int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| int8_t DecimalQuantity::getDigit(int32_t magnitude) const {
 | |
|     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
 | |
|     // See the comment at the top of this file explaining the "isApproximate" field.
 | |
|     U_ASSERT(!isApproximate);
 | |
| 
 | |
|     return getDigitPos(magnitude - scale);
 | |
| }
 | |
| 
 | |
| int32_t DecimalQuantity::fractionCount() const {
 | |
|     int32_t fractionCountWithExponent = -getLowerDisplayMagnitude() - exponent;
 | |
|     return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0;
 | |
| }
 | |
| 
 | |
| int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const {
 | |
|     int32_t fractionCountWithExponent = -scale - exponent;
 | |
|     return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0;  // max(-fractionCountWithExponent, 0)
 | |
| }
 | |
| 
 | |
| bool DecimalQuantity::isNegative() const {
 | |
|     return (flags & NEGATIVE_FLAG) != 0;
 | |
| }
 | |
| 
 | |
| Signum DecimalQuantity::signum() const {
 | |
|     bool isZero = (isZeroish() && !isInfinite());
 | |
|     bool isNeg = isNegative();
 | |
|     if (isZero && isNeg) {
 | |
|         return SIGNUM_NEG_ZERO;
 | |
|     } else if (isZero) {
 | |
|         return SIGNUM_POS_ZERO;
 | |
|     } else if (isNeg) {
 | |
|         return SIGNUM_NEG;
 | |
|     } else {
 | |
|         return SIGNUM_POS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool DecimalQuantity::isInfinite() const {
 | |
|     return (flags & INFINITY_FLAG) != 0;
 | |
| }
 | |
| 
 | |
| bool DecimalQuantity::isNaN() const {
 | |
|     return (flags & NAN_FLAG) != 0;
 | |
| }
 | |
| 
 | |
| bool DecimalQuantity::isZeroish() const {
 | |
|     return precision == 0;
 | |
| }
 | |
| 
 | |
| DecimalQuantity &DecimalQuantity::setToInt(int32_t n) {
 | |
|     setBcdToZero();
 | |
|     flags = 0;
 | |
|     if (n == INT32_MIN) {
 | |
|         flags |= NEGATIVE_FLAG;
 | |
|         // leave as INT32_MIN; handled below in _setToInt()
 | |
|     } else if (n < 0) {
 | |
|         flags |= NEGATIVE_FLAG;
 | |
|         n = -n;
 | |
|     }
 | |
|     if (n != 0) {
 | |
|         _setToInt(n);
 | |
|         compact();
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::_setToInt(int32_t n) {
 | |
|     if (n == INT32_MIN) {
 | |
|         readLongToBcd(-static_cast<int64_t>(n));
 | |
|     } else {
 | |
|         readIntToBcd(n);
 | |
|     }
 | |
| }
 | |
| 
 | |
| DecimalQuantity &DecimalQuantity::setToLong(int64_t n) {
 | |
|     setBcdToZero();
 | |
|     flags = 0;
 | |
|     if (n < 0 && n > INT64_MIN) {
 | |
|         flags |= NEGATIVE_FLAG;
 | |
|         n = -n;
 | |
|     }
 | |
|     if (n != 0) {
 | |
|         _setToLong(n);
 | |
|         compact();
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::_setToLong(int64_t n) {
 | |
|     if (n == INT64_MIN) {
 | |
|         DecNum decnum;
 | |
|         UErrorCode localStatus = U_ZERO_ERROR;
 | |
|         decnum.setTo("9.223372036854775808E+18", localStatus);
 | |
|         if (U_FAILURE(localStatus)) { return; } // unexpected
 | |
|         flags |= NEGATIVE_FLAG;
 | |
|         readDecNumberToBcd(decnum);
 | |
|     } else if (n <= INT32_MAX) {
 | |
|         readIntToBcd(static_cast<int32_t>(n));
 | |
|     } else {
 | |
|         readLongToBcd(n);
 | |
|     }
 | |
| }
 | |
| 
 | |
| DecimalQuantity &DecimalQuantity::setToDouble(double n) {
 | |
|     setBcdToZero();
 | |
|     flags = 0;
 | |
|     // signbit() from <math.h> handles +0.0 vs -0.0
 | |
|     if (std::signbit(n)) {
 | |
|         flags |= NEGATIVE_FLAG;
 | |
|         n = -n;
 | |
|     }
 | |
|     if (std::isnan(n) != 0) {
 | |
|         flags |= NAN_FLAG;
 | |
|     } else if (std::isfinite(n) == 0) {
 | |
|         flags |= INFINITY_FLAG;
 | |
|     } else if (n != 0) {
 | |
|         _setToDoubleFast(n);
 | |
|         compact();
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::_setToDoubleFast(double n) {
 | |
|     isApproximate = true;
 | |
|     origDouble = n;
 | |
|     origDelta = 0;
 | |
| 
 | |
|     // Make sure the double is an IEEE 754 double.  If not, fall back to the slow path right now.
 | |
|     // TODO: Make a fast path for other types of doubles.
 | |
|     if (!std::numeric_limits<double>::is_iec559) {
 | |
|         convertToAccurateDouble();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // To get the bits from the double, use memcpy, which takes care of endianness.
 | |
|     uint64_t ieeeBits;
 | |
|     uprv_memcpy(&ieeeBits, &n, sizeof(n));
 | |
|     int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff;
 | |
| 
 | |
|     // Not all integers can be represented exactly for exponent > 52
 | |
|     if (exponent <= 52 && static_cast<int64_t>(n) == n) {
 | |
|         _setToLong(static_cast<int64_t>(n));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (exponent == -1023 || exponent == 1024) {
 | |
|         // The extreme values of exponent are special; use slow path.
 | |
|         convertToAccurateDouble();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // 3.3219... is log2(10)
 | |
|     auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809488736234787031942948939017586);
 | |
|     if (fracLength >= 0) {
 | |
|         int32_t i = fracLength;
 | |
|         // 1e22 is the largest exact double.
 | |
|         for (; i >= 22; i -= 22) n *= 1e22;
 | |
|         n *= DOUBLE_MULTIPLIERS[i];
 | |
|     } else {
 | |
|         int32_t i = fracLength;
 | |
|         // 1e22 is the largest exact double.
 | |
|         for (; i <= -22; i += 22) n /= 1e22;
 | |
|         n /= DOUBLE_MULTIPLIERS[-i];
 | |
|     }
 | |
|     auto result = static_cast<int64_t>(uprv_round(n));
 | |
|     if (result != 0) {
 | |
|         _setToLong(result);
 | |
|         scale -= fracLength;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::convertToAccurateDouble() {
 | |
|     U_ASSERT(origDouble != 0);
 | |
|     int32_t delta = origDelta;
 | |
| 
 | |
|     // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++).
 | |
|     char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];
 | |
|     bool sign; // unused; always positive
 | |
|     int32_t length;
 | |
|     int32_t point;
 | |
|     DoubleToStringConverter::DoubleToAscii(
 | |
|         origDouble,
 | |
|         DoubleToStringConverter::DtoaMode::SHORTEST,
 | |
|         0,
 | |
|         buffer,
 | |
|         sizeof(buffer),
 | |
|         &sign,
 | |
|         &length,
 | |
|         &point
 | |
|     );
 | |
| 
 | |
|     setBcdToZero();
 | |
|     readDoubleConversionToBcd(buffer, length, point);
 | |
|     scale += delta;
 | |
|     explicitExactDouble = true;
 | |
| }
 | |
| 
 | |
| DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) {
 | |
|     setBcdToZero();
 | |
|     flags = 0;
 | |
| 
 | |
|     // Compute the decNumber representation
 | |
|     DecNum decnum;
 | |
|     decnum.setTo(n, status);
 | |
| 
 | |
|     _setToDecNum(decnum, status);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) {
 | |
|     setBcdToZero();
 | |
|     flags = 0;
 | |
| 
 | |
|     _setToDecNum(decnum, status);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) {
 | |
|     if (U_FAILURE(status)) { return; }
 | |
|     if (decnum.isNegative()) {
 | |
|         flags |= NEGATIVE_FLAG;
 | |
|     }
 | |
|     if (decnum.isNaN()) {
 | |
|         flags |= NAN_FLAG;
 | |
|     } else if (decnum.isInfinity()) {
 | |
|         flags |= INFINITY_FLAG;
 | |
|     } else if (!decnum.isZero()) {
 | |
|         readDecNumberToBcd(decnum);
 | |
|         compact();
 | |
|     }
 | |
| }
 | |
| 
 | |
| int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const {
 | |
|     // NOTE: Call sites should be guarded by fitsInLong(), like this:
 | |
|     // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ }
 | |
|     // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits.
 | |
|     uint64_t result = 0L;
 | |
|     int32_t upperMagnitude = exponent + scale + precision - 1;
 | |
|     if (truncateIfOverflow) {
 | |
|         upperMagnitude = std::min(upperMagnitude, 17);
 | |
|     }
 | |
|     for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) {
 | |
|         result = result * 10 + getDigitPos(magnitude - scale - exponent);
 | |
|     }
 | |
|     if (isNegative()) {
 | |
|         return static_cast<int64_t>(0LL - result); // i.e., -result
 | |
|     }
 | |
|     return static_cast<int64_t>(result);
 | |
| }
 | |
| 
 | |
| uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const {
 | |
|     uint64_t result = 0L;
 | |
|     int32_t magnitude = -1 - exponent;
 | |
|     int32_t lowerMagnitude = scale;
 | |
|     if (includeTrailingZeros) {
 | |
|         lowerMagnitude = std::min(lowerMagnitude, rReqPos);
 | |
|     }
 | |
|     for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) {
 | |
|         result = result * 10 + getDigitPos(magnitude - scale);
 | |
|     }
 | |
|     // Remove trailing zeros; this can happen during integer overflow cases.
 | |
|     if (!includeTrailingZeros) {
 | |
|         while (result > 0 && (result % 10) == 0) {
 | |
|             result /= 10;
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| bool DecimalQuantity::fitsInLong(bool ignoreFraction) const {
 | |
|     if (isInfinite() || isNaN()) {
 | |
|         return false;
 | |
|     }
 | |
|     if (isZeroish()) {
 | |
|         return true;
 | |
|     }
 | |
|     if (exponent + scale < 0 && !ignoreFraction) {
 | |
|         return false;
 | |
|     }
 | |
|     int magnitude = getMagnitude();
 | |
|     if (magnitude < 18) {
 | |
|         return true;
 | |
|     }
 | |
|     if (magnitude > 18) {
 | |
|         return false;
 | |
|     }
 | |
|     // Hard case: the magnitude is 10^18.
 | |
|     // The largest int64 is: 9,223,372,036,854,775,807
 | |
|     for (int p = 0; p < precision; p++) {
 | |
|         int8_t digit = getDigit(18 - p);
 | |
|         static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 };
 | |
|         if (digit < INT64_BCD[p]) {
 | |
|             return true;
 | |
|         } else if (digit > INT64_BCD[p]) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     // Exactly equal to max long plus one.
 | |
|     return isNegative();
 | |
| }
 | |
| 
 | |
| double DecimalQuantity::toDouble() const {
 | |
|     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
 | |
|     // See the comment in the header file explaining the "isApproximate" field.
 | |
|     U_ASSERT(!isApproximate);
 | |
| 
 | |
|     if (isNaN()) {
 | |
|         return NAN;
 | |
|     } else if (isInfinite()) {
 | |
|         return isNegative() ? -INFINITY : INFINITY;
 | |
|     }
 | |
| 
 | |
|     // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter.
 | |
|     StringToDoubleConverter converter(0, 0, 0, "", "");
 | |
|     UnicodeString numberString = this->toScientificString();
 | |
|     int32_t count;
 | |
|     return converter.StringToDouble(
 | |
|             reinterpret_cast<const uint16_t*>(numberString.getBuffer()),
 | |
|             numberString.length(),
 | |
|             &count);
 | |
| }
 | |
| 
 | |
| DecNum& DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const {
 | |
|     // Special handling for zero
 | |
|     if (precision == 0) {
 | |
|         output.setTo("0", status);
 | |
|         return output;
 | |
|     }
 | |
| 
 | |
|     // Use the BCD constructor. We need to do a little bit of work to convert, though.
 | |
|     // The decNumber constructor expects most-significant first, but we store least-significant first.
 | |
|     MaybeStackArray<uint8_t, 20> ubcd(precision, status);
 | |
|     if (U_FAILURE(status)) {
 | |
|         return output;
 | |
|     }
 | |
|     for (int32_t m = 0; m < precision; m++) {
 | |
|         ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m));
 | |
|     }
 | |
|     output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status);
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::truncate() {
 | |
|     if (scale < 0) {
 | |
|         shiftRight(-scale);
 | |
|         scale = 0;
 | |
|         compact();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
 | |
|     roundToMagnitude(magnitude, roundingMode, true, status);
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
 | |
|     roundToMagnitude(magnitude, roundingMode, false, status);
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) {
 | |
|     // The position in the BCD at which rounding will be performed; digits to the right of position
 | |
|     // will be rounded away.
 | |
|     int position = safeSubtract(magnitude, scale);
 | |
| 
 | |
|     // "trailing" = least significant digit to the left of rounding
 | |
|     int8_t trailingDigit = getDigitPos(position);
 | |
| 
 | |
|     if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
 | |
|         // All digits are to the left of the rounding magnitude.
 | |
|     } else if (precision == 0) {
 | |
|         // No rounding for zero.
 | |
|     } else {
 | |
|         // Perform rounding logic.
 | |
|         // "leading" = most significant digit to the right of rounding
 | |
|         int8_t leadingDigit = getDigitPos(safeSubtract(position, 1));
 | |
| 
 | |
|         // Compute which section of the number we are in.
 | |
|         // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles)
 | |
|         // LOWER means we are between the bottom edge and the midpoint, like 1.391
 | |
|         // MIDPOINT means we are exactly in the middle, like 1.500
 | |
|         // UPPER means we are between the midpoint and the top edge, like 1.916
 | |
|         roundingutils::Section section;
 | |
|         if (!isApproximate) {
 | |
|             if (nickel && trailingDigit != 2 && trailingDigit != 7) {
 | |
|                 // Nickel rounding, and not at .02x or .07x
 | |
|                 if (trailingDigit < 2) {
 | |
|                     // .00, .01 => down to .00
 | |
|                     section = roundingutils::SECTION_LOWER;
 | |
|                 } else if (trailingDigit < 5) {
 | |
|                     // .03, .04 => up to .05
 | |
|                     section = roundingutils::SECTION_UPPER;
 | |
|                 } else if (trailingDigit < 7) {
 | |
|                     // .05, .06 => down to .05
 | |
|                     section = roundingutils::SECTION_LOWER;
 | |
|                 } else {
 | |
|                     // .08, .09 => up to .10
 | |
|                     section = roundingutils::SECTION_UPPER;
 | |
|                 }
 | |
|             } else if (leadingDigit < 5) {
 | |
|                 // Includes nickel rounding .020-.024 and .070-.074
 | |
|                 section = roundingutils::SECTION_LOWER;
 | |
|             } else if (leadingDigit > 5) {
 | |
|                 // Includes nickel rounding .026-.029 and .076-.079
 | |
|                 section = roundingutils::SECTION_UPPER;
 | |
|             } else {
 | |
|                 // Includes nickel rounding .025 and .075
 | |
|                 section = roundingutils::SECTION_MIDPOINT;
 | |
|                 for (int p = safeSubtract(position, 2); p >= 0; p--) {
 | |
|                     if (getDigitPos(p) != 0) {
 | |
|                         section = roundingutils::SECTION_UPPER;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             int32_t p = safeSubtract(position, 2);
 | |
|             int32_t minP = uprv_max(0, precision - 14);
 | |
|             if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
 | |
|                 section = roundingutils::SECTION_LOWER_EDGE;
 | |
|                 for (; p >= minP; p--) {
 | |
|                     if (getDigitPos(p) != 0) {
 | |
|                         section = roundingutils::SECTION_LOWER;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
 | |
|                 section = roundingutils::SECTION_MIDPOINT;
 | |
|                 for (; p >= minP; p--) {
 | |
|                     if (getDigitPos(p) != 9) {
 | |
|                         section = roundingutils::SECTION_LOWER;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
 | |
|                 section = roundingutils::SECTION_MIDPOINT;
 | |
|                 for (; p >= minP; p--) {
 | |
|                     if (getDigitPos(p) != 0) {
 | |
|                         section = roundingutils::SECTION_UPPER;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) {
 | |
|                 section = roundingutils::SECTION_UPPER_EDGE;
 | |
|                 for (; p >= minP; p--) {
 | |
|                     if (getDigitPos(p) != 9) {
 | |
|                         section = roundingutils::SECTION_UPPER;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             } else if (nickel && trailingDigit != 2 && trailingDigit != 7) {
 | |
|                 // Nickel rounding, and not at .02x or .07x
 | |
|                 if (trailingDigit < 2) {
 | |
|                     // .00, .01 => down to .00
 | |
|                     section = roundingutils::SECTION_LOWER;
 | |
|                 } else if (trailingDigit < 5) {
 | |
|                     // .03, .04 => up to .05
 | |
|                     section = roundingutils::SECTION_UPPER;
 | |
|                 } else if (trailingDigit < 7) {
 | |
|                     // .05, .06 => down to .05
 | |
|                     section = roundingutils::SECTION_LOWER;
 | |
|                 } else {
 | |
|                     // .08, .09 => up to .10
 | |
|                     section = roundingutils::SECTION_UPPER;
 | |
|                 }
 | |
|             } else if (leadingDigit < 5) {
 | |
|                 // Includes nickel rounding .020-.024 and .070-.074
 | |
|                 section = roundingutils::SECTION_LOWER;
 | |
|             } else {
 | |
|                 // Includes nickel rounding .026-.029 and .076-.079
 | |
|                 section = roundingutils::SECTION_UPPER;
 | |
|             }
 | |
| 
 | |
|             bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode);
 | |
|             if (safeSubtract(position, 1) < precision - 14 ||
 | |
|                 (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) ||
 | |
|                 (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) {
 | |
|                 // Oops! This means that we have to get the exact representation of the double,
 | |
|                 // because the zone of uncertainty is along the rounding boundary.
 | |
|                 convertToAccurateDouble();
 | |
|                 roundToMagnitude(magnitude, roundingMode, nickel, status); // start over
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // Turn off the approximate double flag, since the value is now confirmed to be exact.
 | |
|             isApproximate = false;
 | |
|             origDouble = 0.0;
 | |
|             origDelta = 0;
 | |
| 
 | |
|             if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
 | |
|                 // All digits are to the left of the rounding magnitude.
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // Good to continue rounding.
 | |
|             if (section == -1) { section = roundingutils::SECTION_LOWER; }
 | |
|             if (section == -2) { section = roundingutils::SECTION_UPPER; }
 | |
|         }
 | |
| 
 | |
|         // Nickel rounding "half even" goes to the nearest whole (away from the 5).
 | |
|         bool isEven = nickel
 | |
|                 ? (trailingDigit < 2 || trailingDigit > 7
 | |
|                         || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER)
 | |
|                         || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER))
 | |
|                 : (trailingDigit % 2) == 0;
 | |
| 
 | |
|         bool roundDown = roundingutils::getRoundingDirection(isEven,
 | |
|                 isNegative(),
 | |
|                 section,
 | |
|                 roundingMode,
 | |
|                 status);
 | |
|         if (U_FAILURE(status)) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // Perform truncation
 | |
|         if (position >= precision) {
 | |
|             U_ASSERT(trailingDigit == 0);
 | |
|             setBcdToZero();
 | |
|             scale = magnitude;
 | |
|         } else {
 | |
|             shiftRight(position);
 | |
|         }
 | |
| 
 | |
|         if (nickel) {
 | |
|             if (trailingDigit < 5 && roundDown) {
 | |
|                 setDigitPos(0, 0);
 | |
|                 compact();
 | |
|                 return;
 | |
|             } else if (trailingDigit >= 5 && !roundDown) {
 | |
|                 setDigitPos(0, 9);
 | |
|                 trailingDigit = 9;
 | |
|                 // do not return: use the bubbling logic below
 | |
|             } else {
 | |
|                 setDigitPos(0, 5);
 | |
|                 // If the quantity was set to 0, we may need to restore a digit.
 | |
|                 if (precision == 0) {
 | |
|                     precision = 1;
 | |
|                 }
 | |
|                 // compact not necessary: digit at position 0 is nonzero
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Bubble the result to the higher digits
 | |
|         if (!roundDown) {
 | |
|             if (trailingDigit == 9) {
 | |
|                 int bubblePos = 0;
 | |
|                 // Note: in the long implementation, the most digits BCD can have at this point is
 | |
|                 // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe.
 | |
|                 for (; getDigitPos(bubblePos) == 9; bubblePos++) {}
 | |
|                 shiftRight(bubblePos); // shift off the trailing 9s
 | |
|             }
 | |
|             int8_t digit0 = getDigitPos(0);
 | |
|             U_ASSERT(digit0 != 9);
 | |
|             setDigitPos(0, static_cast<int8_t>(digit0 + 1));
 | |
|             precision += 1; // in case an extra digit got added
 | |
|         }
 | |
| 
 | |
|         compact();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::roundToInfinity() {
 | |
|     if (isApproximate) {
 | |
|         convertToAccurateDouble();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) {
 | |
|     U_ASSERT(leadingZeros >= 0);
 | |
| 
 | |
|     // Zero requires special handling to maintain the invariant that the least-significant digit
 | |
|     // in the BCD is nonzero.
 | |
|     if (value == 0) {
 | |
|         if (appendAsInteger && precision != 0) {
 | |
|             scale += leadingZeros + 1;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Deal with trailing zeros
 | |
|     if (scale > 0) {
 | |
|         leadingZeros += scale;
 | |
|         if (appendAsInteger) {
 | |
|             scale = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Append digit
 | |
|     shiftLeft(leadingZeros + 1);
 | |
|     setDigitPos(0, value);
 | |
| 
 | |
|     // Fix scale if in integer mode
 | |
|     if (appendAsInteger) {
 | |
|         scale += leadingZeros + 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| UnicodeString DecimalQuantity::toPlainString() const {
 | |
|     U_ASSERT(!isApproximate);
 | |
|     UnicodeString sb;
 | |
|     if (isNegative()) {
 | |
|         sb.append(u'-');
 | |
|     }
 | |
|     if (precision == 0) {
 | |
|         sb.append(u'0');
 | |
|         return sb;
 | |
|     }
 | |
|     int32_t upper = scale + precision + exponent - 1;
 | |
|     int32_t lower = scale + exponent;
 | |
|     if (upper < lReqPos - 1) {
 | |
|         upper = lReqPos - 1;
 | |
|     }
 | |
|     if (lower > rReqPos) {
 | |
|         lower = rReqPos;
 | |
|     }    
 | |
|     int32_t p = upper;
 | |
|     if (p < 0) {
 | |
|         sb.append(u'0');
 | |
|     }
 | |
|     for (; p >= 0; p--) {
 | |
|         sb.append(u'0' + getDigitPos(p - scale - exponent));
 | |
|     }
 | |
|     if (lower < 0) {
 | |
|         sb.append(u'.');
 | |
|     }
 | |
|     for(; p >= lower; p--) {
 | |
|         sb.append(u'0' + getDigitPos(p - scale - exponent));
 | |
|     }
 | |
|     return sb;
 | |
| }
 | |
| 
 | |
| UnicodeString DecimalQuantity::toScientificString() const {
 | |
|     U_ASSERT(!isApproximate);
 | |
|     UnicodeString result;
 | |
|     if (isNegative()) {
 | |
|         result.append(u'-');
 | |
|     }
 | |
|     if (precision == 0) {
 | |
|         result.append(u"0E+0", -1);
 | |
|         return result;
 | |
|     }
 | |
|     int32_t upperPos = precision - 1;
 | |
|     int32_t lowerPos = 0;
 | |
|     int32_t p = upperPos;
 | |
|     result.append(u'0' + getDigitPos(p));
 | |
|     if ((--p) >= lowerPos) {
 | |
|         result.append(u'.');
 | |
|         for (; p >= lowerPos; p--) {
 | |
|             result.append(u'0' + getDigitPos(p));
 | |
|         }
 | |
|     }
 | |
|     result.append(u'E');
 | |
|     int32_t _scale = upperPos + scale + exponent;
 | |
|     if (_scale == INT32_MIN) {
 | |
|         result.append({u"-2147483648", -1});
 | |
|         return result;
 | |
|     } else if (_scale < 0) {
 | |
|         _scale *= -1;
 | |
|         result.append(u'-');
 | |
|     } else {
 | |
|         result.append(u'+');
 | |
|     }
 | |
|     if (_scale == 0) {
 | |
|         result.append(u'0');
 | |
|     }
 | |
|     int32_t insertIndex = result.length();
 | |
|     while (_scale > 0) {
 | |
|         std::div_t res = std::div(_scale, 10);
 | |
|         result.insert(insertIndex, u'0' + res.rem);
 | |
|         _scale = res.quot;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////
 | |
| /// End of DecimalQuantity_AbstractBCD.java      ///
 | |
| /// Start of DecimalQuantity_DualStorageBCD.java ///
 | |
| ////////////////////////////////////////////////////
 | |
| 
 | |
| int8_t DecimalQuantity::getDigitPos(int32_t position) const {
 | |
|     if (usingBytes) {
 | |
|         if (position < 0 || position >= precision) { return 0; }
 | |
|         return fBCD.bcdBytes.ptr[position];
 | |
|     } else {
 | |
|         if (position < 0 || position >= 16) { return 0; }
 | |
|         return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::setDigitPos(int32_t position, int8_t value) {
 | |
|     U_ASSERT(position >= 0);
 | |
|     if (usingBytes) {
 | |
|         ensureCapacity(position + 1);
 | |
|         fBCD.bcdBytes.ptr[position] = value;
 | |
|     } else if (position >= 16) {
 | |
|         switchStorage();
 | |
|         ensureCapacity(position + 1);
 | |
|         fBCD.bcdBytes.ptr[position] = value;
 | |
|     } else {
 | |
|         int shift = position * 4;
 | |
|         fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::shiftLeft(int32_t numDigits) {
 | |
|     if (!usingBytes && precision + numDigits > 16) {
 | |
|         switchStorage();
 | |
|     }
 | |
|     if (usingBytes) {
 | |
|         ensureCapacity(precision + numDigits);
 | |
|         uprv_memmove(fBCD.bcdBytes.ptr + numDigits, fBCD.bcdBytes.ptr, precision);
 | |
|         uprv_memset(fBCD.bcdBytes.ptr, 0, numDigits);
 | |
|     } else {
 | |
|         fBCD.bcdLong <<= (numDigits * 4);
 | |
|     }
 | |
|     scale -= numDigits;
 | |
|     precision += numDigits;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::shiftRight(int32_t numDigits) {
 | |
|     if (usingBytes) {
 | |
|         int i = 0;
 | |
|         for (; i < precision - numDigits; i++) {
 | |
|             fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits];
 | |
|         }
 | |
|         for (; i < precision; i++) {
 | |
|             fBCD.bcdBytes.ptr[i] = 0;
 | |
|         }
 | |
|     } else {
 | |
|         fBCD.bcdLong >>= (numDigits * 4);
 | |
|     }
 | |
|     scale += numDigits;
 | |
|     precision -= numDigits;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::popFromLeft(int32_t numDigits) {
 | |
|     U_ASSERT(numDigits <= precision);
 | |
|     if (usingBytes) {
 | |
|         int i = precision - 1;
 | |
|         for (; i >= precision - numDigits; i--) {
 | |
|             fBCD.bcdBytes.ptr[i] = 0;
 | |
|         }
 | |
|     } else {
 | |
|         fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1;
 | |
|     }
 | |
|     precision -= numDigits;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::setBcdToZero() {
 | |
|     if (usingBytes) {
 | |
|         uprv_free(fBCD.bcdBytes.ptr);
 | |
|         fBCD.bcdBytes.ptr = nullptr;
 | |
|         usingBytes = false;
 | |
|     }
 | |
|     fBCD.bcdLong = 0L;
 | |
|     scale = 0;
 | |
|     precision = 0;
 | |
|     isApproximate = false;
 | |
|     origDouble = 0;
 | |
|     origDelta = 0;
 | |
|     exponent = 0;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::readIntToBcd(int32_t n) {
 | |
|     U_ASSERT(n != 0);
 | |
|     // ints always fit inside the long implementation.
 | |
|     uint64_t result = 0L;
 | |
|     int i = 16;
 | |
|     for (; n != 0; n /= 10, i--) {
 | |
|         result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60);
 | |
|     }
 | |
|     U_ASSERT(!usingBytes);
 | |
|     fBCD.bcdLong = result >> (i * 4);
 | |
|     scale = 0;
 | |
|     precision = 16 - i;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::readLongToBcd(int64_t n) {
 | |
|     U_ASSERT(n != 0);
 | |
|     if (n >= 10000000000000000L) {
 | |
|         ensureCapacity();
 | |
|         int i = 0;
 | |
|         for (; n != 0L; n /= 10L, i++) {
 | |
|             fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10);
 | |
|         }
 | |
|         U_ASSERT(usingBytes);
 | |
|         scale = 0;
 | |
|         precision = i;
 | |
|     } else {
 | |
|         uint64_t result = 0L;
 | |
|         int i = 16;
 | |
|         for (; n != 0L; n /= 10L, i--) {
 | |
|             result = (result >> 4) + ((n % 10) << 60);
 | |
|         }
 | |
|         U_ASSERT(i >= 0);
 | |
|         U_ASSERT(!usingBytes);
 | |
|         fBCD.bcdLong = result >> (i * 4);
 | |
|         scale = 0;
 | |
|         precision = 16 - i;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) {
 | |
|     const decNumber* dn = decnum.getRawDecNumber();
 | |
|     if (dn->digits > 16) {
 | |
|         ensureCapacity(dn->digits);
 | |
|         for (int32_t i = 0; i < dn->digits; i++) {
 | |
|             fBCD.bcdBytes.ptr[i] = dn->lsu[i];
 | |
|         }
 | |
|     } else {
 | |
|         uint64_t result = 0L;
 | |
|         for (int32_t i = 0; i < dn->digits; i++) {
 | |
|             result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i);
 | |
|         }
 | |
|         fBCD.bcdLong = result;
 | |
|     }
 | |
|     scale = dn->exponent;
 | |
|     precision = dn->digits;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::readDoubleConversionToBcd(
 | |
|         const char* buffer, int32_t length, int32_t point) {
 | |
|     // NOTE: Despite the fact that double-conversion's API is called
 | |
|     // "DoubleToAscii", they actually use '0' (as opposed to u8'0').
 | |
|     if (length > 16) {
 | |
|         ensureCapacity(length);
 | |
|         for (int32_t i = 0; i < length; i++) {
 | |
|             fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0';
 | |
|         }
 | |
|     } else {
 | |
|         uint64_t result = 0L;
 | |
|         for (int32_t i = 0; i < length; i++) {
 | |
|             result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i);
 | |
|         }
 | |
|         fBCD.bcdLong = result;
 | |
|     }
 | |
|     scale = point - length;
 | |
|     precision = length;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::compact() {
 | |
|     if (usingBytes) {
 | |
|         int32_t delta = 0;
 | |
|         for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++);
 | |
|         if (delta == precision) {
 | |
|             // Number is zero
 | |
|             setBcdToZero();
 | |
|             return;
 | |
|         } else {
 | |
|             // Remove trailing zeros
 | |
|             shiftRight(delta);
 | |
|         }
 | |
| 
 | |
|         // Compute precision
 | |
|         int32_t leading = precision - 1;
 | |
|         for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--);
 | |
|         precision = leading + 1;
 | |
| 
 | |
|         // Switch storage mechanism if possible
 | |
|         if (precision <= 16) {
 | |
|             switchStorage();
 | |
|         }
 | |
| 
 | |
|     } else {
 | |
|         if (fBCD.bcdLong == 0L) {
 | |
|             // Number is zero
 | |
|             setBcdToZero();
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // Compact the number (remove trailing zeros)
 | |
|         // TODO: Use a more efficient algorithm here and below. There is a logarithmic one.
 | |
|         int32_t delta = 0;
 | |
|         for (; delta < precision && getDigitPos(delta) == 0; delta++);
 | |
|         fBCD.bcdLong >>= delta * 4;
 | |
|         scale += delta;
 | |
| 
 | |
|         // Compute precision
 | |
|         int32_t leading = precision - 1;
 | |
|         for (; leading >= 0 && getDigitPos(leading) == 0; leading--);
 | |
|         precision = leading + 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::ensureCapacity() {
 | |
|     ensureCapacity(40);
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::ensureCapacity(int32_t capacity) {
 | |
|     if (capacity == 0) { return; }
 | |
|     int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0;
 | |
|     if (!usingBytes) {
 | |
|         // TODO: There is nothing being done to check for memory allocation failures.
 | |
|         // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can
 | |
|         // make these arrays half the size.
 | |
|         fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t)));
 | |
|         fBCD.bcdBytes.len = capacity;
 | |
|         // Initialize the byte array to zeros (this is done automatically in Java)
 | |
|         uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t));
 | |
|     } else if (oldCapacity < capacity) {
 | |
|         auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t)));
 | |
|         uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t));
 | |
|         // Initialize the rest of the byte array to zeros (this is done automatically in Java)
 | |
|         uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t));
 | |
|         uprv_free(fBCD.bcdBytes.ptr);
 | |
|         fBCD.bcdBytes.ptr = bcd1;
 | |
|         fBCD.bcdBytes.len = capacity * 2;
 | |
|     }
 | |
|     usingBytes = true;
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::switchStorage() {
 | |
|     if (usingBytes) {
 | |
|         // Change from bytes to long
 | |
|         uint64_t bcdLong = 0L;
 | |
|         for (int i = precision - 1; i >= 0; i--) {
 | |
|             bcdLong <<= 4;
 | |
|             bcdLong |= fBCD.bcdBytes.ptr[i];
 | |
|         }
 | |
|         uprv_free(fBCD.bcdBytes.ptr);
 | |
|         fBCD.bcdBytes.ptr = nullptr;
 | |
|         fBCD.bcdLong = bcdLong;
 | |
|         usingBytes = false;
 | |
|     } else {
 | |
|         // Change from long to bytes
 | |
|         // Copy the long into a local variable since it will get munged when we allocate the bytes
 | |
|         uint64_t bcdLong = fBCD.bcdLong;
 | |
|         ensureCapacity();
 | |
|         for (int i = 0; i < precision; i++) {
 | |
|             fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf);
 | |
|             bcdLong >>= 4;
 | |
|         }
 | |
|         U_ASSERT(usingBytes);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) {
 | |
|     setBcdToZero();
 | |
|     if (other.usingBytes) {
 | |
|         ensureCapacity(other.precision);
 | |
|         uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t));
 | |
|     } else {
 | |
|         fBCD.bcdLong = other.fBCD.bcdLong;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) {
 | |
|     setBcdToZero();
 | |
|     if (other.usingBytes) {
 | |
|         usingBytes = true;
 | |
|         fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr;
 | |
|         fBCD.bcdBytes.len = other.fBCD.bcdBytes.len;
 | |
|         // Take ownership away from the old instance:
 | |
|         other.fBCD.bcdBytes.ptr = nullptr;
 | |
|         other.usingBytes = false;
 | |
|     } else {
 | |
|         fBCD.bcdLong = other.fBCD.bcdLong;
 | |
|     }
 | |
| }
 | |
| 
 | |
| const char16_t* DecimalQuantity::checkHealth() const {
 | |
|     if (usingBytes) {
 | |
|         if (precision == 0) { return u"Zero precision but we are in byte mode"; }
 | |
|         int32_t capacity = fBCD.bcdBytes.len;
 | |
|         if (precision > capacity) { return u"Precision exceeds length of byte array"; }
 | |
|         if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; }
 | |
|         if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; }
 | |
|         for (int i = 0; i < precision; i++) {
 | |
|             if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; }
 | |
|             if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; }
 | |
|         }
 | |
|         for (int i = precision; i < capacity; i++) {
 | |
|             if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; }
 | |
|         }
 | |
|     } else {
 | |
|         if (precision == 0 && fBCD.bcdLong != 0) {
 | |
|             return u"Value in bcdLong even though precision is zero";
 | |
|         }
 | |
|         if (precision > 16) { return u"Precision exceeds length of long"; }
 | |
|         if (precision != 0 && getDigitPos(precision - 1) == 0) {
 | |
|             return u"Most significant digit is zero in long mode";
 | |
|         }
 | |
|         if (precision != 0 && getDigitPos(0) == 0) {
 | |
|             return u"Least significant digit is zero in long mode";
 | |
|         }
 | |
|         for (int i = 0; i < precision; i++) {
 | |
|             if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; }
 | |
|             if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; }
 | |
|         }
 | |
|         for (int i = precision; i < 16; i++) {
 | |
|             if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // No error
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| bool DecimalQuantity::operator==(const DecimalQuantity& other) const {
 | |
|     bool basicEquals =
 | |
|             scale == other.scale
 | |
|             && precision == other.precision
 | |
|             && flags == other.flags
 | |
|             && lReqPos == other.lReqPos
 | |
|             && rReqPos == other.rReqPos
 | |
|             && isApproximate == other.isApproximate;
 | |
|     if (!basicEquals) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (precision == 0) {
 | |
|         return true;
 | |
|     } else if (isApproximate) {
 | |
|         return origDouble == other.origDouble && origDelta == other.origDelta;
 | |
|     } else {
 | |
|         for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) {
 | |
|             if (getDigit(m) != other.getDigit(m)) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| UnicodeString DecimalQuantity::toString() const {
 | |
|     UErrorCode localStatus = U_ZERO_ERROR;
 | |
|     MaybeStackArray<char, 30> digits(precision + 1, localStatus);
 | |
|     if (U_FAILURE(localStatus)) {
 | |
|         return ICU_Utility::makeBogusString();
 | |
|     }
 | |
|     for (int32_t i = 0; i < precision; i++) {
 | |
|         digits[i] = getDigitPos(precision - i - 1) + '0';
 | |
|     }
 | |
|     digits[precision] = 0; // terminate buffer
 | |
|     char buffer8[100];
 | |
|     snprintf(
 | |
|             buffer8,
 | |
|             sizeof(buffer8),
 | |
|             "<DecimalQuantity %d:%d %s %s%s%s%d>",
 | |
|             lReqPos,
 | |
|             rReqPos,
 | |
|             (usingBytes ? "bytes" : "long"),
 | |
|             (isNegative() ? "-" : ""),
 | |
|             (precision == 0 ? "0" : digits.getAlias()),
 | |
|             "E",
 | |
|             scale);
 | |
|     return UnicodeString(buffer8, -1, US_INV);
 | |
| }
 | |
| 
 | |
| #endif /* #if !UCONFIG_NO_FORMATTING */
 |